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Abstract— Source separation arises in a surprising number of signal processing applications, from speech
recognition to EEG analysis. In the square linear blind source separation problem without time delays,
one must find an unmixing matrix which can detangle the result of mixingn unknown independent sources
through an unknown n x n mixing matrix. The recently introduced ICA blind source separation algorithm
(Baram and Roth 1994; Bell and Sejnowski 1995) is a powerful and surprisingly simple technique for solving
this problem. ICA is all the more remarkable for performing so well despite making absolutely no use of the
temporal structure of its input! This paper presents a new algorithm, contextual ICA, which derives from a
maximum likelihood density estimation formulation of the problem. cICA can incorporate arbitrarily com-
plex adaptive history-sensitive source models, and thereby make use of the temporal structure of its input.
This allows it to separate in a number of situations where standard ICA cannot, including sources with low
kurtosis, colored gaussian sources, and sources which have gaussian histograms. Since ICA is a special case
of cICA, the MLE derivation provides as a corollary a rigorous derivation of classic ICA.

1 The ICA algorithm

In the blind source separation problem, oneis given the output of a number of microphones, each of which records
amixture of a number of sources. The task isto recover the sources. In the blind linear square case, there are the
same number of microphonesas sources, and themixingislinear. Intheabsence of time delaysor echos, themixing
is characterized by an n x n matrix A, so if s(t) isavector of the sources at time ¢ then x(¢) = As(t) isavector
of the signals received by the microphonesat time ¢. Naturally we will assumethat A isfull rank.

In the absence of noise, which is the case we consider, the solution to this problem isto find afull rank n x n
matrix W which has the property that WA has exactly one nonzero element in each row and each column. We
denote the result of the unmixing process asy(¢), and note that y (t) = Wx(t) = WAs(t). If we have found an
appropriate W then the product WA will be equal to the product of a diagonal matrix with a permutation matrix,
and the elements of y(¢) will be the same as the elements of s(t), but shuffled and scaled.

With no prior information about A or the source signals s;(t), the problem might sound impossible. However,
for non-gaussian distributions, it is not. An algorithm called independent components analysis was introduced by
Comon (1994). Thisversion of the algorithm approximates some distributions by their first few moments, whichis
both approximate and computationally burdensome. Single coordinate higher order cumulants are used in a some-
what simpler algorithm by Obradovic and Deco (1995). A surprisingly simple, but inexpensive and exact, variant
of the Comon (1994) algorithm was recently introduced (Baram and Roth 1994; Bell and Sejnowski 1995). In a
now standard abuse of notation, this new algorithm will be refered to as ICA. This simpler ICA agorithm takes
each component of the vector y(¢) and passes it though a saturating monotonic nonlinearity, giving a vector z(t).
Gradient descent is used to modify the componentsof the matrix W and the biasterms of the nonlinearitiesin order
to increase the entropy of the distribution of z(¢) induced by the input distribution. ICA was motivated by consid-
erations of biological optimality, which flow from experiments showing that, when presented with natura stimuli,
many neurons appear to make good use of their available axonal channel capacity (Bialek et al. 1991).

ThelCA algorithm, in variousconfigurations, has been applied to asurprising number of problems, from separation
of digitally mixed speech signals (Bell and Sejnowski 1995), to separating the componenets of electroencephal o-
graphic data (Makeig et al. 1996), to blind deconvolution (Bell and Sejnowski 1995), to finding the higher-order
structure of anatural sound (Bell and Sejnowski 1996b), and even to financia forecasting (Baram and Roth 1995)
and image processing (Bell and Sejnowski 1996a). There have been attempts to generalize the algorithm, the most
notable being extensions to tol erate time delays and echos introduced by Torkkola (1996a, 1996b).

The usual intuition for why ICA tendsto separate sources runs roughly as follows: if the output entropy is maxi-
mized, then the components of the output vector must be statistically independent. If so, then the signals must also
be statistically independent prior to the nonlinearity. That being the case, the sources must be separated.

However, there are problematic cases which ICA cannot separate. For instance, a mixture of two uniform distri-
butions, or more generally two low-kurtosis distributions, is not properly separated. (Although separation in this
case might be achieved by using a special nonlinearity chosen for the problem.) Since atwo-dimensional gaussian
distributionisrotationally symmetric, amixture of white gaussian sourcesisinherently impossibleto separate. Any
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Figure 1: The ICA algorithm fits this parameterized generative model to data.

algorithm that makes no use of the temporal structure of its inputs can by definition make use of only the cumula-
tive histograms of its inputs. If these histograms are gaussian, then such an algorithm will be in principle unable to
separate. Since ICA makes no use of the temporal structure of its inputs, it is in principle unable to separate sources
whose histograms are gaussian. This includes, for example, colored gaussian sources, speech or music which hap-
pen to have gaussian histograms, etc. It is sometimes speculated that any mixture of sources with high-kurtosis
histograms is separable by ICA—but there is as yet no proof of this.

We shall now proceed to derive an ICA-like algorithm that can make use of temporal context. We do this by refor-
mulating the blind source separation problem in a maximum likelihood framework.

2 Source separation and maximum likelihood density estimation

Consider the abstract problem of density estimation from samples. One desires to estimate some true distribu-
tion p(x) over a spac®™ from which samples;, x», ... have been drawn. The maximum likelihood approach
(Mendel and Burrus 1990) is to use a density estimator of some parametric forg{xsay). Given a setting of

the parameter vectow, this will constitute the estimated probability density. In order toveetppropriately, we

find a value for it that minimizes a measure of the difference betwéenandp(x; w). An appropriate difference
measure is the asymmetric divergence

p(x)
P(x; w)

Glp,p| = / p(x) log dx = Hl[p] — / p(x) logp(x; w) dx 1)

This is the entropy of the (fixed) input distributipmiminus the likelihood of givenp, and thew which minimizes
this maximizes the likelihood; hence the term. (In a full Bayesian treatment, a prior distributiop\weetd have
to be specified. This term would manifest itself here as an extra term giving the description length of thg.jnodel

Althoughd itself is not available to us, an unbiased estimate of it can be obtained by taking a saimgtep,
G = H[p] - log p(x; w) )

In order to apply a stochastic gradient optimization method, we wish to find an unbiased estidGfewef(Rob-
bins and Monro 1951). Due to the linearity of differentiatid@;,/dw = —(d/dw) log p(x; w) is such an estimate.

For blind source separation, we consider the parametric forng(kerw) shown in figure 1. Leiu be ann-
dimensional vector whose componenisare drawn fromn independent parameterized one-dimensional density
functionsf; (u;; w;). Now letW be ann x n matrix, and letk = W ~'u. The consequent density aris denoted
p(x; w), where the parameter vecteris a concatenation of the element$Wfwith the parameters 4, . .., w,, of

the densitied, . . ., f». The components af represent tha independent sources which we would like to recover
from the observed linear mix, andW represents the appropriate unmixing matrix.

To calculated@/dw we expandog p(x; w) = log|W| + > log f;(u;; w;) whereu = Wx. We then obtain
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Figure 2: The contextual ICA (cICA) algorithm uses conditional densities which are not memoryless.

formulas for the two different sorts of parametersinvolved,

dG ~ filug;w;)
- = _wWwT_ <37> xT 3
dW fj(Uj;Wj) . ( )
dG __dfi(ujiwy)/dw, @)
dw; filug; wj)

where (expr(j)); denotes the column vector whose elementsare expr(1), . . ., expr(n).

Thisis precisely the ICA agorithm, whereour f;(u;; w;) isthe derivative of the Bell and Sejnowski (1995) satu-

rating monotonic nonlinearity g(u;), and our parameter vector w; holds the jth component of their wq vector of
biasterms, f;(u;; w;) = g'(u; + (wo);). Inour formulation no squashing nonlinearity is ever calculated, except
perhaps as a common subexpression in the computation of the derivatives of the densities. However, the output of
the squashing nonlinearity is never actually used for anything in classic ICA.

3 Generalizing ICA

Under this MLE formulation of source separation, there is no restriction on the form of the distributions f;. The
density function f; () can have complex structure, and can be conditioned on other information—such asitsrecent
history (asshowninfigure 2), or eveninformation from other modalities. All that isrequired isthat the components
of u be conditionally independent. In general, f; can be of the form

fi(ui(@®)|a(t — 1),u(t — 2),...,other information, . ..; w;)

We call thisalgorithm contextual ICA or cICA. To giveavivid example, if the sourceswere different people speak-
ing, then the “other information” might be lip position measured using a visual modality, and w;(t) would be pri-
marily conditioned on the recent history of that sourceitself, u;(t — 1), u;(t — 2), ..., but there might a so be some
small influencefrom other speakers. Although f; can in principle be made arbitrarily complex, thereis no practical
reason to make it more complex than is necessary to permit proper separation of the sources.

Of coursewemust still calculate df; (u;; w;)/dw; asper equation4. Indoing so, thehistory u;(t—1),u;(t—2),. ..
of source j istrested as constant with respect to changesin w;. Thisis correct, because the unmixing depends only
on the matrix W and not the parameters w; of the individual source distributions. On the other hand, changing W
changesthe estimated recent history of sourcew ;, which in turn hasan influenceon f;. However we use equation 3
without adding these extra terms. The approximation of dropping these cross terms is ubiquitous in time series
analysis, and in this case the successful results of our smulations leads usto believe that it is benign.
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Figure 3: clCA using a history of onetime step and a mixture of five logistic densities for each source was applied
to 5,000 samples of a mixture of two one-dimensional uniform distributions each filtered by convolution with a
decaying exponential of time constant of 99.5. Shown is a scatterplot of the datainput to the algorithm, along with
the true source axes (l€eft), the estimated residual probability density (center), and a scatterplot of the residuals of
the datatransformed into the estimated source space coordinates (right). The product of the true mixing matrix and
the estimated unmixing matrix deviates from a scaling and permutation matrix by about 3%.

4 Experiments

In our simulations we chose to make f; a weighted sum of logistic density functions' with variable means and
scales, and make these means linear functions of the recent history of source j. Thisallowed usto revert to classic
ICA by setting the amount of temporal context to zero and the number of logistic densitiesin the sum to one. This
density estimator, and the corresponding derivatives, are described in detail in appendix A.

Here we experiment with two distributions that conventional ICA is unable to separate. Thefirst is an extremely
simple two-dimensional distribution with no temporal context: both z; and x> are chosen iid from auniform dis-
tribution. Conventional ICA incorrectly rotates the distribution 45 degrees, for reasons explained very well by Bell
and Sejnowski (1995) in their discussion of this problematic case. The clCA algorithm successfully separates the
sources. To make the problem more challenging, we then filtered each source through low-passfilter. Theresulting
time series has very gaussian histograms, but as shown in figure 3, cl CA again correctly separates the sources.

The second experiment is somewhat more involved. Ten acoustic sources, which include the six used by Bell and
Sejnowski (1995), were obtained, courtesty of Dr. Tony Bell. Asshown in figure 4, the cumulative density of each
source was measured and used to construct a monotonically increasing normalizer which, when applied to each
sample from asource, gave the time series a gaussian histogram. These preprocessed time series were mixed using
arandom matrix. Asshowninfigures5and 6, ICA was unableto separate the resulting babble, but clCA separates
properly, even when using only avery small amount of temporal context.

5 Discussion

In deriving cl CA we have seen that ICA can regarded as a gradient method for performing maximum likelihood
density estimation using alinear historylessfactorial model and rigid source densities. Theresulting error measure
isnaturally the same asin the Bell and Sejnowski (1995) derivation, but taking an MLE viewpoint allows anumber
of generalizations, which alow clCA to to separate awider variety of sources.

A weaknessthismethod shareswith other blind source separation techniquesisthat it not robust to modul ation of the
dimensionality. Inother words, it isnot designed for anon-square mixing matrix. If x = As andx isn-dimensional
but s ism-dimensional, thenin the case that n > m the algorithm presented here can make no good use of the extra
information but to imagine that a few extra Gaussian sources were mixed into the signal. This may perhaps be
solved by using a W matrix of aspecial form. Inthe casethat n < m no linear unmixing can separate the sources,
and it seems that a strong prior will be necessary to distinguish a single complex one-dimensional source from the
one-dimensional sum of two simple independent one-dimensional sources, and a nonlinear unmixing process will
be necessary to separate them.

LIf g(t) isthe fraction of the susceptible population aready infected, then the Verhulst (1844) epidemic equation, dg/dt = g(t)(1 — g(t)),
expresses arandom-contact homogeneous-popul ation model of growth. Thisresultsinalogistic cumulative distribution function g(¢) = 1/(1+
exp —t). Thelogistic density function is h(t) = dg/dt, the corresponding probability density of contracting the disease at time ¢.
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Figure 4: Histogram of samples from one of the acoustic sources used in the mixture below (left), nonlinear trans-
formation applied to the data (center), histogram of transformed data (right).
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Figure 5: Scatterplot of linear mixture of two gaussianified acoustic sources (Ieft), and unmixing error of clCA (us-
ing linear predictive sources with asingle logistic) as a function of the length of the history used in the predictive
filter (right). The zero history case correspondsto classic ICA, whichfail to separate dueto the gaussian histograms.
(The parallelogram-shaped boundary and the stripesin the scatterplot on the left are artifacts of the signal quanti-
zation and the digital mixing.)
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Figure 6: Plot of the elements of the product of the true mixing matrix and the estimated unmixing matrix, with
each row normalized to make the largest element equal to one, and the rows permuted to place large elementsalong
the diagonal. If theunmixing is perfect, the result will be aridge along the diagonal with all off-diagonal elements
equal to zero. Theten sources mixed are acoustic sources (courtesy of Tony Bell) which have had amonotonic non-
linearity applied to them to make their histograms exhibit gaussian statistics (see figure 4.) These are mixed using
arandom mixing matrix, and clCA with linear predictive sources and a single logistic density is used to estimate
the unmixing matrix. The length of the history used is varied from zero, which corresponds to conventional ICA
(Ieft), to one (center), to two (right).

Finally, wewouldliketo compare | CA with PCA. The principal componentsalgorithm (Hotelling 1933) fitsalinear
mixture of one-dimensional Gaussian sourcesof minimal varianceto samplesfrom ahigh-dimensional distribution.
ICA performsasimilar action, but instead uses alinear mixture of potentially non-Gaussian distributions. Assuch,
ICA might be viewed as alinear but non-Gaussian generalization of PCA—except that without PCA’s minimum
variance constraint, if Gaussian distributionsare used for the f; distributions of ICA, the unmixing matrix W hasa
great deal of freedom. It need not be orthogonal, and the coordinate system it embodies need have no special status.
A challenge that remains with us is to find a sensible nonlinear analogue of PCA. One algorithm was proposed



for this purpose by Parra, Deco, and Miesbach (1995), who replaced the orthogonal linear mixture of PCA by a
symplectic mixing function while retaining PCA’s minimal variance Gaussian source model. Unfortunately the
symplectic map has a great deal of undesired freedom, so again the coordinate system it produces need have no
special status.

6 Futurework

Our current work concentrates on combining source separation with deconvolution, to enable the system to both
tolerate and cancel the effects of echos and time delays between the sources and the microphones. An inherent
ambiguity isintroduced, which amountsto afreedom of onefilter per source. We hopeto resolvethisambiguity ina
more symmetric fashion than in Torkkola (1996a), where identity filters are placed along the diagonal of the matrix
of deconvolution filters. We are also exploring the incorporation of microphone nonlinearities, and microphone
noise of known distribution, into the model.
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A Linear predictive sourcedistributions

In the simulations of section 4 the f;(u;; w;) distribution used is a mixture of logistic densities,
fj(Uj(t)|Uj(t - ].),Uj(t - 2), ey Wj) = ijk h((Uj(t) - ﬂjk)/O'jk)/Ujk (5)
k

where o ;;, isascale parameter for logistic density % of source j andisan element of w;, and the mixing coefficients
m, are elements of w; and are constrained by >, mj; = 1. The component means u;;, are taken to be linear
functions of the recent values of that source,

ujkzzajk(T) Uj(t—T)-Fbjk (6)
T=1

where the linear prediction coefficients a; (7) and bias b;;, are elements of w;.

To perform stochastic gradient descent it is necessary to calculate the derivative df;(u;; w;)/dw;. We ac-
complish this using the following equations. For conciseness, when we below refer to f;, hj;, and their
simple derivatives f;, h},, we leave off the arguments, which are the same as the corresponding argu-
ments above. The h logistic density function and its cumulative distribution function ¢ are as in footnote 1.

. dG mj Wy, uj(t — 1)
) = 1
dG_—_ _ _ha @ da;ji (T) o5k fi o
dmjy, ajk fj G e B
B
o= hir(1-29) (®) B = (12)
e ik ik Ji
dG (hji gk + (uj — i) Ry )mje ’ re
= 3 (9) ' Mk hjk
doj Ok i fi = Z 2 (12)
k Jk

After each weight update the mixing coefficients must be normalized, m . < mjir/ >, mjrr.

B Stochastic gradient descent

In the above experimentsanumber of techniqueswere used to improvethe efficiency and robustness of the stochas-
tic gradient descent procedure as applied to clCA.

First, rather than performing gradient descent directly on the scale parameters o, and mixing parameters m iy,
we performed gradient descent upon their logarithms. Using such log scale parameters automatically guarantees
ojr > 0. Inaddition, the stability and robustness of the gradient descent process areimproved (Nowlan and Hinton
1992; Pearlmutter 1992).

Second, an important contribution to the computational efficiency of our experimentsis due to Amari, Cichocki,
and Yang (1996), who post-multiply their ICA-like gradient by WTW. Since this is a positive-definite matrix it
does not effect the stochastic gradient convergence criteria, and the resulting quantity

~ ! L. .
AW o« - 29 wrw — w4 <7fj(“f’w])

dW filugswj) ) ; W W 13)

J

is therefore an admissible pseudo-gradient. This post-multiplication neatly eliminates the matrix inversion, and
makes the algorithm scale-invariant to the true mixing matrix A.



