
Chaitin-Kolmogorov Complexity
and Generalization in Neural Networks

Barak A. Pearlmutter
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Ronald Rosenfeld
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We present a unified framework for a number of different ways of failing
to generalize properly. During learning, sources of random information
contaminate the network, effectively augmenting the training data with
random information. The complexity of the function computed is therefore
increased, and generalization is degraded. We analyze replicated networks,
in which a number of identical networks are independently trained on the
same data and their results averaged. We conclude that replication almost
always results in a decrease in the expected complexity of the network, and
that replication therefore increases expected generalization. Simulations
confirming the effect are also presented.

1 BROKEN SYMMETRY CONSIDERED HARMFUL

Consider a one-unit backpropagation network trained on exclusive or. Without
hidden units, the problem is insoluble. One point where learning would stop is
when all weights are zero and the output is always ~, resulting in an mean squared
error of ~. But this is a saddle point; by placing the discrimination boundary
properly, one point can be gotten correctly, two with errors of ~, and one with error
of i, giving an MSE of i, as shown in figure 1.

Networks are initialized with small random weights, or noise is injected during train­
ing to break symmetries of this sort. But in breaking this symmetry, something has
been lost. Consider a kNN classifier, constructed from a kNN program and the
training data. Anyone who has a copy of the kNN program can construct an iden­
tical classifier if they receive the training data. Thus, considering the classification

925

926 Pearlmutter and Rosenfeld

as an abstract entity, we know its complexity cannot exceed that of the training
data plus the overhead of the complexity of the program, which is fixed.

But this is not necessarily the case for the backpropagation network we saw! Be­
cause of the introduction of randomly broken symmetries, the complexity of the
classification itself can exceed that of the training data plus the learning procedure.
Thus an identical classifier can no longer be constructed just from the program and
the training data, because random factors have been introduced. For a striking
example, consider presenting a "32 bit parity with 10,000 exceptions" stochastic
learner with one million exemplars. The complexity of the resulting function will
be high, since in order to specify it we must specify not only the regularities of
training set, which we just did in a couple words, but also which of the 4 billion
possibilities are among the 10,000 exceptions.

Applying this idea to undertraining and overtraining, we see that there are two kinds
of symmetries that can be broken. First, if not all the exemplars can be loaded,
which of the outliers are not loaded can be arbitrary. Second, underconstrained
networks that behave the same on the training set may behave differently on other
inputs. Both phenomena can be present simultaneously.

2 A COMPLEXITY BOUND

The expected value of the complexity of the function implemented by a network b
trained on data d, where b is a potentially stochastic mapping, satisfies

E(C(b(d))) ~ C(d) + C(b) + I(b(d)ld)

where I(b(d)ld) is the negative of the entropy of the bias distribution of b trained
on d,

I(b(d)ld) = -H(b(d)) = - L log P(b(d) = f)
f

where f ranges over functions that the network could end up performing, with
the network regarded as a black box. This in turn is bounded by the information
contained in the random internal parameters, or by the entropy of the watershed
structure; but these are both potentially unbounded.

A number of techniques for improving generalization, when viewed in this light,
work because they tighten this bound.

• Weight decay [2] and the statistical technique of ridge regression impose an
extra constraint on the parameters, reducing their freedom to arbitrarily break
symmetry when underconstrained.

• Cross validation attempts to stop training before too many symmetries have
been broken.

• Efforts to find the perfect number of hidden units attempt to minimize the
number of symmetries that must be broken.

These techniques strike a balance between undertraining and overtraining. Since in
any realistic domain both of these effects will be simultaneously present, it would
seem advantageous to attack the problem at the root. One approach that has been

Chaitin-Kolmogorov Complexity and Generalization in Neural Networks 927

@ 0
112

0 @

~"* ""

@ @

0

0

~
~

Figure 1: The bifurcation of a percep­
tron trained on xor.

3

• +
• •

:

+
t! +

• + • +: + • .+ +
...... :.+++.
• + + +

• •• + t· .~+,:.
, .. , •• ++...,+ + +

+
+

+

., • + t
o ~• _ ... ~_,;.;.~~_/:.: t:~ .. _ ... ~ .. _

•• 1+:
• •• + : +* +.; ++ + ··t :. ++ + + + +

•• +~ ++ +
•• tot"'+.+ • ..: *.+ +

• ..: +
• it +

•• + +

• +
+

-3 ~----------~----------~
-3 o 3

Figure 2: The training set. Crosses
are negative examples and diamonds
are positive examples.

rediscovered a number of times [1, 3], and systematically explored in its pure form
by Lincoln and Skrzypek [4], is that of replicated networks.

3 REPLICATED NETWORKS

One might think that the complexity of the average of a collection of networks would
be the sum of the complexities of the components; but this need not be the case.
Consider an ensemble network, in which an infinite number of networks are taught
the training data simultaneously, each making its random decisions according to
whatever distributions the training procedure calls for, and their output averaged.

We have seen that the complexity of a single network can exceed that of its training
data plus the training program. But this is not the case with ensemble networks,
since the ensemble network output can be determined solely from the program and
the training data, i.e. C(E(b(d))) ~ C(b)+C(d)+C("replicate") where C("replicate")
is the complexity of the instruction to replicate and average (a small constant).

A simple way to approximate the ensemble machine is to train a number of networks
simultaneously and average the results. As the number of networks is increased,
the composite model approaches the ensemble network, which cannot have higher
complexity than the training data plus the program plus the instruction to replicate.

Note that even if one accidentally stumbles across the perfect architecture and

928 Pearlmutter and Rosenfeld

training regime, resulting in a net that always learns the training set perfectly but
with no leftover capacity, and which generalizes as well as anything could, then
making a replicated network can't hurt, since all the component networks would do
exactly the same thing anyway.

A number of researchers seem to have inadvertently exploited this fact. For instance,
Hampshire et al. [1] train a number of networks on a speech task, where the networks
differed in choice of objective function. The networks' outputs were averaged to
form the answer used in the recognition phase, and the generalization performance
of the composite network was significantly higher than that of any of its component
networks. Replicated implementations programmed from identical specifications is
a common technique in software engineering of highly reliable systems.

4 THE ISSUE OF INDUCTIVE BIAS

The representational power of an ensemble is greater that that of a single network.
By the usual logic, one would expect the ensemble to have worse generalization,
since its inductive bias is weaker. Counterintuitively, this is not the case. For
instance, the VC dimension of an ensemble of perceptrons is infinite, because it can
implement an arbitrary three layer network, using replication to implement weights.
This is much greater than the finite VC dimension of a single perceptron within the
ensemble, but our analysis predicts better generalization for the ensemble than for
a single stochastic perceptron when the bounds are tight, that is, when

H(b(d)) ~ C("replicate"). (1)
This leads to the conclusion that just knowing the inductive bias of a learner is
not enough information to make strong conclusions about its expected generaliza­
tion. Thus, distribution free results based purely on the inductive bias, such as VC
dimension based PAC learning theory [5], may sometimes be unduly pessimistic.

As to replicated networks, we have seen that they can not help but improve gener­
alization when (1) holds. Thus, if one is training the same network over and over,
perhaps with slightly different training regimes, and getting worse generalization
than was hoped for, but on different cases each time, then one can improve gener­
alization in a seemingly principled manner by putting all the trained networks in a
box and calling it a finite sample of the ensemble network (and perhaps buying a
bigger computer to run it on).

5 EMPIRICAL SUPPORT

We conducted the following experiment: 17 standard backpropagation networks
(Actually 20, but 3 were lost to a disk failure) were trained on a binary classification
task. The nets all had identical architectures (2-20-1) but different initial weights,
chosen uniformly from the interval [-1, 1]. The same training set was used to train
all the networks. The fl:nctions implemented by each of the networks were then
calculated in detail, and the performance of individual networks compared to that
of their ensemble.

The classification task was a stochastic 2D linear discriminator. Each point was
obtained from a Gaussian centered at (0.0) with stdev 1. A classification of 1 was

Chaitin-Kolmogorov Complexity and Generalization in Neural Networks 929

I ...• J

, ,
•

.. t h,{··>
I ··

I
. ~

/
.' ~

l ·~
Figure 3: The functions implemented by the 17 trained networks, and by their
average (bottom right). Both the x and y axes run from -3 to 3, and grey levels are
used to represent intermediate values in the interval [0,1].

930 Pearlmutter and Rosenfeld

Table 1: Mean squared error and number of mislabeled exemplars for each network
on the training set of 200.

net MSE errors
12 0.0150837 3 ***
9 0.0200039 4 ****
16 0.0200026 4 ****
5 0.0250207 5 *****
7 0.0250213 5 *****
10 0.0228319 5 *****
13 0.0250156 5 *****
17 0.0250018 5 *****
19 0.0175466 5 *****
6 0.0300099 6 ******
15 0.0300075 6 ******
18 0.0300060 6 ******
8 0.0350609 7 *******
11 0.0350006 7 *******
20 0.0400013 8 ********
14 0.0305254 9 *********
4 0.0408391 13 *************

mean 0.027469 ± 0.007226 6.058824 ± 2.261457
ensemble 0.016286 4 **"''''
nohidden 0.060314 31

assigned to points with z ~ 0, and 0 to points with z < 0, but reversed with an
independent probability of 0.1. The final position of each point was then determined
by adding a zero mean Gaussian with stdev .25. 200 points were so generated for
the training set (shown in figure 2) and another 1000 points for the test set.

Looking at figure 3, each net appears to correctly classify as many of the inputs
as possible, within the bounds imposed on it by its inductive bias. Each function
implemented by such a net is roughly equivalent to a linear combination of 20
independent linear discriminators. It is therefore clear why each map consists of
regions delineated by up to 20 straight lines. Since the initial conditions were
different for each net, so were the resultant regions. All networks misclassified some
of the exemplars (see table 1), but the missclassifications were different for each
network, illustrating symmetry breaking due to an overconstraining data set.

Note that the ensemble's performance on the training set is comparable to that of
the best of the trained networks, while its performance on the test set is far superior.
The MSE error of the ensemble is much much better than the bound obtained from
Jensen's inequality, the average MSE. In fact, the ensemble network gets a lower
MSE than all but one individual network on the training sets, and a much lower
MSE than any individual network on the test set; and it generalizes much better
than any of the individual networks by a misclassification count metric.

Chaitin-Kolmogorov Complexity and Generalization in Neural Networks 931

Table 2: Mean squared error and number of
mislabeled samples for each network on the
test set of 1000. The performance of a theoret­
ically perfect classifier (sign x) on the test set
is 170 misclassifications, which is about what
the network without hidden units gets.

net MSE errors
16 0.201 205
9 0.207 213
4 0.206 215
5 0.209 216
11 0.208 216
15 0.207 216
6 0.212 219
19 0.213 220
7 0.214 222
8 0.214 224
12 0.212 225
17 0.219 225
18 0.220 227
20 0.223 229
13 0.223 231
14 0.227 237
10 0.226 254

mean 0.214 ± 0.007 223 ± 10.7
ensemble 0.160 200
nohidden 0.0715 169

References

Table 3: Histogram of the net­
works' performance by number of
misclassified training exemplars.

I error count I networks I
0
1
2
3 *
4 **
5 ******
6 ***
7 **
8 *
9 *

10
11
12
13 *
14
15
16

[1] J. Hampshire and A. Waibel. A novel objective function for improved phoneme
recognition using time delay neural networks. Technical Report CMU-CS-89-
118, Carnegie Mellon University School of Computer Science, March 1989.

[2] Geoffrey E. Hinton, Terrence J. Sejnowski, and David H. Ackley. Boltzmann
Machines: Constraint satisfaction networks that learn. Technical Report CMU­
CS-84-119, Carnegie-Mellon University, May 1984.

[3] Nathan Intrator. A neural network for feature extraction. In D. S. Touretzky,
editor, Advances in Neural Information Processing Systems 2, pages 719-726,
San Mateo, CA, 1990. Morgan Kaufmann.

[4] Willian P. Lincoln and Josef Skrzypek. Synergy of clustering multiple back prop­
agation networks. In D. S. Touretzky, editor, Advances in Neural Information
Processing Systems 2: pages 650-657, San Mateo, CA, 1990. Morgan Kaufmann.

[5] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, 19~4.

