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Abstract 

We present a unified framework for a number of different ways of failing 
to generalize properly. During learning, sources of random information 
contaminate the network, effectively augmenting the training data with 
random information. The complexity of the function computed is therefore 
increased, and generalization is degraded. We analyze replicated networks, 
in which a number of identical networks are independently trained on the 
same data and their results averaged. We conclude that replication almost 
always results in a decrease in the expected complexity of the network, and 
that replication therefore increases expected generalization. Simulations 
confirming the effect are also presented. 

1 BROKEN SYMMETRY CONSIDERED HARMFUL 

Consider a one-unit backpropagation network trained on exclusive or. Without 
hidden units, the problem is insoluble. One point where learning would stop is 
when all weights are zero and the output is always ~, resulting in an mean squared 
error of ~. But this is a saddle point; by placing the discrimination boundary 
properly, one point can be gotten correctly, two with errors of ~, and one with error 
of i, giving an MSE of i, as shown in figure 1. 

Networks are initialized with small random weights, or noise is injected during train­
ing to break symmetries of this sort. But in breaking this symmetry, something has 
been lost. Consider a kNN classifier, constructed from a kNN program and the 
training data. Anyone who has a copy of the kNN program can construct an iden­
tical classifier if they receive the training data. Thus, considering the classification 
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as an abstract entity, we know its complexity cannot exceed that of the training 
data plus the overhead of the complexity of the program, which is fixed. 

But this is not necessarily the case for the backpropagation network we saw! Be­
cause of the introduction of randomly broken symmetries, the complexity of the 
classification itself can exceed that of the training data plus the learning procedure. 
Thus an identical classifier can no longer be constructed just from the program and 
the training data, because random factors have been introduced. For a striking 
example, consider presenting a "32 bit parity with 10,000 exceptions" stochastic 
learner with one million exemplars. The complexity of the resulting function will 
be high, since in order to specify it we must specify not only the regularities of 
training set, which we just did in a couple words, but also which of the 4 billion 
possibilities are among the 10,000 exceptions. 

Applying this idea to undertraining and overtraining, we see that there are two kinds 
of symmetries that can be broken. First, if not all the exemplars can be loaded, 
which of the outliers are not loaded can be arbitrary. Second, underconstrained 
networks that behave the same on the training set may behave differently on other 
inputs. Both phenomena can be present simultaneously. 

2 A COMPLEXITY BOUND 

The expected value of the complexity of the function implemented by a network b 
trained on data d, where b is a potentially stochastic mapping, satisfies 

E(C(b(d))) ~ C(d) + C(b) + I(b(d)ld) 

where I(b(d)ld) is the negative of the entropy of the bias distribution of b trained 
on d, 

I(b(d)ld) = -H(b(d)) = - L log P(b(d) = f) 
f 

where f ranges over functions that the network could end up performing, with 
the network regarded as a black box. This in turn is bounded by the information 
contained in the random internal parameters, or by the entropy of the watershed 
structure; but these are both potentially unbounded. 

A number of techniques for improving generalization, when viewed in this light, 
work because they tighten this bound. 

• Weight decay [2] and the statistical technique of ridge regression impose an 
extra constraint on the parameters, reducing their freedom to arbitrarily break 
symmetry when underconstrained. 

• Cross validation attempts to stop training before too many symmetries have 
been broken. 

• Efforts to find the perfect number of hidden units attempt to minimize the 
number of symmetries that must be broken. 

These techniques strike a balance between undertraining and overtraining. Since in 
any realistic domain both of these effects will be simultaneously present, it would 
seem advantageous to attack the problem at the root. One approach that has been 
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Figure 1: The bifurcation of a percep­
tron trained on xor. 
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Figure 2: The training set. Crosses 
are negative examples and diamonds 
are positive examples. 

rediscovered a number of times [1, 3], and systematically explored in its pure form 
by Lincoln and Skrzypek [4], is that of replicated networks. 

3 REPLICATED NETWORKS 

One might think that the complexity of the average of a collection of networks would 
be the sum of the complexities of the components; but this need not be the case. 
Consider an ensemble network, in which an infinite number of networks are taught 
the training data simultaneously, each making its random decisions according to 
whatever distributions the training procedure calls for, and their output averaged. 

We have seen that the complexity of a single network can exceed that of its training 
data plus the training program. But this is not the case with ensemble networks, 
since the ensemble network output can be determined solely from the program and 
the training data, i.e. C(E(b(d))) ~ C(b)+C(d)+C("replicate") where C("replicate") 
is the complexity of the instruction to replicate and average (a small constant). 

A simple way to approximate the ensemble machine is to train a number of networks 
simultaneously and average the results. As the number of networks is increased, 
the composite model approaches the ensemble network, which cannot have higher 
complexity than the training data plus the program plus the instruction to replicate. 

Note that even if one accidentally stumbles across the perfect architecture and 
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training regime, resulting in a net that always learns the training set perfectly but 
with no leftover capacity, and which generalizes as well as anything could, then 
making a replicated network can't hurt, since all the component networks would do 
exactly the same thing anyway. 

A number of researchers seem to have inadvertently exploited this fact. For instance, 
Hampshire et al. [1] train a number of networks on a speech task, where the networks 
differed in choice of objective function. The networks' outputs were averaged to 
form the answer used in the recognition phase, and the generalization performance 
of the composite network was significantly higher than that of any of its component 
networks. Replicated implementations programmed from identical specifications is 
a common technique in software engineering of highly reliable systems. 

4 THE ISSUE OF INDUCTIVE BIAS 

The representational power of an ensemble is greater that that of a single network. 
By the usual logic, one would expect the ensemble to have worse generalization, 
since its inductive bias is weaker. Counterintuitively, this is not the case. For 
instance, the VC dimension of an ensemble of perceptrons is infinite, because it can 
implement an arbitrary three layer network, using replication to implement weights. 
This is much greater than the finite VC dimension of a single perceptron within the 
ensemble, but our analysis predicts better generalization for the ensemble than for 
a single stochastic perceptron when the bounds are tight, that is, when 

H(b(d)) ~ C("replicate"). (1) 
This leads to the conclusion that just knowing the inductive bias of a learner is 
not enough information to make strong conclusions about its expected generaliza­
tion. Thus, distribution free results based purely on the inductive bias, such as VC 
dimension based PAC learning theory [5], may sometimes be unduly pessimistic. 

As to replicated networks, we have seen that they can not help but improve gener­
alization when (1) holds. Thus, if one is training the same network over and over, 
perhaps with slightly different training regimes, and getting worse generalization 
than was hoped for, but on different cases each time, then one can improve gener­
alization in a seemingly principled manner by putting all the trained networks in a 
box and calling it a finite sample of the ensemble network (and perhaps buying a 
bigger computer to run it on). 

5 EMPIRICAL SUPPORT 

We conducted the following experiment: 17 standard backpropagation networks 
(Actually 20, but 3 were lost to a disk failure) were trained on a binary classification 
task. The nets all had identical architectures (2-20-1) but different initial weights, 
chosen uniformly from the interval [-1, 1]. The same training set was used to train 
all the networks. The fl:nctions implemented by each of the networks were then 
calculated in detail, and the performance of individual networks compared to that 
of their ensemble. 

The classification task was a stochastic 2D linear discriminator. Each point was 
obtained from a Gaussian centered at (0.0) with stdev 1. A classification of 1 was 
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Figure 3: The functions implemented by the 17 trained networks, and by their 
average (bottom right). Both the x and y axes run from -3 to 3, and grey levels are 
used to represent intermediate values in the interval [0,1]. 
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Table 1: Mean squared error and number of mislabeled exemplars for each network 
on the training set of 200. 

net MSE errors 
12 0.0150837 3 *** 
9 0.0200039 4 **** 
16 0.0200026 4 **** 
5 0.0250207 5 ***** 
7 0.0250213 5 ***** 
10 0.0228319 5 ***** 
13 0.0250156 5 ***** 
17 0.0250018 5 ***** 
19 0.0175466 5 ***** 
6 0.0300099 6 ****** 
15 0.0300075 6 ****** 
18 0.0300060 6 ****** 
8 0.0350609 7 ******* 
11 0.0350006 7 ******* 
20 0.0400013 8 ******** 
14 0.0305254 9 ********* 
4 0.0408391 13 ************* 

mean 0.027469 ± 0.007226 6.058824 ± 2.261457 
ensemble 0.016286 4 **"'''' 
nohidden 0.060314 31 

assigned to points with z ~ 0, and 0 to points with z < 0, but reversed with an 
independent probability of 0.1. The final position of each point was then determined 
by adding a zero mean Gaussian with stdev .25. 200 points were so generated for 
the training set (shown in figure 2) and another 1000 points for the test set. 

Looking at figure 3, each net appears to correctly classify as many of the inputs 
as possible, within the bounds imposed on it by its inductive bias. Each function 
implemented by such a net is roughly equivalent to a linear combination of 20 
independent linear discriminators. It is therefore clear why each map consists of 
regions delineated by up to 20 straight lines. Since the initial conditions were 
different for each net, so were the resultant regions. All networks misclassified some 
of the exemplars (see table 1), but the missclassifications were different for each 
network, illustrating symmetry breaking due to an overconstraining data set. 

Note that the ensemble's performance on the training set is comparable to that of 
the best of the trained networks, while its performance on the test set is far superior. 
The MSE error of the ensemble is much much better than the bound obtained from 
Jensen's inequality, the average MSE. In fact, the ensemble network gets a lower 
MSE than all but one individual network on the training sets, and a much lower 
MSE than any individual network on the test set; and it generalizes much better 
than any of the individual networks by a misclassification count metric. 
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Table 2: Mean squared error and number of 
mislabeled samples for each network on the 
test set of 1000. The performance of a theoret­
ically perfect classifier (sign x) on the test set 
is 170 misclassifications, which is about what 
the network without hidden units gets. 

net MSE errors 
16 0.201 205 
9 0.207 213 
4 0.206 215 
5 0.209 216 
11 0.208 216 
15 0.207 216 
6 0.212 219 
19 0.213 220 
7 0.214 222 
8 0.214 224 
12 0.212 225 
17 0.219 225 
18 0.220 227 
20 0.223 229 
13 0.223 231 
14 0.227 237 
10 0.226 254 

mean 0.214 ± 0.007 223 ± 10.7 
ensemble 0.160 200 
nohidden 0.0715 169 
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