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Abstract

A graph theoretic approach is taken to the component order problem in the layout

of statistical graphics. Eulerian tours and Hamiltonian decompositions of complete

graphs are used to ameliorate order effects in statistical graphics. Similar traversals of

edge weighted graphs are used to amplify the visual effect of selected salient features

in the data. Relevant graph theory is summarized and classic algorithms are tailored

to this problem. Graphics for multiple comparisons are reviewed and a new display

developed that is based on graph traversal. Improved star glyph displays of multivariate

data are described. Parallel coordinate displays tailored to particular features of the

data are developed. The methods and new graphical displays are made available as an

R package, PairViz.
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1 Introduction

Graphical displays frequently require an ordering of their components (e.g. matrix displays,

glyphs, parallel coordinate plots, etc.). The ordering itself is an encoding of information

that, if neglected, could hide or distort important information in the data.

Ordering has long been used to good effect, to reveal more about the data, to encourage

data comparisons, and to make datasets coherent – in short to meet Tufte’s (1987) principles

of graphical excellence. Wilkinson and Friendly (2009) present a number of early examples

of permuting rows and columns of various matrix displays (e.g. Brinton, 1914, and Bertin’s

1967 “reorderable matrix”). Some of these sort rows and columns, some permute them to

make pairwise patterns more apparent.

There are many techniques available for obtaining improved orderings for data displays.

For example, Friendly and Kwan (2003) and Hurley (2004) describe methods which place

similar variables adjacent to each other in displays such as scatterplot matrices and parallel

coordinates, thus simplifying interpretation, while Peng et al (2004) take a clutter reduc-

tion approach. Wilkinson (2005) reviews a variety of ordering algorithms (see references

therein); many of these and others are implemented in the R package seriation (Hahsler

et al, 2008). The present paper takes a different approach to the ordering problem.

We abstract the problem to one of graph traversal, and so are able to bring mathe-

matical results and algorithms to bear on it. In some cases, traversals can be chosen to

ameliorate the order effect, rendering the display more nearly invariant to the component

ordering. In other cases, some traversals are chosen over others to reinforce the desired

effect of the display.

Section 2 gives an introductory example. Here we investigate the effect of ordering in

star glyph displays, and suggest how the order effect may be minimized. Section 3 surveys

the relevant graph theory and summarizes those mathematical results most applicable to
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the ordering problem. The section stands on its own and is applicable to any statistical

problem where order is of concern, not just ones involving data visualization. In Section

4, we work through two further examples which apply the graph theoretic framework in

a statistical graphic framework. First we develop a new statistical display for multiple

comparisons by recasting the problem in terms of graph traversal. Second we develop

improvements on parallel coordinate displays by identifying particular graph traversals

with particular coordinate arrangements. Graph edge weights allow the display to target

interesting features of the data. Section 5 describes the algorithms used to produce the

graph traversals used and some closing remarks are made in the last section.

2 Example – star glyphs

In a star glyph display, variables are assigned to equispaced radii, case values plotted on

each radius, and lines drawn connecting them. High-dimensional features of the data are

quickly explored across cases by comparing glyphs – individual radii and overall shape,

an example of what Tufte (1991) describes as “small multiples”. Suppressing the radial

rays from the display, one focuses on comparison of shapes rather than of variable values

across cases – a distinction which has been usefully described as that between integrable

and separable dimensions by Wilkinson (2005, p. 269). A star glyph display invites visual

clustering by shape. Figure 1 shows four star glyph displays of a subset of car models from

the mtcars dataset1 given in R. Each display uses the same seven variables; they differ

only in the assignment order of variables to axes. Not surprisingly, the shapes of the star

glyphs vary considerably from one ordering to another.

Let’s attempt to use the first ordering to cluster the cars. The glyphs for models 7, 8

1The star glyphs use the first seven variables of the dataset and the selected models are in rows
7,28,27,31,30,1,12 and 14.
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Figure 1: Star plots of 9 models from the mtcars data using different variable orderings.

and 9 look very similar to each other, and quite similar to the glyph for model 1. Models

5 and 6 both appear as roughly similar medium-sized blobs. The model 4 glyph looks

different from all others. Other orderings tell a different story; in order H1 model 4 looks

like it belongs to the {1, 7, 8, 9} cluster, while in H2 and H3 we have two separate clusters

consisting of models {1, 4} and {7, 8, 9}. Clearly visual clustering based on star glyph

displays is order dependent.

Intuitively, if we replaced the sequence of variables used in the star glyph by a longer

sequence where all pairs of variables appear adjacently, we should remove some of the

dependence on variable order. Figure 2 shows two such sequences of variables. The first

plot uses the sequence H1 : H2 : H3, which is a concatenation of the sequences appearing
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(a) Order with repeated variables (b) Correlation order with repeated variables

Figure 2: Star plots of 9 models from the mtcars data.

in Figure 1(b), (c) and (d), and was constructed using our algorithm WHam (see Section

5.2.3). The second plot uses a sequence constructed via our algorithm GrEul (see Section

5.1.2) which favours high correlation pairs of variables appearing early on in the sequence.

We notice that the shapes of the star glyphs vary less with the sequences used in Figure

2 than with those used in Figure 1. This occurs because in Figure 1 the star vertices are

rearranged in each ordering, whereas in Figure 2, it is the star edges that are rearranged.

Visual clustering based on either of the sequences shown in Figure 2(a) and (b) gives

the same results; it appears there are four clusters, made up of models {1, 4}, {2, 3}, {5, 6}

and {7, 8, 9}. These findings are verified by the dendrogram shown in Figure 3(a) obtained

from average link clustering (single and complete linkage dendrograms were identical) and

reinforced by plotting the symbols in the space of the first two principal components (based

on the correlation matrix) as shown in Figure 3(b). This example suggests that star glyphs

based on sequences where all pairs of variables appear adjacently lead to more reliable

visual clustering.
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Figure 3: Clustering the cars.

3 Graph theory

In this section we present results from graph theory which are relevant to the component

order problem in the layout of statistical graphics, and in particular to the construction of

the repeated variable glyphs shown in Figure 2.

The complete graph on n nodes or vertices is an undirected graph, denoted Kn, with

vertex set V (Kn) = {1, 2, . . . , n} and edge set E(Kn) = {eij |i, j ∈ V (Kn), i 6= j with eij =

eji} (when there is no ambiguity, the edge eij might also be written ij). The cardinality

of the vertex set is called the graph’s order, here n, and that of its edge set the size of the

graph, here |E(Kn)| = n(n− 1)/2. A path P on Kn is an alternating sequence of vertices

and edges such that each edge has as its endpoints the preceding and succeeding vertices,

i.e., P = i, eij , j, ejk, . . . , est, t,

Figure 4(a) shows K7. A complete graph is a convenient representation of n objects

(the nodes) together with all possible pairings (the edges). Any path along edges of the

graph simultaneously provides an arrangement of those objects identified with the nodes

of the path and of the pairings identified with the edges of the path.
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(a) K7 (b) A Hamiltonian path (c) A Hamiltonian cycle

Figure 4: K7, Euler tours, and Hamiltonians.

3.1 Hamiltonians, Eulerians, and Hamiltonian decompositions

A path is called a Hamiltonian path if it visits all vertices of a graph exactly once. The

Hamiltonian path of Figure 4(b) orders the nodes as 1243675 (or the reverse), and is

identified with a permutation of the nodes. The set of all Hamiltonian paths on a complete

graph Kn is the set of all permutations of 1, 2, . . . , n. Closing a Hamiltonian path by joining

its ends, as in Figure 4(c), creates a Hamiltonian cycle which can be identified with many

permutations (each being a cyclic permutation of the original).

For example, for the star glyph display of Figure 1, imagine the variables as nodes of a

complete graph. Then the order of assignment of the seven variables to the radial arms of

the star is equivalent to the choice of a Hamiltonian cycle on K7. The orderings H0, H1, H2

and H3 of Figure 1 (a)-(d) correspond to four different Hamiltonian cycles on K7.

A graph G is Hamiltonian if it contains a Hamiltonian cycle. Complete graphs Kn are

Hamiltonian for all n and Kn contains (n− 1)! distinct Hamiltonian cycles.

Equivalently, a path can be regarded as providing an ordering on the edges it contains.

Figure 4(b) orders its edges as 12, 24, 43, 36, 67, 75 to which the Hamiltonian cycle of Figure

4(c) adds the edge 51. Often interest lies in visiting (and hence ordering) all of the edges in

a graph. A path which contains all of the edges of a graph, visiting each edge exactly

once is called an Eulerian path (or Eulerian trail) and if the path is closed then the
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traversal is called an Eulerian tour. A graph G which has an Eulerian tour is called

Eulerian. The graph K7 of Figure 4(a) is Eulerian. An Eulerian tour of a complete graph

provides an arrangement of all possible pairings of the nodes. One such tour for K7 is

T0 = 1234567461427157352631. We have already seen an application of such tours in

visualization. In fact the variable sequences of Figure 2 are two other Eulerian tours on

K7.

3.1.1 Many to choose from

As with Hamiltonians (cycles and paths), there need not be a unique Eulerian tour for

a given graph. Typically there are a great many to choose from. For example, K7 ad-

mits 129, 976, 320 Eulerian tours that are not cyclic permutations of one another (first

determined by Reiss, 1871-3; see McKay and Robinson, 1998) while K21 has more than

3.4× 10184. (For odd n ≤ 21, the number is available online via Sequence A007082 of the

Online Encyclopedia of Integer Sequences (Sloane 2004).)

While an Eulerian tour of a complete graph produces an arrangement of all possible

pairings, it may be that some Eulerian tours (arrangements) are preferred over others.

With some measure of the value of each, the Eulerian tours could, in principle, be ordered

and the best selected.

Supposing each edge in the graph has a weight, we might prefer Eulerians whose edge

weights were by some measure as low (high) as possible in the early part of the sequence.

A greedy Eulerian might be one which begins with the lowest (highest) weight edge. From

there, it moves to the adjacent edge (i.e. sharing a vertex) with lowest (highest) weight,

and after that follows low (high) weight unvisited edges until all edges are exhausted. For

example, the Eulerian on K7 constructed for Figure 2(b) starts at the pair of variables

with the highest correlation placed at the 3 o’clock position. Moving counter-clockwise,
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the Eulerian follows high correlation edges thereafter.

3.1.2 Hamiltonian decomposed Eulerian tours

One possibility is that the Eulerian tour be composed entirely of edge-distinct Hamiltonian

cycles, a so-called Hamiltonian decomposition. Figure 5 shows a Hamiltonian decomposi-
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(a) H11 = 12345671 (b) H12 = 13572461 (c) H13 = 14736251

Figure 5: A Hamiltonian decomposition H1 = H11 : H12 : H13 of K7.

tion of K7. Note that this decomposition is also a symmetric Hamiltonian decomposition

because a node labelling exists which makes all cycles symmetric about the same node (this

decomposition is in fact symmetric about every node).

An Eulerian tour can be had by joining these Hamiltonian cycles, in any order, at the

same node. For example, T1 = 1 234567 1 357246 1 473625 1 is an Eulerian tour that joins

the three Hamiltonians at 1 in the order of H11, H12, H13; T2 = 2 345671 2 753164 2 514736 2

joins the cycles at node 2 in the order H12, H11, H13 with the middle cycle reversed. For any

Hamiltonian decomposition, an Eulerian tour can be constructed by varying the order of

the Hamiltonian cycles, varying the direction in which each cycle is traversed, and varying

the point of contact between the cycles. For example, Figure 2(a) shows an Eulerian tour

on K7 constructed by appending the edge-disjoint Hamiltonian cycles H1 : H2 : H3 given

in Figure 1.

Moreover, the Hamiltonians in Figure 5 are presented in canonical form (in terms of

node labelling as given in Colbourn, 1982), so permuting the node numbers on Figure 5(a)
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and carrying that assignment across the Hamiltonians of Figure 5(b) and (c), can produce

a different Hamiltonian decomposition and consequently many more Eulerian tours.

By construction, these different decompositions will be isomorphic to one another (two

Hamiltonian decompositions H and H ′ are isomorphic if there is a one-to-one mapping of

the nodes of the graph onto themselves which maps each Hamiltonian cycle of H onto a

Hamiltonian cycle of H ′) and will sometimes be identical (e.g. the decomposition produced

by mapping the nodes 1234567 of Figure 5 to 2715436 is identical to that of mapping

1234567 to 4675321). In this way the Hamiltonian decomposition of Figure 5 generates a

class of decompositions. It does not, however, generate all Hamiltonian decompositions of

K7.

There is only one other set of isomorphic Hamiltonian decompositions of K7 which is

not isomorphic to that of H1 from Figure 5. The canonical form for this set is H2 of Figure

6 (see Colbourn, 1982).
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(a) H21 = 12345671 (b) H22 = 13527461 (c) H23 = 14263751

Figure 6: H2 = H21 : H22 : H23 is the canonical form of the second (and only other) set
of Hamiltonian decompositions of K7.

H2 is also a symmetric decomposition, though one with many fewer symmetries than

H1 (i.e. only about node 1 in H2). The fewer symmetries result in a smaller group order of

the automorphisms (6 for H2 vs. 42 for H1) and consequently many more distinct (though

isomorphic) decompositions (viz. 7!/42 = 120 for H1, 7!/6 = 840 for H2).

As before, the cycles of each distinct decomposition can be arranged in many ways to
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produce different Eulerian tours. Using H1, there will be thousands of distinct Hamiltonian

decomposed Eulerian tours for K7; using H2 there will be seven times as many to choose

from.

For larger orders of complete graphs, the number of non-isomorphic classes of Hamilto-

nian decompositions is huge. There are 122 non-isomorphic decompositions of K9 and more

than 45, 000 for K11 (Colbourn, 1982, stopped computing more after finding this many).

While in principle it is possible to order the Hamiltonian decompositions according to

some preference, it is rarely practicable. Even choosing the single Hamiltonian having the

smallest total edge weight (i.e. the travelling salesman problem) is NP hard.

3.2 General results for complete graphs

If G is a connected graph, G is Eulerian if and only if it is an even graph (i.e. every vertex

has an even number of edges), or equivalently if and only if G has a cycle decomposition.

Since complete graphs where the order n is odd are connected and even, Eulerian tours

and Hamiltonian decompositions exist.

The same notions can be extended to the complete graphs of even order through the

following well known results which have been attributed to Walecki (by Lucas, 1892; e.g.

see Alspach, et al 1990):

Decomposition of complete graphs. Kn can be decomposed as follows:

For n = 2m + 1, into either

m Hamiltonian cycles, or

m Hamiltonian paths and an almost-one factor.

For n = 2m, into either

m Hamiltonian paths, or

m− 1 Hamiltonian cycles and a 1-factor (or perfect matching).

11



The Hamiltonian cycle decomposition for the case of odd n has already been illustrated.

When n is even, the analogous decomposition of K2m is into Hamiltonian paths rather than

cycles. Figure 7 shows one such decomposition for K6. This was had directly from the
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(a) h31 = 123456 (b) h32 = 241635 (c) h33 = 315264

Figure 7: H3 = h31 : h32 : h33 is a Hamiltonian path decomposition of K6.

Hamiltonian cycle decomposition of Figure 6 by deleting node 1 and relabelling nodes 2−7

as 1− 6; one might just as easily have used Figure 5.

Alternatively K6 can be decomposed into a 1-factor (or perfect matching) and two

Hamiltonian cycles as shown in Figure 8. Similarly, K2m+1 is decomposable into m Hamil-
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(a) 1-factor (or perfect matching) (b) 1245361 (c) 1346251

Figure 8: K6 decomposed into a 1-factor and two Hamiltonian cycles.

tonian paths and an “almost 1-factor” (i.e. a 1-factor perfectly matching 2m points plus a

single isolated vertex).

Although K2m is not even, and hence not Eulerian, m edges can be added to produce a

graph that will be Eulerian and will have Hamiltonian cycle decompositions. For example,
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simply close the Hamiltonian paths of Figure 7 to produce double edges 16, 25, and 34. If

only an Eulerian path is required, only m−1 edges need be added – an Eulerian path exists

for any connected graph having exactly two nodes of odd degree, so the m−1 edges added

must be such as to satisfy this condition. For example, in Figure 7, add only extra edges

25, and 34; then an Eulerian path will begin and end at the endpoints of the remaining

Hamiltonian path h31 of 7(a).

Alternatively, one could start with the Hamiltonian cycle decomposition of K2m (e.g.

m = 3 in Figure 8) and add m − 1, or m, edges to the perfect matching to create a

Hamiltonian path, or cycle, respectively that will in turn permit an Eulerian path, or tour

(cycle) on the augmented graph.

Because complete graphs of even order can always be augmented to achieve Eulerian

paths, etc., it will be convenient to have a single notation for both K2m+1 and the m − 1

edge augmented graph of K2m. Denote by

Ke
n =

 K2m+1 if n = 2m + 1

K2m + G(K2m) if n = 2m

where G(K2m) is a subgraph of K2m having m−1 edges chosen so that the graph resulting

from the sum has exactly two odd nodes.

It will also be convenient to refer to an Eulerian of Ke
n to mean an Eulerian tour of

Ke
n when n = 2m + 1 and an Eulerian path of Ke

n when n = 2m. Similarly a Hamiltonian

decomposition of Ke
n will refer to a Hamiltonian cycle decomposition when n = 2m+1 and

a decomposition into m− 1 Hamiltonian cycles plus one Hamiltonian path when n = 2m.

There will of course be many Hamiltonian decompositions, and many more Eulerians,

of Ke
n to choose from.
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4 Applications to statistical graphics

Section 2 showed how a relatively straightforward use of Eulerians and Hamiltonians could

immediately produce more reliable visual clustering by star glyphs. This is but one example

where known graph theory can be usefully applied to statistical graphics. In this section

we provide two more.

The first is a new display for the classic statistical problem of multiple comparisons.

By recasting the problem as a graph theoretic one within a statistical context, an entirely

new display is developed. An Eulerian tour in the context of the pairwise comparison of

treatment groups provides a simple but powerful approach to this classic problem. Section

4.1 reviews some well known displays for this problem, develops the new construction, and

illustrates it on a dataset from Cameron and Pauling (1978).

The second example uses graph theory to improve parallel coordinate plots (e.g. see In-

selberg 1985, 2009, Wegman 1990). It draws on essentially all of the theory reviewed above

for complete graphs. Casting the layout of the parallel axes as a graph traversal problem

encourages us to add information to the graph, statistical information to produce traversals

designed to reveal targetted structure of the data. Hamiltonian paths, Eulerian tours, and

Hamiltonian decompositions are all used to construct different parallel coordinate displays,

each suited to a different purpose.

There are numerous other opportunities to apply the above complete graph framework

to data visualization, improving existing graphics and developing new ones. Hurley and

Oldford (2008a) describe some and Hurley and Oldford (2008b) show how graphs can be

applied to explore high dimensional space through dynamic scatterplots. Key to any of

these applications is abstraction of the visual layout problem to one of nodes connected by

meaningfully weighted edges.
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4.1 A new display for pairwise comparisons

In the classic one-way anova situation, several conditions are compared at once for differ-

ences in some outcome. Also of interest are all pairwise comparisons, with correction for

the problem of multiple comparisons.

To be concrete, we take data on the survival times of terminal patients with different

types of cancer – namely Breast, Bronchus, Colon, Ovary, or Stomach, who have been

treated with vitamin C (Cameron and Pauling, 1978). The square root of the survival

times are used to better approximate normality. Figure 9 shows the 95% simultaneous
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Colon-Bronchus
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Ovary-Breast

Colon-Breast

Bronchus-Breast

95% family-wise confidence level

Differences in mean sqrt Survival

Figure 9: A standard layout of 95% confidence intervals for differences of mean survival times

(square root scale), corrected for multiple comparisons.

confidence intervals for the pairwise difference in means, using “Tukey’s honest significant

differences”. This tidy little layout is fairly standard for multiple comparisons (e.g. it is

the default plot method for TukeyHSD, Bates, 1997+).

Comparisons whose intervals do not overlap the vertical zero line are statistically sig-

nificant (e.g. Bronchus-Breast) at a simultaneous 5% level and those which do overlap are

not statistically significant (e.g. Ovary-Breast). Each interval estimates the magnitude of

the corresponding difference (at a 95% simultaneous confidence level). The magnitude of
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the individual means is absent from this display.

This and other multiple comparison plots are critically examined by Hsu and Perug-

gia (1994) who also introduce an interactive “mean-mean” plot designed to address the

shortcomings of the existing plots. Figure 10 shows the Heiberger and Holland (2006a)

95% family-wise confidence level

Differences in mean sqrt Survival
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Figure 10: Mean-mean multiple comparison plot: 95% simultaneous confidence intervals, from the
R package HH (Heiberger and Holland, 2006b). Significant differences are shown as a thick black
interval.

static version of the mean-mean plot. Treatment means and pairwise confidence intervals

appear on the same display, against the background of a rotated grid. Drawbacks include

the possibility of overstriking intervals or grid lines or both whenever pairwise averages or

original averages or both are identical (or nearly so). Neither is it clear that the informa-

tion added by the background grid (originally used to motivate and construct the plot)

merits the amount of ink it is given. An important feature is that it shows the sample

means themselves in addition to their differences. In most applications, having identified

the significant differences one is interested in the actual size of each effect being compared.
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Indeed, a comparison of the entire distribution of each group, not just their group means,

is highly desirable.

4.1.1 Boxplots with pairwise testing

Sample distributions can be displayed as histograms, boxplots, density estimates, and so

on, which in turn can be compared along a common scale in a variety of ways: possibly

overlaid (e.g. densities), or placed back to back (e.g. histograms, densities) or simply laid

out side by side (e.g. boxplots, histograms, density estimates). Here we will use a boxplot

for the distribution of each group and lay them out side by side to facilitate their pairwise

comparison.

Figure 11 shows variable width boxplots of the (square-root transformed) survival times

Bronchus Breast Stomach Ovary Bronchus Colon Breast Ovary Colon Stomach Bronchus
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Figure 11: Boxplots and pairwise comparisons of vitamin-C treated cancer patients. The left axis

and boxplots refer to square-root transformed survival times, the right axis and gray scale vertical

bars refer to confidence intervals for pairwise differences of means. Red arrows indicate comparisons

significantly different from 0.

for each cancer type. The cancer types (with their boxplots) are repeated along the hori-
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zontal axis in such a way that every cancer type appears directly beside every other cancer

type exactly once. From left to right, this is an Eulerian tour of K5, where each cancer

type corresponds to a node. Because every pair appears together, a fairly rich compari-

son of survival distributions can be made via the boxplots. Each cancer type’s boxplot is

uniquely coloured to facilitate directed comparisons. For example if interest lies primarily

in comparing the survival distribution of Ovary cancer to that of the others, simply look

for each occurrence of Ovary’s thin yellow boxplot and compare it with the boxplots on

either side.

Between each pair of boxplots is a grey vertical strip. Each strip is a Tukey HSD

confidence interval for the difference in means between the distributions on either side

of it, each circle indicating the point estimate of that difference. All confidence interval

values can be read from the vertical axis of differences at the right of the plot. Just as the

boxplots are the nodes of K5, the ten grey confidence intervals between them are the edges

of K5. Moving from left to right, from boxplot to confidence strip to boxplot to confidence

strip and so on, is an Eulerian tour traversal of K5 from node to edge to node to edge,

respectively.

Design features of this plot are chosen to help the user switch visual focus between

the mutely coloured boxplots and the gray confidence intervals as need be. This is much

like the “layering” of information, simple examples of which have been described by Tufte

(1991). For example the right axis is for the confidence intervals and a grey arrow from

this axis anchors a horizontal dashed grey line across the plot from its zero. The dashes of

this line appear only across the space between boxplots which is reserved for the confidence

intervals – the line never interferes with the boxplots themselves.

As with Figures 9 and 10, inference is had by determining whether the zero line cuts

across a confidence interval. If it does (e.g. between Stomach and Bronchus at the right)
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that difference is not found to be statistically significantly different from zero. Conversely,

if it fails to cut through a confidence interval (e.g. between Bronchus and Breast at the left

side of the plot) then the difference is significantly different from zero. When this occurs, a

vertical red arrow is drawn pointing towards the confidence interval (and on the opposite

side of the horizontal line) to draw attention to the interval. Moreover, the greater the

length of the arrow is, the greater is its significance (i.e. the smaller its “p-value”).

Note that unlike the previous plots (Figures 9 and 10) only two differences are seen to

be significantly different from zero in Figure 11, namely (Breast - Bronchus) and (Stomach

- Bronchus). The reason (Colon - Breast) does not show up here is that this plot shows

confidence intervals for several levels simultaneously and the largest value here is 99% not

95% as in the other plots.

Careful examination of the vertical confidence intervals of Figure 11 will reveal that

they progressively narrow and darken at the ends. In the figure each interval has three

widths and three shades of gray corresponding to three confidence levels: 90%, 95% and

99%. A close look at the confidence interval between the Colon and Breast boxplots shows

that the horizontal zero line cuts through the 99% confidence interval, but not the 95%.

The difference is significant at the 5% level just as in the other plots but, as this plot

indicates, is not significant at the 1% level.

Note also that significant differences seem to appear mostly on the left side of this

plot. This is had by attaching a weight to each edge of Ke
m (here K5) and applying a

greedy algorithm which selects the lowest weight edge from those available at each step

(algorithm GrEul of Section 5.1.2). To produce Figure 11, graph edges are weighted by

the appropriate significance level. A different choice of weights could produce a different

Eulerian tour and hence ordering.

In summary, the graph traversal approach has motivated the design of a relatively
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simple yet highly informative plot for multiple comparisons.

4.2 Improving parallel coordinate plots

Parallel coordinate displays (Inselberg 1985, 2009, Wegman 1990) are multivariate data

displays where n variables are assigned to parallel, equispaced axes, observations are plot-

ted on each axis and lines are drawn connecting observations belonging to each case. These

displays are useful for detecting clusters, outliers and correlation between pairs of variables.

Once again, choosing a variable ordering amounts to selecting a Hamiltonian path on the

complete graph with the variables as nodes. However, as demonstrated by Wegman(1990),

there are strong reasons for displaying all pairwise variable relationships in a parallel coor-

dinate display, not just the n− 1 pairwise relationships determined by a particular choice

of Hamiltonian.

Here we use parallel coordinate displays to revisit the mtcars data. Figure 12 shows

Hamiltonian decomposition

Mpg Disp Hp Drat Wt Qsec Disp Drat Mpg Qsec Hp Wt Drat Qsec Disp Wt Mpg Hp

Figure 12: Parallel coordinate plots of the mtcars data. This shows a Hamiltonian decomposition,

grey sections distinguish the three Hamiltonian paths. Line colour distinguish transmission type.

a parallel coordinate display using six performance measures and all 32 car models. The

display has three sections, each highlighting a different Hamiltonian path, which together

constitute a Hamiltonian decomposition on Ke
6 (constructed using the method of Section

5.2.1). The first six axes (leftmost grey section) show the variables in the order in which
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they are listed in the dataset, corresponding to the Hamiltonian 123456. Here we see

that the first two variables, Mpg and Disp, are negatively correlated, but the association

between the first and third variables, Mpg and Hp is not so obvious until we look at the

last grey section and discover that they are also negatively correlated. The dataset has a

cluster of unusually heavy cars which, we discover from the Wt-Disp panel in the last grey

section, also have high displacement.

The main argument against all-pairs parallel coordinate displays is that the number of

panels (i.e., the number of edges in the Eulerian on Ke
n) is O(n2). (From the discussion

in Section 3.2, the number of edges is
(
n
2

)
when n is odd, and

(
n
2

)
+ (n − 2)/2 when n is

even.) Figure 13 shows an all-pairs parallel coordinate display for the sleep data which has

Eulerian on correlation

SW TS PS SW P D SE Bd Br GP Bd L Br SE P SE GP L GP D Bd P GP PS L SE PS Bd PS Br D Br P L D SW L TS P PS D TS GP SW SE TS Bd SW Br TS

-1
0

1

Figure 13: Parallel coordinate plot of the sleep data with panels ordered by correlation. Line

colours are assigned using the life expectancy variable “L” – lowest third red, second third navy,

last third light blue. The barchart show correlations for each panel.

n = 10 measurements on 62 mammal species (Allison and Cicchetti, 1976). The Eulerian

has 49 edges and it may be difficult to see patterns on a standard computer screen or

page. To ameliorate this, we use the GrEul algorithm of Section 5.1.2 to construct an

Eulerian where panels exhibiting high positive correlation appear early on in the sequence.

This correlation-driven Eulerian is presented in Figure 13, and the associated barchart
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shows the correlation of each successive pair of variables. For the most part, panels in the

first half of the sequence have positive correlation and thus less tangling of line segments.

Panels in the second half of the sequence have negative correlation and their highly tangled,

zig-zagging line segments obscures other patterns. Zooming in on the first 25 panels (not

shown) produces a more interpretable display focusing on positive correlation.

Any “interestingness” measure could be used in place of correlation to structure the

parallel coordinate display. Here we explore the use of so-called scagnostic indices, origi-

nally proposed by Tukey and Tukey (1985), revisited by Wilkinson et al (2005) and recently

implemented in the R scagnostics package (Wilkinson and Anand, 2009). Scagnostics

evaluate different features of a bivariate scatterplot, such as presence of outliers, stria-

tion and sparsity in the point pattern. Using scagnostics in the construction of greedy

Eulerians or for identifying interesting Hamiltonians or even several from a Hamiltonian

decomposition yields displays which focus on particular features of the data.

For example, consider the use of scagnostics to find outliers and clusters of data points

in the sleep data. The top left display of Figure 14 shows the best Hamiltonian for the

“outlying” index, that is maximizes the sum of index values along its path. The result is a

parallel coordinate plot tailored for outlier discovery. Two outliers are particularly evident

in the L-GP panel, and not surprisingly panels involving discrete variables (P, SE and D)

score zero on this index. The second display of Figure 14 portrays the best Hamiltonian

for the “clumpy” index. The index levels are generally low here and it seems this dataset

does not exhibit much in the way of clumpiness, at least for variable pairs. Striated data

is a particular form of clustering and the bottom left display of Figure 14 shows the best

Hamiltonian for “striated” + “sparse”. As we might expect, this index rewards discrete

variables.

For each of the scagnostic indices of Figure 14(a-c), we could explore further “next
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Best Hamiltonian on scagnostics: Outlying

PS Bd SW Br L GP TS P SE D

0.
0

0.
6

Best Hamiltonian on scagnostics: Clumpy

Br SE PS GP TS SW P L D Bd

0.
0

0.
6

Best Hamiltonian on scagnostics: Striated Sparse

Bd D PS SE SW GP P L Br TS

0.
0

0.
6

Eulerian on scagnostics: Outlying

GP L Bd SW L Br GP Bd Br SW
0.
0

0.
6

Outlying

Clumpy

Striated

Sparse

Figure 14: Hamiltonian parallel coordinate plots of the sleep data. Line colours are assigned

using the life expectancy variable “L” – lowest third red, second third navy, last third light blue.

The barcharts show scagnostic index levels for each panel, legend is on the right hand side.

best” Hamiltonians, as provided by the WHam algorithm of Section 5.2.3. This algorithm

selects further Hamiltonians from the decomposition where the Hamiltonians are ordered

by the sum of their index values. Another approach uses the GrEul algorithm to focus on

high-index panels. The bottom right display of Figure 14 shows the first 10 axes from the

Eulerian following outliers. Note that, by contrast with the Hamiltonian of Figure 14(a),

the truncated Eulerian visits only 5 of the 10 variables. In this instance, the Hamiltonian

captures all of the high index panels.

In summary, Figure 14 demonstrates two methods of zooming in on selected interesting

subsets of all-pairs parallel coordinate plots which allow the analyst to focus on different

features of the data.
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5 Graph traversal algorithms

In this section, we describe algorithms for constructing various graph traversals which

were used in the applications to statistical graphics of Sections 2 and 4. First we recall the

standard algorithm for constructing Eulerian paths (Hierholzer 1873) and then modify it

for weighted graphs. We then move on to constructions for Hamiltonian decompositions,

specifically on complete graphs. Finally, we present a new algorithm which is useful for

building Hamiltonians on complete graphs that are weighted.

5.1 Constructing Eulerian paths

5.1.1 Hierholzer’s algorithm

Algorithm 1 (Hierholzer 1873) constructs Eulerian tours; another well known algorithm is

Algorithm 1 Hierholzer 1873 (adapted to find an Eulerian tour or open Eulerian path)

Require: A connected graph G that is even or that has exactly two odd vertices.
1: Choose a vertex v. If G is even, v can be any vertex, otherwise v is one of the two odd

vertices.
2: Starting at v construct a path T in G, stopping when a vertex is reached without an

unused edge.
3: while there are edges of G not already in path T do
4: Choose any vertex w in T that is incident on an unused edge.
5: Starting at w, construct a path D of unused edges stopping when a node is reached

without any unused edges.
6: Enlarge T by splicing path D into T at vertex w.
7: end while
8: return T

due to Fleury (1883). Recall from Section 3.2 that Eulerian tours exist for even graphs,

but with a minor adaptation Hierholzer’s algorithm constructs an open Eulerian path or

trail for graphs with exactly two odd nodes. Fleury’s algorithm is essentially the same (e.g.

see Fabràga and Fiol, 2004) and could be adapted analogously.

24



Hierholzer’s method has many arbitrary choices – the choice of the vertex v in line 1

and at each step of the path constructed in lines 2 and 5, the choice of w in line 4, and if

w appears more than once in T at step 6, the choice of which occurrence of w in T to use

to splice path D into T (though the most recent is suggested).

Figure 15 shows how an application of Hierholzer’s method might create an Eulerian
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(a) First Hamiltonian cycle (b) Second Hamiltonian cycle (c) Two non-Hamiltonian cycles

Figure 15: An application of Hierholzer’s method to K7 which happens to follow one
Hamiltonian cycle after another.

tour for K7. Starting at node 1 the selection of edges is such as to produce the Hamiltonian

cycle 13572461 of Figure 15(a), followed by a second Hamiltonian cycle 12567341 of Figure

15(b), and finally by the short cycle 15471 of Figure 15(c). At this point, node 1 has no

further unused edges and T = 1357246 1 256734 1 547 1. Path D (of Algorithm 1 line 5)

is the dashed cycle 2362 of Figure 15(c), which line 6 of the algorithm allows to be spliced

into T at node 2. The resulting Eulerian tour can be either 1357 2362 46125673415471 or

13572461 2362 5673415471.

Hierholzer’s method applies to the graph Ke
n for all n. When n = 2m + 1, Ke

2m+1 =

K2m+1 is even and it yields an Eulerian tour. When n = 2m, Ke
2m is an augmented version

of K2m with exactly two odd nodes, and the result is an open Eulerian path.
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5.1.2 Eulerians on weighted graphs

If the graph G is a weighted graph, we might prefer an ordered Eulerian T with low weight

edges occuring early in the sequence and with weights tending to increase as the sequence

progresses. As the discussion in Section 3.2.1 illustrates, the number of distinct Eulerian

tours is typically immense, and finding the overall “best” tour is not a practical option.

However, a greedy algorithm which attempts this is easily had by exploiting the arbitrary

choices available in Hierholzer’s method. The necessary minor modifications of Algorithm

1 are given below as the greedy Eulerian or GrEul of Algorithm 2. Note that the choice

Algorithm 2 GrEul: Greedy Eulerian.

Require: A connected graph G that is even or that has exactly two odd vertices.
1: Choose a starting vertex v from one of the odd vertices connected by the lowest weight

edge, using the next lowest weight edge in their vertex sets to decide between them.
2: Starting at v construct a path T in G, always moving to the lowest weight unused edge,

stopping when a vertex is reached without an unused edge.
3: while there are edges of G not already in path T do
4: Choose the last vertex w in T that is incident on an unused edge.
5: Starting at w, construct a path D of unused edges, always moving to the lowest

weight unused edge and stopping when a node is reached without any unused edges.
6: Enlarge T by splicing path D into T at vertex w.
7: end while
8: return T

of starting vertex is limited to the two odd vertices when constructing Eulerian paths, but

when constructing Ke
2m one can always ensure that a particular start vertex v has odd

degree.

We note that constructing Eulerian trails is an O(|E|) task, where |E| is the size of the

graph, and so the algorithm given above constructs trails on Ke
n in O(n2) time. The cost

associated with constructing an ordered Eulerian must include the cost of an edge sort at

each vertex, and so has overall order on Ke
n of O(n2 log n).
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5.2 Lucas-Walecki Hamiltonian decompositions for Ke
n

While the adapted Hierholzer method will produce an Eulerian for any Ke
n, the Eulerian

need not be Hamiltonian decomposable. Even if node choices were restricted so that the

algorithm first constructed one Hamiltonian followed by another, the result need not be a

Hamiltonian decomposition. Figure 15 shows just such a situation.

Fortunately, the special structure of Ke
n can be exploited to write down explicit formulas

for Eulerians and Hierholzer’s method need not be used. This method has the added

advantage that for n = 2m, the Eulerian is composed of m Hamiltonian paths, while for

odd n = 2m+1, it is composed of m Hamiltonian cycles. The constructions given here have

been attributed to Walecki by Lucas (1892), and are sometimes described as Lucas-Walecki

constructions (Bailey et al, 2003). A disadvantage is that these necessarily generate only a

single class of isomorphic decompositions which, though potentially huge, cannot include

those produced from possibly thousands of other Hamiltonian decomposition classes that

are non-isomorphic to this one.

5.2.1 Hamiltonian decompositions, n even

As before, let n = 2m and define

H[1, 1] = 0

H[1, j] = H[1, j − 1] + (−1)j(j − 1) (mod n), j = 2, . . . , n,

H[k, j] = H[k − 1, j] + 1 (mod n), k = 2, . . . ,m and j = 2, . . . , n.

Finally, increase each element of H by 1, and form T by listing the elements of H row-wise.

The resulting path T is an Eulerian trail on Ke
2m.

When the vertices of K2m are arranged clockwise around a circle, the first row of H

visits all vertices in a zig-zag pattern. This is shown for K6 in Figure 16(a). Each successive
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(a) h41 = 126354 (b) h42 = 231465 (c) h43 = 342516

Figure 16: A Hamiltonian path decomposition H4 = h41 : h42 : h43 of K6.

row of H follows another zig-zag starting one position clockwise away from the start of the

previous row.

The rows of H form a Hamiltonian path decomposition of K2m and consequently every

pair of vertices appears consecutively in exactly one of the rows. When the rows are glued

together to form the T -sequence, the edge pairs contributed by H[i, n] and H[i + 1, 1] are

duplicates. These are the edges j (j+m−1)(i.e. ej,(j+m−1) ) for j = 2, . . . ,m. The resulting

T -sequence, having duplicate edges, is a decomposition of Ke
2m into m Hamiltonian cycles,

where in this case Ke
2m is formed from K2m by adding the additional edges between nodes

j and j + m− 1 for all j = 2, . . . ,m.

Figure 16 illustrates the process for Ke
6 . Each panel shows a Hamiltonian path from a

row of H, and these paths are joined up to give T = 126354 231465 342516. In this sequence

the edges 4 2 (or 24) and 5 3 (or 35) are duplicates. Note also that this decomposition is

isomorphic to the decomposition H3 for K6 given in Figure 7.

Wegman (1990) used this Lucas-Walecki construction to list m different permutations

of 2m variables where each pair of variable adjacencies appears exactly once. Following

Wegman (1990), we will use the more evocative name, “zig-zag method”, to refer to this

construction. For n = 2m+ 1 the zig-zag method lists m permutations of variables, where

each pair of variables appears adjacently at least once, but with some pairs appearing

twice. The result will obviously not be a Hamiltonian decomposition.
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5.2.2 Hamiltonian decompositions, n odd

An easy way of generating a Hamiltonian decomposition for n = 2m + 1 uses a minor

modification of the zig-zag method just described. Start with the H matrix used in the

construction of the path for 2m vertices, and create the augmented matrix H∗ by prepend-

ing a column of n’s to H. Row-wise listing the elements of H∗ and adding a final n produces

an Eulerian tour for K2m+1. Each row of H∗ has the form n, j, . . . , (m + j), so we have

inserted the required edges nj at the beginning of each row and (m + j)n at the end, for

j = 1 . . . ,m. The extra n at the end of the T -sequence contributes the edge (n − 1)n.

For example when n = 7, we transform the n = 6 sequence of 126354 231465 342516 to

7 126354 7 231465 7 342516 as illustrated in Figure 17. Note that this decomposition is
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(a) H41 = 1263547 (b) H42 = 1327564 (c) H43 = 1524376

Figure 17: A Hamiltonian decomposition H4 = H41 : H42 : H43 of K7. For K2m+1, the
paths for K2m are constructed and then the point 2m + 1 joined to the ends to complete
the cycle.

isomorphic to the decomposition H2 for K7 given in Figure 6.

In general, each row of H∗ is a Hamiltonian path, and since each row begins with n,

we have formed a decomposition of K2m+1 into m Hamiltonian cycles.

Interestingly, constructions of Hamiltonian decompositions on K2m+1 have applications

in experimental design. Bailey et al (2003) call these decompositions round-dance neigh-

bour designs They relate them to Latin and Tuscan squares and give a number of other

constructions.
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5.2.3 Hamiltonian decompositions on weighted graphs

For weighted graphs our goal is an ordered Eulerian T where weights tend to increase as

the sequence progresses. Here we will build such paths out of Hamiltonians. Note that

Figure 2(a) of Section 2 gave an application of these paths to star glyph displays, while in

Section 4.2 we discussed their application to parallel coordinate plots.

For a given Hamiltonian (path or cycle) decomposition H = H1 : H2 : · · · : Hm, it

is clear from the discussion of Section 3.1 that since the labelling of vertices is arbitrary,

any sequence of vertices can be chosen as the first (or any other) Hamiltonian in the

Hamiltonian decomposition, but then the other Hamiltonians in the path must follow the

same labelling scheme. The order in which the Hamiltonians appear in constructing the

Eulerian can be permuted and each component path or cycle Hi can be oriented arbitrarily

to form the Eulerian composed of these Hamiltonians.

These operations open up a huge number of possible paths, far too many to attempt

to find the overall winner based on some merit measure using edge weights. However some

preferences can be made algorithmically. For example, given an Eulerian T composed of

a Hamiltonian decomposition H = H1 : H2 : · · · : Hm (e.g. arrived at by applying the

zig-zag algorithm) we could choose to order the Hamiltonians within the decomposition

so that those with smaller total edge weight precede those with larger total edge weight.

Then within each Hamiltonian we could choose to orient the path (or cycle) so that smaller

weights tended to appear earlier in the path (cycle) than larger weights (a strict ordering

will not likely be possible). If no decomposition is in hand, we could first choose a Hamil-

tonian with smallest total weight out of all possible Hamiltonians. It would be nice to

think that we could do this recursively, always getting the next best Hamiltonian from the

remaining graph, but as the example of 8 shows, it is possible to produce several disjoint

Hamiltonians in sequence without arriving finally at a full decomposition. So recursing
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in this way will only be useful for some number of Hamiltonians. If a full decomposition

is desired, then we will choose only the first Hamiltonian to be ‘best’ and then apply the

zig-zag algorithm from this starting point to ensure that a full decomposition results.

These ideas are put together as the WHam (or weighted Hamiltonian) algorithm out-

lined below as Algorithm 3.

Algorithm 3 WHam: Weighted Hamiltonian Ordered

Require: A weighted Ke
n.

1: For H1, find the Hamiltonian (path for even n, cycle for odd n) with the smallest total
weight.

2: Let C(P ) be a measure of the tendency for the edge weights in a path P to decrease.
3: Using the criterion C, pick the best starting point and path orientation for H1. (For

open paths, there are only two possible starts, for cycles there are n).
4: Apply this node labelling to the other Hamiltonians H2, . . . ,Hm in the sequence.
5: Use criterion C again to find the best orientation for each of H2, . . . ,Hm.
6: Permute H2, . . . ,Hm in order of increasing total weight, and relabel the Hamiltonians.
7: return T = H1 : H2 : · · · : Hm.

Note that line 1 of Algorithm 3 is essentially the “Travelling Salesman Problem” or

TSP. While finding the optimal solution is NP-hard, there are many approximate solutions

that work well in practice.

6 Concluding remarks

The appearance and resulting interpretation of many data visualizations depends on the

ordering of their components. Our goal is to identify good orderings which reveal the

data, make large datasets coherent, encourage data comparisons and so promote graphical

excellence (Tufte 1987). We approached the ordering problem using graph traversals, and

presented algorithms for constructing Hamiltonian decompositions and Eulerians, which

enumerate all pairwise comparisons in a systematic way.

In Sections 2 and 4 we explored applications of these methods in data visualization,
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devised a new multiple comparisons display which facilitates easy comparison of treatment

groups, constructed improved star glyph displays for better visual clustering, and modified

parallel coordinate displays to reveal more data patterns. We have also investigated ap-

plications to profile glyphs (with results similar to that for star glyphs) and to interaction

plots (being essentially a special case of parallel coordinates). More generally, our meth-

ods are applicable to any statistical technique or visualization that relies on a particular

sequencing of variables, cases or factor levels.

The main drawback to using Hamiltonian decompositions and Eulerians in construct-

ing data visualizations is that the length of the decomposition or Eulerian path is roughly

n2/2. Here n is the number of nodes in the graph and in our applications corresponds

to the number of variables, or treatments. For some problems, n can be reduced through

appropriate dimension reduction methods. In all cases, our solution is to construct Hamil-

tonians and Eulerians on weighted graphs and in Section 5 we presented new algorithms

designed for this purpose. The resulting visualization can then give prominence to relevant

features of the data. In an interactive setting, the user could select an interesting data

feature or features and immediately zoom in on a subsequence of the associated weighted

Eulerian.

In this paper we focused on complete graphs, as these are widely applicable in vi-

sualization problems. But we also envisage applications of incomplete graphs. For ex-

ample consider the canonical correlation setting where there are two groups of variables,

{Xi, i = 1, . . . , a} and {Yj , j = 1, . . . , b} and we wish to construct a parallel coordinate

display where X and Y variables appear adjacently. Here we construct a bipartite graph

where edges connect X and Y variables only. If a and b are both even an Eulerian exists,

and our modified Hierholzer (Algorithm 1) or GrEul (Algorithm 2 for weighted graphs)

give a construction. (If a and b are not both even, extra edges must be added to the graph
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so that only two vertices are odd.) See Hurley and Oldford (2008a, 2008b) for further

examples.

Finally, the algorithms and new graphical displays introduced here are available as the

contributed R package PairViz (Hurley and Oldford 2008c).
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