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Abstract

Blood pressure levels are tightly controlled in the body by a variety of interconnected

mechanisms at the short-, medium- and long-term scale. In pathophysiological condi-

tions, blood pressure may be chronically elevated above normal levels, which can lead to

the development of cardiovascular disease and increased mortality. Building a complete

picture of the mechanisms involved in blood pressure control is vital for the development

of a better understanding of the processes that may lead to hypertension.

Mathematical models of physiological systems can greatly aid in our understanding of

the systems under study, and can also be used in teaching and research tools. This thesis

develops a range of mathematical models of various blood pressure control systems and

present a diverse set of generic modelling tools, which can be applied to other aspects

of human physiology also.

A set of nonlinear grey-box models of varying complexities are developed in this thesis

to model the process of salt-induced hypertension in Dahl rats. The models successfully

replicate the multiphasal response of blood pressure to high salt intake and provide in-

formation on the magnitudes and time scales of the various response components.

The renal vasculature response to sympathetic nerve activity is also modelled by a non-

linear grey-box model. The model represents the renal blood flow response to electrical

renal nerve stimulation, under the condition of renal denervation, which can aid in the

development of an overall model of the neural control of blood pressure.

In contrast, a linear black-box modelling approach is taken in this thesis to represent

the arterial baroreflex, since baroreflex impairment has been associated with a number

of conditions such as hypertension, myocardial infarction and heart failure. A measure

of the gain of the baroreflex, the baroreflex sensitivity index, can be a useful diagnostic

and prognostic tool in cardiology. This thesis develops a rigorous system identification

approach to baroreflex sensitivity estimation, based on a linear black-box model of the

baroreflex.

Finally, this thesis presents a novel visual, hierarchical, implementation of Arthur Guy-

ton’s famous integrative physiology model (Guyton et al., 1972b), in a modelling and

simulation environment, which could potentially facilitate its use and further develop-

ment.
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Chapter 1

Introduction

The state of homeostasis is the maintenance of a relatively constant internal bodily

environment, despite external changes (Guyton and Hall, 2006). All systems in the body

function to achieve desirable conditions, but the circulatory system’s role to maintain

nutrient and oxygen supply to satisfy all tissues’ needs, is of utmost importance. The

regulation of blood pressure at stable and healthy levels, in order to ensure effective

blood flow supply, is thus central to achieving homeostasis.

Blood pressure can be determined according to the simplified relationship (Guyton and

Hall, 2006):

BP = CO . TPR (1.1)

where

• BP is blood pressure, measured in mmHg, and refers to the mean arterial pressure

(MAP),

• CO is cardiac output, evaluated as the product of heart rate and stroke volume

(in l/s), and

• TPR is the total peripheral resistance, as seen by the heart (in mmHg s/l).

Blood pressure is controlled by numerous mechanisms in the body, on a variety of time

scales, in order to sustain sufficient blood flow and perfusion pressure to satisfy the

metabolic requirements of various tissues and organs.
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In the short term, the autonomic nervous system (ANS) can adjust CO and TPR in sec-

onds while, in the longer term, hormones and the renal-body fluid system become more

prevalent. Provided that arterial pressure is maintained at optimum levels, individual

organs and tissues can also regulate their local blood flows to meet their individual

needs. In pathophysiological conditions, blood pressure may be chronically elevated

above normal levels (hypertension), giving rise to the hypertrophy or remodelling of

affected organs, such as the heart, the brain and the kidneys, and ultimately leading to

increased morbidity and mortality (Guyton and Hall, 2006).

The mechanisms that control blood pressure are only a few of countless control systems

in the body, with some acting at cell level, others at a tissue or organ level, and others

still operating at an overall-body level to regulate the relationships between organs.

Most control systems in the body work in closed loop and more specifically, in a negative

feedback control loop (Guyton and Hall, 2006). Negative feedback control loops operate

in a manner to decrease the ‘error’ between a system output and a desired output or

setpoint. An example of a negative feedback control loop, which will be examined in

further detail in this thesis, is the arterial baroreflex. Positive feedback systems (such as

the process of blood coagulation) and adaptive control systems (e.g. control of muscle

contractions) are also present in the body and have important roles within it (Guyton

and Hall, 2006).

The study of control systems is a well developed discipline within the engineering field

and many principles developed to study control systems are highly valuable in the

examination of biological and physiological systems. There is much to be gained from

developing models of such physiological systems based on collected experimental data,

in order to improve the understanding of their operation.

1.1 Motivation

In the second half of the last century, mathematical modelling of biological and phys-

iological systems experienced a rise in popularity, and modelling and simulation of

physiological systems is now a common feature of biomedical research (Gavaghan et al.,

2006).

The development of mathematical models based on experimental data has multiple
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benefits, as the models can:

• Help to improve the understanding of the system under study, by identifying

the time scales and magnitudes of various interconnected mechanisms and their

responses (Guyton et al., 1972b),

• Be used in clinical settings - mathematical models can be used in applications

to enhance decision-making, diagnosis or predict survival outcomes (Weiss et al.,

1978; Pedersen et al., 1996; Lewenstein, 2005; La Rovere et al., 2008),

• Be used as part of software-based teaching and assessment (Coleman and Randall,

1983; Kofranek et al., 2005), or in human body and pharmacological simulators

(Ottesen et al., 2004), and

• Enhance experiment design - model development and experiment design can work

in an iterative fashion to improve data collection and analysis (Guild et al., 2001).

Mathematical models have been a useful research tool for the last 60 years, but with the

advances in computational capability, model development and simulation is now easier

than ever, allowing ever increasing complexities of physiological systems to be modelled.

In addition to the advent of cheap and powerful computing, another form of technology

has also expanded immensely. The development of various modern implantable sensors

(Tabrizchi and Pugsley, 2000; Bolger and Lowry, 2005; Tan et al., 2008), as well as

the arrival of the telemetry technology (Budgett et al., 2007; Russell et al., 2012), have

allowed the collection of high quality data in vivo, which can now be collected, recorded

and logged with the least possible disturbance to the subjects and for much longer time

scales than ever before (Van Vliet and Montani, 2008). With minimal technological

restrictions, both on the computational implementation and experimental side, integra-

tive physiological models can now be further enhanced to encompass very short and

very long time scales.
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1.2 Objectives

Since mathematical modelling can make a very beneficial contribution to the study of

physiological systems, the main objective of this thesis is to develop a variety of models,

of different types and complexities, to represent the operation of various blood pressure

control systems and to derive useful indices from the model characteristics.

Mathematical models can be categorised in many different ways; for instance, they can

be linear or nonlinear, static or dynamic, continuous- or discrete-time, they can be

empirical (derived from experimental data) or physical (where the equations are based

on a knowledge of the exact system characteristics), deterministic or stochastic (Ljung,

1999). The type of model chosen to represent a particular system will depend on the

type of system under study, whether the inner workings of the system are known or

unknown, and also what the purpose of the model is.

A variety of the aforementioned diverse model types are employed in this thesis, to

demonstrate the application-based selection of the modelling techniques. The modelling

and simulation routines developed and used in this thesis are relatively uncomplicated

from an engineering perspective, but can be a tremendous addition, not only to the

study of the systems considered here, but also to the wider category of physiological

systems. The relative simplicity of the modelling concepts will hopefully be of benefit

to researchers of non-mathematical backgrounds, thus making the subsequent use and

further development of the models more feasible.

Developing a diverse range of models and applications is both a strength and a weak-

ness of the thesis. There can be a perceived lack of focus on a specific application area;

however, the wide range of modelling techniques, applied across a variety of systems

of various time scales, provide a comprehensive ‘toolbox’ for modelling and simulation

studies of physiological systems in general. A particular strength of the thesis is its

investigation of both linear and non-linear systems. Mathematical modelling of linear

systems is simpler due to the availability of a general theory of linear systems, and

an assortment of tools for linear system modelling and analysis is available. Nonlinear

system models, on the other hand, need to be customised to the particular application.

Establishing whether there is a need to use a nonlinear model is an important step in

the modelling exercise. Exploring systems within a regulatory loop, and where only
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spontaneous signals without external excitation into the system are considered, would

likely lead to a linear model, since there are only minor deviations from equilibrium,

and the tendency of the regulatory loop is to bring the system back to equilibrium (e.g.

analysis of spontaneous baroreflex data). In contrast, if an open-loop system is consid-

ered, where significant external excitation is applied, a nonlinear model would likely be

necessary, as shown in Chapter 6, where a model for renal vasoaction is developed.

In summary, a number of mathematical models for blood pressure control systems are

developed in this thesis with the purpose of:

• Extending our understanding of how systems work and at what time scales,

• Developing rigorous approaches to physiological estimation methods,

• Deriving indices of clinical importance, and

• Assigning physiological meaning to model responses and structure.

The specific topics addressed, where it was felt that a positive and constructive contri-

bution could be made, are modelling of salt-induced hypertension, baroreflex sensitivity

estimation and modelling of local vasoaction.

The final objective of this thesis was the implementation of the inspiring integrative

model of the circulatory system, developed by Dr. Arthur Guyton (Guyton et al.,

1972b), in a visual environment, in a hierarchical manner, with systems and subsystems

represented at different resolution scales. A new visualisation approach is taken, with

the aim of facilitating the use and further study of the model in a more user friendly

manner. User-selected ‘concealing’ of some of the model complexity from the user would

facilitate work on specific subsystems in the model without the need to consider the

maximum detail in all other subsystems.

1.3 Contributions of this thesis

This thesis presents the development, implementation, simulation and use of a number

of mathematical models, and claims the following key novel contributions:

• The development of three mathematical models, of varying complexity, that repre-

sent the relationship between high salt intake and the development of hypertension
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in Dahl rats; The merits of increasing model complexity versus improvements in

the model fit are evaluated and discussed,

• The design of a set of non-linear models of local vasoaction, under the condi-

tions of renal denervation and artificial sympathetic nerve activity stimulation, is

executed, and

• The development of a rigorous method for baroreflex sensitivity estimation, through

the use of a black-box model of the baroreflex is carried out. The baroreflex sen-

sitivity gain is estimated, based on the frequency response of the obtained model

of the baroreflex.

The thesis also provides a review of existing baroreflex sensitivity estimation techniques,

including time and frequency domain methods, methods that use external stimulation

of the system, along with those that work on subjects at rest.

In addition, the thesis provides a detailed overview of integrative physiology modelling,

including:

• The steps of model development and simulation,

• The available modelling and simulation environments, and

• Published integrative physiology models

A significant accomplishment of this work is also the implementation of the latest

version of Guyton’s integrative physiology model (Guyton et al., 1972b) in MATLAB’s

Simulink (The Mathworks Inc.) modelling and simulation environment. Even though

the model itself is not novel, its implementation in a hierarchical form with system and

subsystems at different resolution scales is considered beneficial for future use.

1.4 List of publications

1.4.1 Journal publications

• Mangourova, V., Ringwood, J., Guild, S-.J. and Malpas, S. Nonlinear modelling

of renal vasoaction, Biomedical Signal Processing and Control, Vol.2, No.3, pp

258-266, July 2007
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• McLoone, V., Ringwood, J. and Van Vliet, B. A multi-component model of the

dynamics of salt-induced hypertension in Dahl-S rats, BMC-Physiology, Vol.9,

No.20, Oct. 2009

• McLoone, V., Ringwood, J. and Van Vliet, B. A 5-component mathematical model

for salt-induced hypertension in Dahl-S and Dahl-R rats, Computer Methods and

Programs in Biomedicine, Vol.101, No.2, pp 220-229, Feb 2011

• McLoone, V., Ringwood, J. and Van Vliet, B. Graphical simulation environments

for modelling and simulation of integrative physiology, Computer Methods and

Programs in Biomedicine, Vol.102, No.3, pp 295-304, June 2011

1.4.2 Full-length peer-reviewed conference papers

• Mangourova, V. and Ringwood, J. Gray box modeling of arterial vasoaction, in

Proceedings of the Irish Signals and Systems Conference (ISSC), Dublin, June

2006, pp 315-320

• McLoone, V., Ringwood, J. and VanVliet, B. A 5-component model for salt-

induced hypertension, in Proceedings of the IFAC Symposium on Modelling and

Control in Biomedical Systems (MCBMS09), Aalborg, August 2009, pp 175-180

• McLoone, V. and Ringwood, J. A system identication approach to baroreflex

sensitivity estimation, in Proceedings of the Irish Signals and Systems Conference

(ISSC), NUI Maynooth, June 2012

1.5 Thesis outline

This thesis describes the development, optimisation, implementation and use of several

diverse mathematical models of various blood pressure control systems.

In order to set the scene for the thesis, Chapter 2 begins by providing a general outline

of blood pressure control at the short, medium and long term, including the local

and systemic mechanisms for blood pressure regulation. Since the following chapters

develop mathematical models of a number of specific blood pressure control systems,

Chapter 2 also includes detailed overviews of the physiological phenomena pertaining to

salt-related hypertension, local vasoaction and baroreflex sensitivity estimation.
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Mathematical models of specific systems in the body can aid in the development of

a deeper understanding of the systems under study; however, models can also be in-

corporated into large integrative models, which can be used as valuable teaching and

research tools. Chapter 3 examines the history and current ‘state of the art’ in inte-

grative physiology modelling and simulation. The steps and considerations involved in

the process of developing an integrative model are first described. Subsequently, the

simulation of an integrative model is considered and a comprehensive review of existing

modelling and simulation environments and their advantages and drawbacks, in terms

of integrative physiological modelling, is provided. A review of the published integrative

physiology models is also included. Chapter 3 culminates with the implementation of

the latest available version of Guyton’s integrative physiology model (Guyton et al.,

1972b) in a hierarchical structure, within MATLAB’s Simulink modelling and simula-

tion environment (The Mathworks Inc, Natick, MA, USA), which will potentially aid

its visualisation and hopefully further its development and update.

Chapters 4, 5 and 6 then follow with the development, implementation and simula-

tion of a number of novel mathematical models of specific long and short term blood

pressure control systems. Chapter 4 considers the long term regulation of blood pres-

sure and presents three models, of varying complexity, relating high salt intake to the

development of hypertension in Dahl rats. Salt-induced hypertension data from four

very different experimental protocols is employed for model development, training and

validation, thus promoting a model structure that performs well under a wide variety

of conditions.

Chapters 5 and 6 are devoted to the modelling of two short-term blood pressure control

systems. Chapter 5 describes a novel, rigorous, model-based approach for baroreflex

sensitivity estimation and clearly articulates the assumptions, constraints and advan-

tages of the method, whilst comparing it to existing techniques.

Chapter 6, on the other hand, specifically addresses the peripheral arc of short-term

blood pressure control, and presents a set of novel non-linear mathematical models for

renal arterial vasoaction developed using artificial sympathetic nerve stimulation.

Finally, Chapter 7 provides the concluding remarks of this thesis and discusses future

research opportunities.
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Chapter 2

Background

The partial failure of one or more blood pressure control mechanisms, leading to poor

regulation of blood pressure, possibly plays a major role in the development of hyper-

tension; thus, a better understanding of the processes involved in blood pressure control

is essential for the prediction and prevention of serious cardiovascular conditions. Since

a number of interconnecting mechanisms, on a variety of time scales, are involved in

blood pressure regulation, a real difficulty exists in developing a true understanding

of the individual subsystems and the system as a whole. Mathematical modelling and

simulation of the various processes involved can bring us a step closer to building a

better understanding of the overall blood pressure control system.

Section 2.1 in this chapter provides a succinct overview of the various blood pressure

control mechanisms, acting at the short (secs), medium (minutes to hours) and long

(hours to days) term. In addition, this chapter also provides some background infor-

mation needed for the development of a number of mathematical models, presented

in the following chapters. Section 2.2 describes the arterial baroreflex in detail and

provides a review of the existing baroreflex sensitivity estimation techniques, while Sec-

tion 2.3 provides an overview of the vasoactive mechanisms, and especially those active

in the renal vasculature. Section 2.4 gives a general overview of hypertension and, in

particular, examines salt-induced hypertension in detail.
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2.1 Blood pressure control mechanisms in the body

When blood pressure needs to be adjusted, as noted in Equation (1.1), cardiac output

and/or peripheral resistance needs to be varied. Cardiac output can be modified by

varying heart rate or stroke volume, while a change in resistance to blood flow can be

achieved by varying blood vessel diameter. Overall, blood pressure control is achieved

through a mixture of interrelated regulatory systems, including neural, hormonal and

local mechanisms, on a variety of time scales. Briefly, in the seconds after an acute blood

pressure change, the central nervous system control mechanisms are most effective. In

the minutes to hours after a BP change hormonal mechanisms, stress-relaxation and

capillary fluid shift mechanisms become more prominent, while hours to days later, the

renal-body fluid mechanism is the primary blood pressure control system. A succinct

overview of the main well known blood pressure control systems is presented next.

2.1.1 Short-term blood pressure control

The autonomic nervous system (ANS) plays a major role in short term blood pressure

control. The sympathetic and parasympathetic branches of the ANS act in concert to

regulate blood pressure levels, by modifying heart function and the vasculature, and

are controlled by the vasomotor center in the brain. Sympathetic and parasympathetic

innervation of the heart can effectively modify heart rate and cardiac output in the

following manner:

• Stimulation of the sympathetic nerves increases heart rate and heart contractility,

thus increasing cardiac output and blood pressure, while

• Parasympathetic (vagal) nerves can decrease heart rate and, to a much smaller

extent, heart contractility, thus decreasing cardiac output and blood pressure.

Sympathetic innervation of the peripheral circulation, on the other hand, can vary

peripheral resistance, and thus blood pressure, as follows:

• Sympathetic nerve activity (SNA) in small arteries and arterioles causes vaso-

constriction and increased resistance to blood flow, therefore increasing blood

pressure, while

• SNA-mediated constriction of some larger arteries, and especially of the veins,

10
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which act like reservoirs, increases venous return to increase cardiac output.

There are numerous mechanisms for blood pressure regulation, mediated by the auto-

nomic nervous system, including the central nervous system’s ischemic response (Guy-

ton, 1948), the Bainbridge reflex (Jones, 1962), chemoreceptor reflexes (De Burgh Daly

and Scott, 1958), and the baroreflex (Cowley Jr. et al., 1973). The most important

feature of the nervous system control of blood pressure is the speed of response, where

significant changes in blood pressure levels can be achieved within seconds.

The baroreceptor reflex, or the baroreflex, is one of the most important short-term blood

pressure control mechanisms, since it ensures minimum variability of blood pressure

during normal daily life (Guyton and Hall, 2006). The baroreflex modifies heart rate

and peripheral resistance when blood pressure deviates from normal levels. The health

of the baroreflex can be assessed via the baroreflex gain, or sensitivity, which can be

measured as the change in heart period induced by a change in systolic blood pressure

(ms/mmHg), with higher baroreflex sensitivity (BRS) values being more desirable. BRS

is used in clinical settings as a measure of health and disease and can be invaluable as

a prognostic factor in patients with cardiovascular disease (La Rovere et al., 1988).

Low values of baroreflex sensitivity are generally associated with poor prognosis and

can be a predictor of mortality in heart failure and post-myocardial infarction patients

(Frenneaux, 2004). Since one of the main objectives of this work is the development

of a new approach to baroreflex estimation, Section 2.2 will provide a more detailed

account of the physiology of the baroreflex and will also review existing methods for

BRS estimation.

2.1.2 Medium-term blood pressure control

A number of blood pressure control mechanisms are activated on a medium-term time

scale, such as minutes to hours, after a change from normal pressure levels (Guyton and

Hall, 2006). These, mainly hormonal, mechanisms provide blood pressure regulation

at times when the nervous system mechanisms become less effective but longer-term

control systems have not yet been activated.

The renin-angiotensin system is an important hormonal contributor to blood pressure

regulation, especially in the case of hypotension, or low blood pressure. When arterial

pressure falls, the enzyme renin is secreted in the kidneys and stimulates the production
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of angiotensin I (ANG I), whose main role is to form Angiotensin II (ANG II) with the

aid of the angiotensin converting enzyme. ANG II is a powerful vasoconstrictor of the

arterioles and thus elevates blood pressure by increasing peripheral resistance.The peak

renin-angiotensin vasoconstrictor response is attained approximately twenty minutes

after an acute blood pressure fall, since Angiotensin II production and activation is a

multi-step process, including the secretion of renin, ANG I formation, conversion to

Angiotensin II and receptor binding (Guyton and Hall, 2006).

In the case of hypotension, sympathetic activation of the adrenal gland causes the release

of epinephrine and norepinephrine by the adrenal medulla. The release of these two

hormones raises blood pressure by increasing heart rate and heart muscle contractility,

while also mediating arterial and venous vasoconstriction.

A rise in blood pressure above normal levels, on the other hand, activates the stress-

relaxation mechanism of the vasculature, which involves the gradual stretching of a

vessel due to rising pressure, in order to reduce peripheral resistance. The stress-

relaxation response can remain active from a few minutes to a number of hours, until

a longer-term mechanism takes over.

The capillary fluid shift mechanism is another blood pressure control mechanism and

works by adjusting the blood volume available in the vasculature. At low-blood pressure

levels at the capillaries, extra fluid can be shifted into the circulatory system from

surrounding tissues while, if blood pressure rises above normal, the fluid can be absorbed

back into the tissue, thus reducing blood volume and pressure.

2.1.3 Long-term blood pressure control

Apart from its medium-term blood pressure effect, the renin-angiotensin system also

contributes to long-term BP regulation, over a period of hours or days. ANG II de-

creases salt and water excretion by the kidneys, thus increasing blood volume and

blood pressure over hours or days. In effect, the renin-angiotensin system is an impor-

tant modulator of the most powerful blood pressure control mechanism in the human

body, the renal-body fluid system, and the numerous paths by which ANG II affects it

will be described in subsequent paragraphs.

The exact balance of fluid intake and excretion is paramount for homeostasis and main-
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tenance of an appropriate BP level. The renal-body fluid system is the long-term control

mechanism for fluid balance regulation, thereby also maintaining normal BP over days,

months, or years. The mechanism, described initially by Guyton et al. (1972a), is a

feedback loop, which detects changes in BP and modifies excretion of salt and water

accordingly, thus altering extracellular fluid volume and bringing BP back to normal

levels. As BP rises, the kidneys excrete higher amounts of urine, a process known as

pressure diuresis, in order to reduce extracellular fluid volume and BP. Sodium excre-

tion also increases concurrently, referred to as pressure natriuresis. Conversely, in the

hypotensive case, renal tubular reabsorption of salt and water increases in order to raise

extracellular fluid volume and increase BP.

The renin-angiotensin system is the main mediator of the renal-body fluid system. As

described in Section 2.1.2, when BP falls, renin is released, instigating the formation

of ANG I and then ANG II. ANG II causes the kidneys to retain salt and water in a

number of ways:

• It causes selective vasoconstriction in the renal arterioles, thus diminishing blood

flow through the kidneys and allowing less fluid to be filtered,

• ANG II-mediated vasoconstriction, leading to low blood flow levels through the

peritubular capillaries, increases sodium and water reabsorption by the renal

tubules, and

• ANG II has a direct effect on the tubular cells to increase salt and water reab-

sorption.

In addition to the direct effects of ANG II in increasing fluid retention under low

pressure conditions, angiotensin II also triggers the release of aldosterone from the

adrenal glands, with aldosterone causing further salt and water retention (Reinhardt

et al., 1996).

Other substances with a role in BP control such as vasopressin, atrial natriuretic factor

and endothelin have also been identified, with Cowley Jr. (1992) providing a detailed

review of most known factors.
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2.2 The neural baroreflex

The arterial baroreflex is the most important short-term blood pressure control mech-

anism. The baroreflex is a negative feedback control system which detects changes in

blood pressure and, through adjusting heart rate and peripheral resistance, attempts

to minimise blood pressure fluctuations. The arterial baroreceptors are mechanical

stretch receptors, located in a number of sites, most abundantly in the aortic arch and

the carotid sinuses, and are central to the baroreflex. When the blood vessels stretch

due to pressure, the baroreceptors are depolarised, resulting in action potentials being

sent towards the central nervous system through afferent nerves. At higher blood pres-

sure levels, the stretch applied on blood vessels is also higher, leading to higher firing

frequencies of the baroreceptors. The autonomic nervous system, then, through efferent

nerves, varies cardiac output and vascular resistance, thus controlling blood pressure.

A diagram of the baroreflex loop is shown in Figure 2.1.

As shown in Figure 2.1, the baroreceptors located in the aortic arch relate information

via the vagus nerves about the blood pressure being supplied to the systemic circula-

tion, while the carotid sinus baroreceptors send information via the glossopharyngeal

nerves about blood pressure supplied to the brain. Both sets of afferent nerves release

neurotransmitters in the solitary tract nucleus in the brainstem.

An increase in blood pressure, resulting in higher than normal baroreceptor firing rates,

causes an inhibition of the sympathetic branch of the autonomic nervous system and

activation of the parasympathetic limb through efferent (vagal) nerves. The resulting

effects are a decrease in heart rate and heart contractility, vasodilation of the periph-

eral veins and arterioles and decreased venous return, all contributing to a lower cardiac

output and peripheral resistance. Conversely, low blood pressure leads to the stimu-

lation of the sympathetic nervous system and downregulation of the parasympathetic

branch, causing vasoconstriction in the peripheral circulation, and increases in heart

rate, cardiac contractility and venous return.

According to various studies, there is a delay of between 200 and 600ms between the

baroreceptor signalling and the resulting effect on the sinus node in the heart, mediated

by the parasympathetic nerves, while the effect on the peripheral vasculature due to

sympathetic vasomotor activity, can take much longer (up to 2-3s.) (Eckberg and
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Figure 2.1: The baroreflex

Sleight, 1992; Pagani et al., 1988).

Low-pressure receptors found in the pulmonary circulation, as well as chemoreceptors

found at sites similar to the baroreceptors, act in conjunction with arterial baroreceptors

to counteract changes in blood pressure.

2.2.1 Baroreflex sensitivity

Baroreflex sensitivity is, in effect, a frequency-dependent dynamic gain, and measures

how much the RR interval (the interval between one R wave and the next on a cardio-

gram, also the inverse of the heart rate) changes due to variations in blood pressure,

and is measured in ms/mmHg (Eckberg and Sleight, 1992; Westerhof et al., 2004; Ti-

inanen et al., 2008). Most research groups use systolic arterial pressure (SAP) and RR

interval for BRS estimation; however, some groups have employed other measures, such

as mean arterial pressure and heart rate. A single standard method for BRS estimation

does not exist. There is a large variety of BRS estimation techniques, including both
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time and frequency domain methods, leading to very differing estimates of BRS. The

unavailability of a single BRS ‘gold-standard’ estimation technique causes difficulty in

defining what gain values can be considered normal. If BRS is to be used in clinical set-

tings as a determinant of health and disease, it is vital that an exact definition is agreed

upon and that ranges for normal, reduced and failed baroreflex are defined.

Figure 2.2 shows a diagram representing the baroreflex as a feedback control loop. On

the top side of the loop the RR interval is regulated via the central nervous system,

while on the bottom side of the loop SAP is determined through the influence of the

peripheral vasculature and the heart. There are two external noise sources, affecting

SAP and RR interval, and those include influences such as respiration, central modu-

lation of the sinus node or vasomotor activity (Baselli et al., 1988). The gain of the

central nervous system (CNS) block represents the baroreflex sensitivity.

Vasculature

CNS +

+

(Baroreflex)

+
+ and

Heart

RR intSAP

nr

ns

Figure 2.2: The baroreflex loop with two external noise sources nr and ns

2.2.2 Purpose of the baroreflex sensitivity index

Baroreflex impairment has been associated with a number of conditions such as hyper-

tension, myocardial infarction (MI) and heart failure. A measure of the baroreflex gain

provides information on the neural regulation and autonomic control of the cardiovas-

cular system.

In some cases of cardiovascular disease, a reduction in responsiveness of the sinus node

to vagal neural modulation can be observed, in addition to an increase of sympathetic
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cardiac and peripheral stimulation. This effect is particularly common in heart failure

patients (Osterziel et al., 1995). Impaired baroreflex may contribute to end organ dam-

age also (Lanfranchi and Somers, 2002), through sustained high levels of sympathetic

activity, while diminished gain has also been related to higher mortality in heart failure

patients (La Rovere et al., 2008; Osterziel et al., 1995).

The most important use of BRS in a clinical setting, however, is its use as a prognostic

factor in cardiology, especially as a predictor of cardiac mortality in patients following

MI. A number of studies address the issue of BRS as a determinant of future adverse

outcome in patients following MI (Laude et al., 2004; La Rovere et al., 1988; Van de

Vooren et al., 2007; La Rovere et al., 2008).

In addition, the relationship between baroreflex sensitivity and hypertension has come

under investigation (Parmer et al., 1992; Thrasher, 2005) and is gaining importance, and

BRS has been found to be useful as an overall prognosis risk marker in hypertensive

patients (Ormezzano et al., 2008). The possibility of lowering the long-term blood

pressure of chronic hypertensive patients through electric stimulation of the carotid

sinus is also under investigation (Heusser et al., 2010).

2.2.3 Hypertension and the baroreflex

During prolonged blood pressure increases, the baroreceptors reset to new pressure

levels, in order to continue to reduce blood pressure variability (Eckberg and Sleight,

1992; Guyton and Hall, 2006). In hypertensive subjects, where the baroreceptors are

centered around the new, increased, baseline pressure, reductions in pressure down to

normotensive levels actually provokes a baroreflex response to increase BP. Because of

the resetting of the baroreceptors, the baroreflex has been considered mainly as a short-

term blood pressure control system, and its role in the development of hypertension has

not been confirmed. Subjects with hypertension, however, have been shown to have

an impaired baroreflex (Parmer et al., 1992) and the reduction in baroreflex gain has

been found to be proportional to the degree of blood pressure increase (Eckberg and

Sleight, 1992). Parmer et al. (1992) have also shown that normotensive subjects with a

family history of hypertension have lower BRS values compared to their normotensive

counterparts without a family history of diagnosed hypertension. Since an impaired

baroreflex can precede the development of hypertension, it is impossible to disregard the
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possibility that the baroreflex may be involved with the pathogenesis of hypertension.

BRS has also been found to decrease with increasing age, especially for males over 60

years (Monahan et al., 2001; Kardos et al., 2001), possibly due to stiffness of the arteries

in the baroreceptor locations, which can lead to reduced baroreceptor firing rates and

thus reduced inhibition of the sympathetic nervous system. In addition, increased levels

of both renal and muscle SNA have been found in hypertensive subjects, both young

and old, but it has not been established whether this is due to the baroreflex (Grassi

et al., 1998; Thrasher, 2005).

2.2.4 Current methods for baroreflex sensitivity estimation

There are a variety of mathematical methods used for baroreflex sensitivity estimation,

including both time domain and frequency domain techniques. Some methods employ

external excitation (injections of vasoactive drugs, the Valsalva manoeuvre, etc. (Eck-

berg and Sleight, 1992)) in their experimental protocols, while others use recordings of

spontaneous BP and RR interval (Robbe et al., 1987; Pinna et al., 1996). A form of

data pre-processing or selection (such as sequence selection) is also performed as part of

some estimation techniques (Davies et al., 1999; Gouveia et al., 2005; Choi et al., 2006).

In a number of cases, thresholds, such as the minimum variation in BP and RR interval,

and the minimum correlation (time domain) or coherence (frequency domain) between

the BP and RR signals, are also sometimes employed (Davies et al., 1999; Laude et al.,

2004; Choi et al., 2006).() ()

Time domain methods

A variety of time domain BRS estimation methods have been developed, where some

form of regression model is usually fit to the RR-SAP data (in rare cases HR and MAP

are used instead of RR and SAP respectively), and include methods with or without

external excitation in the experimental protocols.

Sequence methods are techniques for baroreflex sensitivity estimation, where a pre-

processing step is applied to the beat-to-beat data before fitting a regression line be-

tween the RR and SAP signals. The preprocessing step includes the selection of se-

quences of concurrently increasing or decreasing contiguous SAP and RR interval values.
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In general, for each selected sequence, the slope of the regression line is calculated and

the baroreflex gain estimate is obtained by averaging the slopes for all sequences. The

sequence methods are very popular due to their simplicity and have been applied in

a large number of studies (Choi et al., 2006; Davies et al., 1999; Kardos et al., 2001;

Gouveia et al., 2005).

Minimum thresholds are usually applied to the pre-processing data selection process to

ensure that sequences are not just random occurrences but are, in fact, the baroreflex

in action. Each sequence is usually required to contain a minimum of three or four data

points. Sometimes, a requirement is imposed that a SAP value changes by a minimum

of up to 1mmHg, compared to the previous beat, in order to be included in a sequence

(Davies et al., 1999; Kardos et al., 2001). A change of up to 5ms in the RR interval

between two beats can also be required (Davies et al., 1999). Once the slope of the

regression line for a particular sequence has been calculated, a minimum coefficient

of correlation between SAP and RR from 0.7 up to 0.85 can also be imposed (Choi

et al., 2006; Davies et al., 1999), in order to consider the slope of that sequence for BRS

calculation. Some research groups also require a minimum of between 2 and 5 valid

sequences for each subject in order to obtain a BRS estimate for that subject (Laude

et al., 2004). The issue of delay or ‘lag’ between a change in SAP and the associated

change in RR interval also needs to be considered, and different lag values have been

employed previously (Choi et al., 2006).

Low correlation, too few points in a sequence, or an insufficient number of sequences

can all be a major problem associated with the traditional sequence techniques for BRS

estimation, especially in patients with cardiac disease or autonomic dysfunction (Oka

et al., 2003).

Gouveia et al. (2005) have suggested a variation to the traditional sequence methods

described above where, instead of averaging the slopes obtained from individual se-

quences, the baroreflex gain is calculated by fitting a regression line through all RR

interval and SAP pairs, from all sets of baroreflex sequences. The work was further

developed by Gouveia et al. (2006) by altering the data pre-processing step and instead

of selecting sequences of concurrently increasing SAP-RR values, segments of data were

selected based on ‘SAP ramps’ only. A signal segment was selected based on the SAP

value changing by a minimum of 1mmHg from one beat to the next (a ‘SAP ramp’),
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without a necessary change in the RR interval. The ‘SAP ramp’ approach to selecting

sequences allows the inclusion of a larger number of beats in the overall regression line

calculation, as there is no requirement for a concurrent change in RR interval.

Gouveia et al. (2009) have also introduced an ‘events-based’ sequence method where

instead of identifying sequences of concurrently increasing or decreasing SAP and RR

interval values, segments of data were selected on the basis of high correlation (0.8) be-

tween SAP and RR interval. The minimum segment length of each event was 3 beats,

while the maximum achievable length for each individual segment was determined on

the basis of correlation between SAP and RR interval only. In effect, the difference

between the traditional sequence methods and the events-based technique is the omis-

sion of the minimum thresholds for change in SAP and RR interval from one beat to

the next. The benefits of the events-based method is the inclusion of a larger number

of beats in the overall regression line calculation (approximately 50% of all beats are

included in events), compared to the traditional sequence method (where only about

25% of all beats are included in sequences). Estimates by the events-based and tra-

ditional sequence methods are highly correlated but the events-based technique has a

higher success rate in estimating BRS values in subjects with a diminished baroreflex

response.

An alternative means of obtaining a larger number and/or longer sequences, as well as

a higher correlation value, especially in cases of patients with autonomic dysfunction,

is to use some excitation during the experiment, such as deep respiration (Oka et al.,

2003). The effect of deep respiration is to induce changes in venous return and increase

BP variability; however, other unknown mechanisms, apart from the baroreflex, could

possibly be activated as well. An experiment with controlled breathing, where subjects

are required to breathe at a set frequency (Davies et al., 1999), which provides an

alternative method of putting excitation into the system, produces a similar result as

deep respiration and also leads to a higher likelihood of obtaining a BRS estimate,

compared to standard sequence methods.

Other BRS estimation techniques use an external excitation to perturb the baroreflex

loop and then fit a linear regression line to the whole SAP and RR interval data,

rather than using sequences or events. The excitation can be invasive, as in the Oxford

method (Palmero et al., 1981; Parmer et al., 1992), or non-invasive as with the Valsalva
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manoeuvre (Palmero et al., 1981; Oka et al., 2003) and the neck chamber (Ludbrook

et al., 1977) techniques, described below:

• The Oxford method for BRS estimation is an invasive technique, comprising a

bolus injection of a vasoactive drug, which causes either an increase or decrease

of blood pressure. Successive RR intervals are plotted against the corresponding

SAP values with a lag, or delay, of one beat. The slope of the regression line is

considered as an index of baroreflex sensitivity (Eckberg and Sleight, 1992). A

correlation coefficient for the data is also calculated to determine the certainty

of the BRS estimate. The most common vasoactive drugs used with the Ox-

ford method are phenylephrine, adrenaline, angiotensin II, methoxamine or no-

radrenaline. Some issues associated with the Oxford method need to be noted

(Eckberg and Sleight, 1992):

– Angiotensin II can cause a large variety of additional effects to rising BP,

especially tachycardia instead of bradycardia, i.e. when BP increases, instead

of seeing an associated lengthening of the RR interval, an increase in heart

rate and a shortening of the RR interval is found.

– Phenylephrine, on the other hand, can cause a reduction instead of an in-

crease in carotid sinus diameter at times when BP is rising. Since barore-

ceptors work by detecting a larger stretch of the blood vessel when blood

pressure increases, a diameter decrease would cause the baroreceptors to

send messages of decreasing pressure instead.

– Cardiopulmonary afferent activity may be altered by vasoactive drugs, due

to the activation of low-pressure receptors, which can send either conflicting

messages to the brain, or can enforce the baroreflex, thus leading to an

overestimation of the baroreflex gain.

– Sinus node function may also be affected by vasoactive drugs, thus RR in-

terval may change independently of the baroreflex.

– Hysteresis of the baroreceptor curve can be noticed, i.e., when depressor

drugs are used to lower blood pressure, the BRS estimates are lower than

those when pressure is on the rise due to vasoconstrictory drugs, and

– Patients who already have cardiovascular disease may not be suited to further
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drug infusion, thus making the technique unusable in certain clinical settings.

Despite some of its shortfalls, the Oxford method is still the main method against

which results from other BRS estimation techniques are usually compared (Parmer

et al., 1992; Davies et al., 1999; Pagani et al., 1988; Maestri et al., 1998).

• The neck chamber excitation for BRS estimation involves application of suction

or pressure (i.e. negative or positive pressure changes) to the carotid artery via

a neck chamber. The applied pressure provides a reduction or increase of carotid

artery diameter, thus activating the carotid baroreceptors (Eckberg and Sleight,

1992). Different pressures are applied and the resulting RR intervals are recorded.

Similar to the sequence and Oxford methods, a regression line is computed for the

SAP-RR interval changes and the resulting slope is taken as the BRS estimate.

An advantage over the Oxford method is the non-pharmacological nature of the

technique, as additional blood pressure control mechanisms are not activated.

A major pitfall, however, is the differential stimulation of the carotid and aor-

tic baroreceptors, where baroreceptors at the two locations can receive opposing

information on pressure changes.

• The Valsalva manoeuver comprises the exhaling of air against a closed glottis,

which has an effect to alter intrathoracic pressure. Subjects initially rest in the

supine position for 10 minutes. They are then required to blow into a mouth-

piece at 40mmHg for 15s, in the sitting position. The SAP and RR intervals are

recorded and the slope of the linear regression between the two is estimated at a

particular point in the experiment (Oka et al., 2003). Baroreflex gain estimates

obtained using this method correlate well with the Oxford technique. Similar

to the neck suction method, the Valsalva manoeuvre has the advantage that it

does not incorporate drug infusions; however, the manoeuvre may be difficult to

perform on some patients.

Another BRS estimation method, which uses a linear regression model, but also uses

spontaneous SAP and RR interval data, is a statistical Z-coefficient method for BRS es-

timation, proposed by Ducher et al. (1995), where a coefficient of statistical dependence

between two events is calculated. The two probabilistic events used for BRS estimation

are the SAP and RR interval values. Pairs of SAP and RR interval values with high

Z-coefficient are selected, as a pre-processing step. The linear regression for those values
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is calculated and the slope is considered to be the BRS estimate (Cerutti et al., 1999).

The method needs long recording periods to reliably estimate the required probability

functions. An additional requirement for high correlation between RR interval and SAP

can also be imposed (Laude et al., 2004).

Apart from a simple linear regression gain, a number of more complex time series models

for BRS estimation have also been described in the literature. Porta et al. (2000) have

developed three models of different complexity, with the simplest of their models shown

in Equation (2.1):

RRi =

Q∑

k=0

b1k · SAPi−k + ui (2.1)

where RR interval is a function of SAP only and ui is an external uncorrelated distur-

bance.

The second model developed by Porta et al. (2000), shown in Equation (2.2), incorpo-

rates a coloured noise disturbance wi, defined in Equation (2.3).

RRi =

Q∑

k=0

b1k · SAPi−k + wi (2.2)

wi =

Q∑

k=0

hk · wi−k + ui (2.3)

In the most complex of the models by Porta et al. (2000), Equation (2.2) is modified

by introducing respiration (RESP ) as an additional measured disturbance.

RRi =

Q∑

k=0

b1k · SAPi−k +

P∑

k=0

b2k ·RESPi−k + wi (2.4)

Faes et al. (1999) and Nollo et al. (2001) (Equation (2.5)) include an autoregressive

term on the RR measurement to estimate BRS in patients following MI.

RRi =
R∑

k=1

ak ·RRi−k +

Q∑

k=0

b1k · SAPi−k + wi (2.5)

A similar model is used by De Cecco and Angrilli (1998), while Patton et al. (1996)

combine the models in Equation (2.4) and (2.5) by incorporating SAP, RR interval and
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respiration dynamics. The model by Patton et al. (1996) is defined in Equation (2.6)

as follows:

RRi =

R∑

k=1

ak ·RRi−k +

Q∑

k=nds

b1k · SAPi−k +

P∑

k=ndr

b2k ·RESPi−k + wi (2.6)

and a specific breathing protocol is used to stimulate RESP and, consequently, RR.

In the model in Equation (2.6), ndr and nds are the delays associated with respiration

and systolic arterial pressure respectively.

In general, the modelling problem is to determine the dimension P , Q and R of the

regressors ak, b1k and b2k and then to determine the parameter values for a1 . . . aP ,

b10 . . . b1Q and b20 . . . b2R. Note that, while a consistent notation has been adopted

here to associate an input variable to a model with a parameter set (e.g. RESP is

associated with the parameter set b2k), the values determined for the orders P , Q and

R, and the parameter sets ak, b1k and b2k, will not necessarily be the same across

different models.

A nonlinear model, based on a Volterra-Wiener framework, was proposed by Wu et al.

(2008), who applied it to spontaneous SAP-RR data from normotensive and hyper-

tensive subjects. It is, however, questionable whether the added complexity of a non-

linearity is justifiable in cases where the subjects are at rest (Patton et al., 1996) .

Under such conditions, small signal variation requirements for local linearisation are

usually met.

Baselli et al. (1988, 1994) have proposed a closed-loop model to represent the relationship

between RR, SAP and RESP . The model is identified using a closed-loop approach,

based on the joint input-output approach (see Section 5.3.3); however, they use ‘per-

beat’ data, making spectral estimates unreliable (Ljung, 1999).

In another approach, which respects the closed-loop nature of the baroreflex, bivariate

autoregressive modelling has been employed to calculate the transfer functions between

the signals on the feedforward and feedback side of the loop simultaneously (Hytti

et al., 2006). Nollo et al. (2001), Faes et al. (1999) and Pitzalis et al. (1998) take this

approach to evaluate model components in the time domain and subsequently calculate

the frequency response of these components.

24



2. Background

Frequency domain methods

Frequency domain or spectral methods for BRS estimation rely on an assumed linear

relationship between SAP and RR interval, i.e. only the frequency components found in

the input are propagated to the output, albeit with different amplitude and/or phase.

In general, two main frequency bands are considered for baroreflex operation (Pagani

et al., 1986; Davies et al., 1999; Glos et al., 2007):

• A low-frequency (LF) band of 0.04-0.15Hz, associated with both sympathetic and

parasympathetic activity, and

• A high-frequency (HF) band of 0.15-0.4Hz due to mostly vagal parasympathetic

modulation, related to respiration (Malliani et al., 1994)

Robbe et al. (1987) defines a further very low frequency (VLF) band, between 0.02Hz

and 0.06Hz, associated with vasomotor activities, due to temperature and task adapta-

tion.

A transfer function method was first proposed by Robbe et al. (1987) and comprises

the calculation of the gain or modulus of the transfer function between SAP and RR

interval in the VLF, LF and HF bands, using spectral techniques. The Fourier transfer

function HRS(f) is defined as:

HRS(f) =
GRS(f)

GS(f)
(2.7)

where GRS(f) is the cross-spectral density function between SAP and RR and GS(f)

is the spectral density of SAP.

A coherence function in the frequency domain represents the amount of linear coupling

between two signals and is often calculated in conjunction with the modulus of the

transfer function. The coherence, CRS(f) is defined as follows:

CRS(f) =
|GRS(f)|2
GR(f)GS(f)

(2.8)

where |GRS(f)| is the magnitude of GRS(f) and GR(f) and GS(f) are the spectral

densities of RR and SAP respectively.
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The coherence function CRS(f) can be used as a measure of the significance of the cou-

pling between SAP and RR at a frequency f . Only the Fourier transfer function (gain)

points with corresponding ‘high’ coherence values (arbitrarily defined as CRS(f) > 0.5

by Robbe et al. (1987)), are considered for the final BRS estimate. The coherence

values were found to be very low in the VLF band, and highest in the LF band.

The frequency-dependent gain quantity, α(f), defined in Equation (2.9), has also been

used as an estimate of BRS (Pagani et al., 1988).

α(f) =

√
GR(f)

GS(f)
(2.9)

The α-index is also evaluated over the LF and HF bands and, similarly to the Fourier

transfer function method, a high level of coherence is also required.

In general, spectral densities are calculated using the discrete Fourier transform (DFT).

Finding the frequency response of an autoregressive or input/output time domain model

has also been used as a base for the determination of spectral densities (Task Force of

the European Society of Cardiology and the North American Society of Pacing and

Electrophysiology, 1996); however, such a calculation route strictly places associated

BRS methods within the time domain class of BRS estimation techniques.

A large number of research groups employ spectral methods for BRS estimation. Choi

et al. (2006) used both the transfer function method and the α-index for BRS estimation,

to study the effect of posture in the EuroBaVar data set. The DFT was employed for

spectral estimation, and a minimum coherence threshold of 0.5 was required. Both the

transfer function and α-index methods performed well in distinguishing the standing

from the supine position.

Davies et al. (1999) employed an α-index method, using AR modelling for spectral

estimation, in a study to determine the reproducibility of BRS estimates in control

subjects and in patients with chronic heart failure. A coherence threshold of 0.5 was

used and controlled breathing was also employed to increase BP variability in chronic

heart failure patients. The α-index was poorly reproducible in the HF band for all

subjects, while the LF results were reproducible for the controls, but not for the patients.

In a study by Glos et al. (2007), the α-index is used to examine the effects of positive

pressure ventilation on BRS. The coherence threshold in this study was 0.56 and the
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DFT method was used for spectral estimation. Apart from calculating the α-index

using the standard procedure, they also consider the phase shift between SAP and RR

interval. Maestri et al. (1998) performed a study to compare different methods for

estimating BRS, including the transfer function method in Robbe et al. (1987) and the

α-index method in Pagani et al. (1988).

Pitzalis et al. (1998) estimated BRS in a method similar to that in Pagani et al. (1988),

while controlling breathing at 6, 10 or 16 breaths per minute. The phase lag between

RR and SAP was estimated to vary between 0.25s and 1.2s, with higher respiration

rates leading to lower delays. This result is similar to Eckberg’s conduction time of the

baroreceptor-cardiac reflex arc (Eckberg and Sleight, 1992) and is a bit lower than the

estimation in Pagani et al. (1988).

Rüdiger et al. (1999) propose an alternative approach to the autoregressive and DFT

methods for spectra estimation. The trigonometric regressive (TRS) approach provides

estimates of the power spectra and the usual transfer function estimates are calculated.

Their results are well correlated with other spectral techniques.

Using the coherence function to ensure reliability of the spectral methods for BRS esti-

mation has come under some criticism. As in the sequences technique, in pathological

subjects’ low coherence is unavoidable, since baroreflex is impaired or SAP variability

is low (Pinna and Maestri, 2002); therefore, subjects who may need the measurement

the most cannot be assessed using these spectral methods. Pinna and Maestri (2002),

hence, suggest that, in clinical settings, it is best to impose no thresholds but to simply

use the average gain over the whole frequency band as the BRS measurement. This

leads to a bias in the BRS estimate but the results are considered adequate enough for

use in clinical settings.

Finally, a novel, systematic and rigorous system-identification approach to BRS esti-

mation will be presented in Chapter 5 of this thesis. The new approach falls into the

time domain method category, since a time-series model of the SAP → RR is identi-

fied; however, the BRS estimate is calculated over both the LF and HF bands from the

model spectral response.
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2.3 Blood flow regulation

Following on from Sections 2.1 and 2.2, where the chief short- , medium- and long-term

blood pressure control mechanisms were briefly discussed, and the baroreflex was con-

sidered in more detail, this section provides a short overview of the control of blood flow

at local level. Short- and medium-term blood pressure control, as described in Section

2.1, is closely related to the regulation and distribution of blood flow to various organs

and tissues in the body to satisfy their local metabolic needs. Important metabolic

needs include oxygen and nutrient delivery, carbon dioxide removal and the transport

of hormones. The levels of blood flow through the small arteries and arterioles is reg-

ulated via varying peripheral resistance by numerous vasoactive mechanisms, causing

vasodilation and vasoconstriction in the smooth muscle surrounding the blood vessels.

In order to maintain a normal workload on the heart, the minimum necessary blood flow

is delivered to each site in order to balance out each tissue’s perfusion and metabolism

(Guyton and Hall, 2006); therefore, a combination of vasoactive factors maintain local

blood flow within narrow limits.

This section outlines the main blood flow effectors, with the purpose of providing a

background for the development of a mathematical model for the renal blood flow

(RBF) response to SNA in the renal vasculature.

According to the site of action, the various blood flow effectors can be classified into

central and local. Central effectors act on a systemic level to ensure that different parts

of the body obtain the necessary amount of cardiac output, whereas local effectors

are activated in specific tissues to serve their own metabolic needs (Richardson et al.,

1998). Local blood flow regulators can counteract the effects of central factors to achieve

a balance that satisfies local needs.

Neurohumoural blood flow effectors, which include the sympathetic and parasympa-

thetic nervous system and circulating hormones, can be considered of central origin

and are described first, followed by local blood flow effectors, including metabolic ac-

tivity, myogenic responses and paracrine factors.
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2.3.1 Sympathetic nerve activity

The autonomic nervous system, and in specific sympathetic nerve activity, is the princi-

pal central blood flow effector, especially on a short-term basis. SNA causes the release

of the neurotransmitter norepinephrine (or noradrenaline) from nerve endings, causing

the vascular smooth muscle surrounding small arteries and arterioles to constrict (Di-

Bona and Kopp, 1997). The vasoconstrictive action of norepinephrine is mediated by

binding to α-adrenergic receptors on the vascular smooth muscle walls. Sympathetic

innervation is well distributed throughout the vasculature, allowing rapid control of pe-

ripheral resistance with a time delay between stimulation and response of around 0.6s

in the renal vasculature in rabbits (Guild et al., 2001).

2.3.2 Hormones

Various hormones are released into the circulatory system and display vasoactive prop-

erties when bound to specific receptors, giving them the ability to cause vasoconstriction

or vasodilation. Effects of the same hormone on different vascular beds can vary, de-

pending on the type and concentration of receptors present in the area.

As previously noted, angiotensin plays a major role in blood pressure and blood flow

control with ANG II being the most potent vasoconstrictive hormone (Guyton and Hall,

2006), though it can take up to several minutes to become fully active, since it needs

to circulate in the blood stream (Guyton, 1987). Sigmon and Beierwaltes (1993) have

demonstrated the vasoconstrictor characteristics of ANG II in the kidney, intestine and

lungs. The vasoactive properties of ANG II have been shown to be caused by binding

to AT1 receptors, as vasoconstriction can be reversed with AT1 receptor blockers, such

as losartan (Sigmon and Beierwaltes, 1993) and valsartan (Madrid et al., 1997).

Epinephrine is released by the adrenal medulla in the kidney during SNA stimulation,

stress, or in other physiological conditions when blood pressure needs to be increased.

In general, epinephrine has been shown to be a potent vasoconstrictor by binding to

α-adrenergic receptors (Muravchick and Bergofsky, 1976). Epinephrine can, however,

elicit skeletal vasodilation (Diana et al., 1990), which was found to be due to the action

of β2-adrenergic receptors. This differential action of epinephrine in different organs may

be explained by the necessity to reduce blood flow to one organ in order to increase
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it in another, e.g. during ‘fight-or-flight’ skeletal muscles have higher oxygen demand

than the skin, therefore more blood would be supplied to the former.

Vasopressin (or antidiuretic hormone) is a vasoconstrictive substance, acting on V1 re-

ceptors to increase peripheral resistance. The normal concentration levels of vasopressin

in the vasculature are usually below active levels to achieve constriction; however, its

concentration increases during conditions such as hemorrhage (Cowley Jr. et al., 1980)

or dehydration (Aisenbrey et al., 1981), when blood flow to the periphery may need to

be restricted to increase blood pressure.

Atrial natriuretic factor (ANF), on the other hand, is a vasodilatory hormone, secreted

mainly in the heart, but plays a major role in reducing renal vasoconstriction and in

the inhibition of renin secretion (Maack, 1996).

2.3.3 Myogenic responses

The myogenic response of small blood vessels represents a property of the smooth muscle

to constrict, thus reducing blood flow, as the result of a sudden increase in pressure.

Conversely, a loss of pressure would cause the vascular smooth muscle to relax and

dilate in order to increase blood flow through the vessel (Guyton and Hall, 2006). The

myogenic response, found to be activated by wall tension, is most powerful in medium

sized blood vessels (small arteries and arterioles), it varies in strength from one vascular

bed to another (Schubert and Mulvany, 1999), and has been found to be active in the

renal vasculature among others (Guyton and Hall, 2006).

2.3.4 Tissue metabolites

Tissue metabolites are small molecules of substances that can have vasoactive properties

under certain physiological conditions. An increase in nutrient or oxygen demands by

a tissue, for example, leads to a marked arterial vasodilation. Some common tissue

metabolites are adenosine, carbon dioxide (CO2), potassium and hydrogen ions and a

more detailed account of their function follows.

• Adenosine is a substance with a differential vasoaction. A bolus administration of

adenosine has been shown to cause vasoconstriction in the renal vasculature (Mar-

raccini et al., 1996; Hansen and Schnermann, 2003) by activating A1 adenosine
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receptors. A vasodilatory effect, however, has been reported after a continuous

infusion of adenosine and resulting from the activation of A2 adenosine receptors

in the kidney (Hansen and Schnermann, 2003) and in skeletal muscle (Guyton

and Hall, 2006).

• CO2 levels increase during high oxidative metabolism, for instance, during exer-

cise in the skeletal muscle circulation, and CO2 has been found to cause arterial

vasodilation. The vasodilatory action of CO2 has also been found in other vascular

beds, such as in the coronary arteries, the brain and the intestine, with the excep-

tion of pulmonary circulation where CO2 has been found to cause vasoconstriction

(Piuce, 1960).

• Carbon monoxide has been found to cause vasodilation in numerous vascular

beds, due to hypoxia, shear stress and stretch, as well as in pathophysiological

conditions, such as septicemia (Thorup et al., 1999). O’Donaughy and Walker

(2000) have demonstrated that carbon monoxide causes dose dependant vasodila-

tion in the renal vasculature, while Naik and Walker (2001) and Naik et al. (2002)

have demonstrated that carbon monoxide production results in mesenteric artery

vasodilation.

• Both hydrogen and potassium ions have been found to have vasoactive properties

(Guyton and Hall, 2006). Low concentrations of hydrogen ion cause arterial vaso-

constriction, while high concentration result in vasodilation (Haddy and Scott,

1968). Potassium ions cause vasodilation in the coronary, skeletal and renal vas-

culature, as well as the intestine and stomach (Haddy and Scott, 1968).

2.3.5 Paracrine factors

Paracrine effectors on blood flow relate to the release of locally acting substances such

as nitric oxide (NO), endothelin-1 and arachidonic acid. A short overview of some of

these mechanisms of local blood flow regulation is included here.

• NO is a potent vasodilator and is an endothelium derived relaxing factor. NO

achieves vasodilation within seconds (Wunsch et al., 2000), similar to sympa-

thetic stimulation, so it can be regarded as an important substance opposing SNA-

stimulated vasoconstriction in peripheral arterioles (Reid and Rand, 1992). One

31



2. Background

of the main triggers of NO release is the shear stress exerted on the arterial walls

by blood flow (Boulanger and Vanhoutte, 1998). Neurohumoral and paracrine

substances affect endothelial cell receptors to stimulate NO synthase also, by in-

creasing intracellular calcium levels (Rajagopalan and Harrison, 1996). Studies

have shown that administration of NO synthesis blockers increase blood pressure

and vascular resistance and cause a decrease in blood flow (Zatz and DeNucci,

1991; Madrid et al., 1997; Eppel et al., 2003).

• Endothelin-1 is a vasoactive substance released mainly by the endothelium cells,

which line the entire circulatory system, but also by vascular and airway smooth

muscle cells. According to Ergul (2002) and Hishikawa et al. (1995) the sensing

mechanisms, which stimulate the release of endothelin-1, are low sheer stress,

pulsatile stretch, and pressure. The receptors associated with endothelin-1 are

ETA, found in vascular smooth muscle cells and mediating vasoconstriction, and

ETB situated in endothelial cells and causing vasodilation (Ergul, 2002; Boulanger

and Vanhoutte, 1998). The overall effect of endothelin-1 in each vascular bed

would depend on the relative density of each type of receptor.

• Prostaglandins are short-acting local vasoactive substances derived from fatty

acids. Two of their important representatives, PGE2 and PGI2, are synthesised

in the kidney and have vasodilatory effects in the vasculature. Their receptors

are EP and IP respectively. The response to PGE2 is twice as strong as the one

to PGI2 but the production of PGI2 by the vascular smooth muscle cells is much

greater, therefore the IP receptor activation may be the primary antagonist of

vasoconstriction (Imig, 2000).

• Two other tissue-derived vasoactive factors are histamine and bradykinin. His-

tamine is an arterial vasodilator but can have vasoconstrictive properties in the

veins. It becomes activated in cases of allergic reactions and tissue injury and

causes edema in the surrounding tissues (Guyton and Hall, 2006). Bradykinin

has a similar action to histamine, causing edema in cases of tissue inflammation,

as well as regulating blood flow to the skin, salivary and gastrointestinal glands

(Guyton and Hall, 2006).
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2.3.6 Interactions between effectors

Numerous blood flow effectors directly modify the vascular resistance in order to in-

crease or decrease blood flow to a particular organ. However, some vasoactive factors

can also indirectly influence blood flow control by stimulating the synthesis and release

of other vasoactive substances, which can either counteract or emphasise the action of

the original blood flow effector. A few examples follow.

SNA, for instance, causes the release of norepinephrine, which causes vasoconstriction,

but SNA stimulation also has an effect on the endocrine glands in the vicinity of the

kidney, causing the release of epinephrine and norepinephrine into the blood system as

well. Sympathetic stimulation also stimulates the release of renin by the kidney, thus

stimulating the production of ANG II (Guyton and Hall, 2006).

ANG II has been demonstrated to stimulate an increase in endothelin-1 production

in renal endothelial cells (Ikeda et al., 1995), while Ma et al. (2001) have shown that

intravenous administration of ANG II stimulates continuously discharging low ampli-

tude renal SNA. ANG II also stimulates the release of vasopressin (Brooks et al., 1986),

thus strengthening its vasoconstrictory effect. ANG II, however, can also stimulate the

synthesis of NO in endothelial cells, when binding to AT2 receptors, causing attenuated

vasoconstrictive response or even vasodilation in some vascular beds (Pueyo et al., 1998;

Sigmon and Beierwaltes, 1993; Patzak et al., 2001; Horiuchi et al., 1999).

Vasopressin has been shown to stimulate endothelin-1 production proportional to its

concentration (Ikeda et al., 1995), while it also simulates the synthesis of vasodilatory

prostaglandins in a dose-dependant manner (Hassid and Williams, 1983).

NO is reported to inhibit the release of norepinephrine at the sympathetic neuroeffec-

tor junctions, directly opposing sympathetic nerve activity-mediated vasoconstriction

(Schwarz et al., 1995; Egi et al., 1994), while ANF inhibits renin and aldosterone syn-

thesis and antagonises the antinatriuretic effects of ANG II (Cogan, 1991).

Since there are numerous interactions between the various blood flow/pressure effectors,

it is clear that a balance between them ensures that the perfusion pressure is maintained

at the precise level to satisfy the metabolic needs of each organ or tissue.
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2.3.7 Models of RBF response to SNA stimulation

Sympathetic nerve activity is a major blood flow effector in the renal vasculature. Char-

acterising the relationship between SNA and blood flow is important since the kidneys

receive a large proportion of the total cardiac output (approx. 20 - 25%). Numerous

attempts have been made to model the blood flow response to SNA stimulation in pre-

vious studies, with most focusing on linear models, and often failing to capture some

essential features of the response.

Leonard et al. (2000) have studied the RBF response to electrical nerve stimulation of

various amplitudes and frequencies but the provided frequency responses, characterising

the relationship, have not been parameterised. Steady-state blood flow was found to

reduce with increasing voltage and/or frequency of stimulation, indicating an increase in

vascular constriction; however, the actual blood flow response curves were not modelled.

In a similar study, Eppel et al. (2003) examine the steady-state reduction in blood flow

due to various frequencies of renal nerve stimulation, ranging from 0.5 to 8Hz, but does

not consider the transient response.

Navakatikyan et al. (2000) developed a linear, first-order, pole-only, model to specify

the relationship between SNA and RBF. They modelled the blood flow response to a

range of frequencies of sympathetic nerve stimulation (0.5-3Hz); however, due to the

low frequency nature of the stimulus, and the simplicity of the model, only certain

features of the relationship were described, leaving an incomplete representation of

the system. In a study by Guild et al. (2001), a linear 4th order model (4 poles, 2

zeros and a delay) was identified to represent the RBF response to a pseudo-random

binary sequence (PRBS) of sympathetic stimulation. The renal nerves, however, were

only stimulated at relatively low frequencies (up to 1Hz). Thus, the local blood flow

effectors, typically likely to counteract SNA stimulation, may not have been sufficiently

activated. As a result, even though the model yields good results for the experimental

conditions reported in Guild et al. (2001), the linear model structure would fail to

represent the blood flow response at higher frequencies of stimulation.

Berger and Malpas (1998) developed a black-box ARMAX model to represent the rela-

tionship between RBF, SNA and BP. They found that SNA in conscious animals had

a much larger impact on RBF than previously reported and was a bigger determinant

of RBF than blood pressure.
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Despite the numerous studies investigating the relationship between SNA stimulation

and RBF, none of the above models were based on the characteristics of the physiological

system. Mathematical models can be useful in developing an understanding of the

system under study, but in order to achieve structural information, models which exploit

aspects of the physical system description, rather than a global black-box modelling

approach, are more suitable. While the black-box approach can give a very good model

fit for specific experimental data, it does little to reveal the generic structure of the real

system.

2.4 Hypertension

This section presents a concise overview of hypertension in general, and salt-induced

hypertension in particular, with the aim to lay the background for the development of

a non-linear multi-component model of hypertension due to a high-salt diet in the Dahl

salt-sensitive (Dahl-S) rat.

Hypertension, or high blood pressure, is a condition where blood pressure is chronically

elevated above certain guidelines of ‘normal’ levels. Systolic blood pressure (SBP) of

140mmHg and above, combined with diastolic blood pressure (DBP) of over 90mmHg,

giving a mean arterial pressure of over 110mmHg, are considered to be the lower

boundary values of mild hypertension (Guyton and Hall, 2006; Carretero and Oparil,

2000).

Hypertension can be divided into two major categories: essential (or primary) and

secondary hypertension. Essential hypertension accounts for about 90-95% of all high

blood pressure cases, and by definition, its etiology is not exactly unknown (Carretero

and Oparil, 2000; Guyton and Hall, 2006). It has been widely agreed that both heredi-

tary and environmental factors play a part in the development of essential hypertension

(Carretero and Oparil, 2000). A large number of genes, some of which have already been

identified, can be involved in the development of essential hypertension, and usually a

combination of mutations in a number of genes in an individual would lead to a sus-

tained hypertension (Mullins et al., 2006). In addition, a variety of environmental and

life-style factors, such as obesity, insulin resistance, stress, alcohol, sedentary life-style

and high-salt intake in salt-sensitive individuals, have also been identified to contribute
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to rising blood pressure (Carretero and Oparil, 2000; Guyton and Hall, 2006; Korner,

2007). Some of these factors have also been found to have a genetic determinant, thus a

combination of genetic and environmental factors is possibly the cause of hypertension

in most individuals.

Secondary hypertension occurs in about 5-10% of the population with high blood pres-

sure and is caused by an identifiable, already existing, disorder or condition (Guyton

and Hall, 2006). Common causes for secondary hypertension are renal disease and re-

nal failure, as well as vascular disease, such as remodelling of blood vessels and aortic

coarctation. In addition, a number of monogenic (or Mendelian) types of hyperten-

sion have been identified, which are caused by the mutation of a single gene and in-

clude, among others, Liddle’s syndrome and glucocorticoid-remediable aldosteronism

(Luft, 2003). Over-production of aldosterone (as in primary aldosteronism) or cortisol

(Korner, 2007), over-activity of the renin-angiotensin system and renal artery stenosis

(Guyton and Hall, 2006) are some of the common underlying mechanisms in secondary

hypertension.

Untreated high blood pressure carries a major health risk for cardiovascular disease

(Carretero and Oparil, 2000) and even mild hypertension is associated with shortened

life expectancy (Guyton and Hall, 2006). High blood pressure, also associated with

increased blood volume, places greater demands on the kidneys to process the extra

fluids, and thus can result in renal disease and renal failure (Whelton et al., 1992).

Hypertension has also been identified as one of the main risk factors for stroke (Sacco

et al., 1997) and heart failure (Levy et al., 1996). In addition, hypertension leads to

vascular remodelling or hypertrophy, which can be associated with increased peripheral

resistance (Rizzoni et al., 1996), resulting in an increased work load for the heart.

Among other well known factors that contribute to hypertension, the effects of a high-

salt diet have been widely studied in the past century, and high salt intake, possibly in

combination with other factors, such as stress, has been recognised as a possible cause

of essential hypertension in a large proportion of the population in the developed world.

The following section provides an overview of salt-induced hypertension in animals and

humans alike.
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2.4.1 Salt-sensitivity and salt-induced hypertension

As already outlined in the previous section, hypertension presents a major health risk,

and high intake of dietary salt, or sodium, has been shown to be one of the possible etio-

logical factors for the development of hypertension (He and MacGregor, 2004; Meneton

et al., 2005).

Sodium balance in the body is maintained through a number of mechanisms, including

the renin-angiotensin-aldosterone system, atrial natriuretic factor and the sympathetic

nervous system. Thus, under normal circumstances, even large changes in sodium intake

would not result in a marked variation in BP (Guyton et al., 1980; Korner, 2007).

The question arises as to why it appears that, in populations with high salt intake, blood

pressure levels tend to be higher than in those with lower levels of dietary sodium and

why all individuals with high salt intake do not develop hypertension. The phenomenon

of salt-sensitivity in a proportion of the population would explain selective blood pres-

sure increases in some individuals and not others.

Salt-sensitivity definition

Salt-induced hypertension (SIH) is a process whereby a subject develops high BP due

to a high salt intake. Salt-sensitivity has been defined arbitrarily, depending on the

study, however a well accepted protocol for classifying individuals as salt-sensitive or

salt-resistant has been used by Kawasaki et al. (1978) and Fujita et al. (1980). In both

studies, individuals were given a low salt diet for several days, followed by a high-salt

diet for a week. The difference between the BP levels on the last day of low-salt and

the last day on high-salt diet was noted. Subjects with a BP increase of more than 10%

from the initial value were considered salt-sensitive.

In some studies (e.g. Weinberger et al. (1986)), BP response to salt loading/depletion

was studied on a short term scale (24 hours). The relationship between the blood

pressure response to acute (24-h) salt loading/depletion and the effect of a week-long

high/low-sodium diet was confirmed by Weinberger et al. (1993) and Sharma et al.

(1994). In both studies a strong correlation was found between the two experimental

protocols used to determine salt-sensitivity. In addition, Van Vliet et al. (2006) have

shown a strong correlation between the BP response of Dahl-S rats to salt loading in
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the short term (a few days to a week) and the subsequent development of hypertension

due to high salt intake in the longer term (over a few months, which would equate to

years in terms of the human species).

Finally, in addition to the effect on blood pressure, high salt intake has also been asso-

ciated with increased cardiovascular morbidity and mortality, in a manner independent

of hypertension (Meneton et al., 2005; O’Shaughnessy and Karet, 2006). Some of the

serious effects of high dietary salt include an increase in left ventricular mass, stiffness

and thickening of the arteries, platelet aggregability and susceptibility to stroke, as well

as renal hypertrophy (Tobian and Hanlon, 1990; De Wardener and MacGregor, 2002).

Additional possible effects of high salt intake, not related to the cardiovascular sys-

tem, are bone density depletion, due to the relationship between calcium and sodium

excretion, and cancer of the stomach (De Wardener and MacGregor, 2002).

Salt-induced hypertension prevalence in the population

Around 25 - 35% of normotensive individuals have been found to be salt-sensitive (Wein-

berger et al., 1986; Korner, 2007) and the degree of salt-sensitivity can be dependent

on the subject’s race and on the levels of potassium intake (Adrogue and Madias, 2007;

Morris Jr et al., 1999), with low potassium intake exacerbating salt-sensitivity. In in-

dividuals with mild to moderate hypertension, the cases of salt-sensitivity are more

numerous, with up to 50% of the those with high blood pressure affected (Weinberger

et al., 1986).

A genetic component to salt-sensitivity has been identified and salt-sensitivity has been

shown to be more common in the elderly, in Afro-Caribbeans and in those with Type

II diabetes (Weinberger et al., 1987; Weinberger, 1996; Luft and Weinberger, 1997;

O’Shaughnessy and Karet, 2006). Impaired regulation of renal sodium handling seems

to present a common problem in the Mendelian types of hypertension and hypotension

(O’Shaughnessy and Karet, 2006; Luft, 2001).

The negative effects of salt-sensitivity are particularly evident in a 30-year study of

salt-sensitivity in normotensive and hypertensive individuals, where Weinberger et al.

(2001) found that salt-sensitive subjects were more likely to develop hypertension with

age than were salt-resistant individuals. In addition, salt-sensitive subjects who were

initially normotensive, were found to have the same risk of cardiovascular mortality as
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those who were hypertensive from the start, and a much higher risk compared to those

who were salt-resistant.

Historically, and from an evolution viewpoint, human kidneys were designed to preserve

salt and excrete potassium easily, since their largely vegetarian diet was low in salt

and high in potassium, due to the location of most prehistoric human populations

far from salt sources (Denton et al., 1995; Tobian, 1991; Adrogue and Madias, 2007;

O’Shaughnessy and Karet, 2006).

In primitive tribes of modern times, which do not consume salt, blood pressure does not

rise with age (Gonzalez-Albarra et al., 1998; O’Shaughnessy and Karet, 2006; Meneton

et al., 2005), while a move to an urbanised society causes up to 30% of rural migrants to

develop hypertension (Tobian, 1991), similarly to western populations. The Lou tribe

in rural Kenya, for instance, have a diet low in sodium and high in potassium and do

not manifest a rise in blood pressure with age. However, when Lou people migrate to

Nairobi, with an associated increase in salt intake, their BP and weight rise, without

an increase in calorie intake (Poulter et al., 1990). A similar effect has been noted in

the Yi farmers in China, who have a primitive life-style and a low-salt, high potassium

diet, with only rare cases of hypertension and cardiovascular disease (He et al., 1991a).

When Yi farmers migrate to Xichang City, however, their salt intake rises, potassium

intake decreases and blood pressure rises with age, similar to that of local Han people

(He et al., 1991b).

The migration effect on blood pressure has been attributed to factors such as stress,

alcohol consumption, smoking and weight gain, which would have been minimal in a

peaceful rural environment. These factors may have some contribution to hypertension.

It is worth noting, however, that in the case of the example of the Yi farmers, those who

migrated and those who did not both smoked and both consumed similar amounts of

alcohol, clearly indicating that salt intake was the key contributory factor to hyperten-

sion (He et al., 1991a). It is also true that stress may cause some rise in blood pressure

but the Yanomamo Indians of the Venezuela-Brazil border live in an uncultured, highly

stressful and violent society, without a rise in BP with age. Their lack of hypertension

has been attributed to a low-salt diet of approximately 0.5 g/day of NaCl (Oliver et al.,

1975). The nomadic Quash’Qai people of Iran, on the other hand, have a primitive

life style, but consume large amounts of salt and demonstrate an associated increase in
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BP with age, similar to that in the developed world (Page et al., 1981). One study of

Italian nuns, who consume the same amount of salt as lay women from the surrounding

geographic area, but are not exposed to normal everyday life, show that the nuns do not

develop hypertension with age and have fewer cases of cardiovascular disease (Timio

et al., 1997). Consequently, it is very likely that a combination of compounding factors

contribute to salt-induced hypertension or the age-related increase of blood pressure in

the developed world. Stress, high-fat diet and the lack of exercise might all play a role in

the development of hypertension and cardiovascular disease, especially in the presence

of a high-salt diet. Furthermore, Deter et al. (1997) have shown that during stress,

blood pressure rises much more in salt-sensitive normotensive individuals than in their

salt-resistant counterparts. Therefore, it is very likely that a genetic predisposition to

salt-sensitivity would cause a rise in blood pressure under conditions of high-salt intake,

combined with stress and an unhealthy life style.

The population of Northern Japan offers an example of possibly the highest salt in-

take in the World in the 1950s and 1960s, with some sub-populations consuming on

average 27g/day and up to 61g/day (Sasaki, 1962) (the recommended salt intake is up

to 6g/day), leading to wide-spread hypertension and vascular morbidity and mortality

and the highest prevalence of cerebral hemorrhage in the World (Meneton et al., 2005).

Up to 70% of the people there were found to be hypertensive at the age between 50

and 60 years (Meneton et al., 2005) and high blood pressure was found to be associated

with low potassium intake (Sasaki, 1962).

In general, a linear relationship has been noted between the average salt intake within

and across populations and their average levels of blood pressure, and a similar relation-

ship exists between blood pressure levels and age (Stamler, 1997; Dahl, 2005).

Alteration in renal function, impairment of the renin-angiotensin-aldosterone system

(RAAS), or genetics, can contribute to a faulty blood pressure response to salt (Wein-

berger et al., 1987), as well as possibly an overactive sympathetic nervous system (John-

son et al., 2002; Leenen et al., 2002), also contributing to salt-sensitivity. In any case,

regardless of the causes of salt-induced hypertension, a reduction of the overall salt

intake by a population with high dietary salt has been shown to have positive effects

on blood pressure, in particular, and health outcomes in general (He and MacGregor,

2004; Meneton et al., 2005), especially for those with hypertension.
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Salt-induced hypertension in animal studies

Animal experimental protocols have provided much insight into the issue of salt-induced

hypertension. Animal studies are advantageous since they can be performed over longer

periods than those on human subjects, especially compared to the life span of the sub-

jects, and with more stringently defined protocols and interventions. The development

of telemetry technology, in particular, has provided a great opportunity to continuously

monitor physiological responses during lengthy experimental protocols without the need

of frequent handling or interventions, such as sedation.

Animal studies on the effect of high dietary salt have shown a variety of blood pressure

responses. A rise in blood pressure during the days following the onset of high salt

intake, frequently used in humans to determine if an individual is salt-sensitive or salt-

resistant (Fujita et al., 1980; Kawasaki et al., 1978), has been demonstrated in a number

of animal species too. Mice (Leonard et al., 2006), Dahl-S (Van Vliet et al., 2006) and

Sprague-Dawley (Osborn and Hornfeldt, 1998) rats, dogs (Manning et al., 1979) and

monkeys (Srinivasan et al., 1980, 1984) all manifest a blood pressure increase within a

few days to a week after the initiation of high salt intake. In addition, a distinct effect of

high dietary salt, in raising blood pressure slowly and over a prolonged period of time,

has been demonstrated in studies of chimpanzees (Denton et al., 1995; Elliott et al.,

2007) and rats (Dahl, 1961; Van Vliet et al., 2006), and the blood pressure increase has

been found to be proportional to the level of dietary salt (Meneely et al., 1953).

The different phases of salt-induced hypertension have distinct features (gain and time

constant of response) and are probably due to different mechanisms. Van Vliet and

Montani (2008) have provided a detailed overview of the phases and characteristics of

salt-induced hypertension, encompassing a variety of animal species and humans.

The initial, ‘acute’ phase, evident within days to weeks of high salt intake, and corre-

sponding to the re-establishment of sodium balance, has been shown to be reversible

after removing the high-salt input (Srinivasan et al., 1980; Van Vliet et al., 2006). In

salt-resistant individuals, sodium balance is normally established without a marked

variation in blood pressure, due to the large number of subsystems in the body respon-

sible for sodium excretion (RAAS, ANF, SNS). In salt-sensitive subjects, however, one

or more of the regulatory systems responsible for sodium handling and blood pressure

regulation, might be malfunctioning, and therefore a change in renal perfusion pressure
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is required to maintain a balance between salt intake and excretion.

The longer-term effect of salt on blood pressure, which might occur over months, years

or the time scale of a life-time, and resembling the increase in blood pressure with age

in humans, has been shown to be partially irreversible in some cases (Van Vliet et al.,

2006) and fully reversible in others (Denton et al., 1995), with the level of reversibility

probably depending on the duration and level of salt exposure. It has been suggested

that this slow and progressive increase in blood pressure with prolonged high-salt intake

could be related to vascular remodelling, renal lesions or fibrosis (Van Vliet et al., 2006)

and compromised glomerular filtration rate (Tobian, 1991), which have been shown to

develop during salt-loaded hypertension.

2.4.2 Dahl salt-sensitive and salt-resistant rats

In the last century, animals, and in particular rodents, have been bred to create experi-

mental models of various physiological and pathophysiological conditions, in an attempt

to classify the genes involved, as well as to study the developmental stages of the con-

ditions. Numerous animal models of hypertension have been developed with genetic,

endocrine, mechanical or monogenic etiology, such as the spontaneously hypertensive rat

(SHR), the Dahl salt-sensitive (Dahl-S) rat, the deoxycorticosterone acetate (DOCA)-

salt rat, the two-kidney one-clip (2K1C) model, the transgenic TGR(mRen2)27 rat and

the Milan hypertensive rat. Each experimental model mimics a particular subtype of

hypertension and they all lead to different outcomes in relation to actual levels of blood

pressure, life expectancy and end organ damage (Pinto et al., 1998). Additionally, not

all antihypertensive drugs are effective for the treatment of each of the models of hy-

pertension, with some being solely efficient in reducing blood pressure and others also

helping prevent end organ damage.

The Dahl-S rat has been specifically bred from Spraug-Dawley rats, for their genetic

susceptibility to salt-induced hypertension (Dahl et al., 1968). The Dahl-S rat’s blood

pressure response to salt has been studied in detail and has been found to be a multi-

component event, with both an acute and a slower, progressive form of hypertension

(Van Vliet et al., 2006). The slow and progressive blood pressure increase due to high

dietary salt is on an accelerated time scale compared to other species, since the rats

were specifically bred to be highly salt-sensitive, and the resulting hypertension tends
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to be self-sustaining after the removal of the high-salt input (Dahl and Schackow, 1964).

On the other hand, most Dahl-S rats fed a high-salt diet (8% NaCl) for 2 weeks only,

seem to return to normal pressures, while rats exposed to the high salt diet for 6 weeks

are severely hypertensive even after many subsequent months on a normal diet (Dahl

et al., 1968). Renal failure is common among Dahl-S rats on a high-salt diet, even in

those whose blood pressure is not excessively high (Dahl et al., 1968)

The Dahl salt-resistant (Dahl-R) rats, in contrast, do not develop hypertension even at

high levels of salt intake; however, a high-salt diet increases morbidity and mortality in

salt-resistant rats, due to vascular injury.

F2 hybrid rats, resulting from breeding the cross-bred progeny of Dahl-S and Dahl-R

rats, provide an opportunity to study a range of blood pressure responses from complete

salt-resistance to moderate or severe salt-induced hypertension (Van Vliet and Montani,

2008).

The exact means by which Dahl-S rats, and some of their hybrid off-spring, become

hypertensive are not completely clear. Renal involvement has been confirmed, however,

with transplant studies, in which salt-resistant recipients become hypertensive after

receiving a kidney from a hypertensive salt-sensitive rat, and vice versa - the blood

pressure of a hypertensive Dahl-S rat is reduced after receiving a kidney transplant

from a salt-resistant donor (Dahl and Heine, 1975). A reduction in the kidney’s capacity

to excrete salt and water, resulting in an elevated cardiac output, has been identified

as a possible cause of the salt-induced hypertension in Dahl-S rats, who have also

been found to have fewer glomeruli, increased renal resistance and a lower glomerular

filtration rate (GFR) (Simchon et al., 1989; Tobian, 1991) than Dahl-R rats under the

same experimental conditions. Lower levels of prostaglandins E2 have also been noted

in the Dahl-S rat, leading to a higher level of sodium reabsorption. A decrease in

other vasodilatory prostaglandins, accompanied by an increase in the vasoconstrictory

prostaglandin thromboxane, is also believed to cause sodium retention (Tobian, 1991).

Interestingly, in a study including F2 hybrid rats, some of the hybrid animals exhibit an

acute salt-sensitivity component only, while others develop a progressive form of SIH

too, with others still being completely salt-resistant (Van Vliet et al., 2006). Such data

can be very useful in describing the separate components of salt-induced hypertension,

which may exist on their own or in combination with each other.
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2.4.3 Renal function curves

The renal function curve, also referred to as the chronic pressure-diuresis/natriuresis

relationship, defines the pressure level at which steady-state balance between sodium

intake and excretion is achieved, after the regulatory mechanisms, contributing to renal

function and blood pressure control, have been activated (Van Vliet and Montani, 2008).

Under normal condition in non-salt-sensitive individuals, the renal function curve is very

steep, nearly vertical, indicating that sodium balance is achieved without the need to

change blood pressure levels much, as shown in Figure 2.3 (lines a and c).

Numerous regulatory systems are involved in establishing sodium balance, including

the RAAS, SNA and ANF. Atrial natriuretic factor is released by the heart during

blood pressure increases and stimulates sodium excretion by the kidneys, thus reducing

pressure back to normal levels. Aldosterone, renal SNA and ANG II, on the other

hand, increase salt and water reabsorption when blood pressure falls, and ANG II

increases the secretion of antidiuretic hormone, which reinforces the fluid retention and

activates thirst and the desire for salt (Guyton and Hall, 2006; DiBona, 1989). With

a well functioning RAAS, even a 50-fold increase in salt intake may only cause a BP

increase of 4-6mmHg (Guyton and Hall, 2006). Nevertheless, when one or more of the

additional regulatory mechanisms malfunction, the renal-body fluid system may need

to reset blood pressure to levels appropriate for maintaining salt balance, thus when salt

intake increases, blood pressure rises accordingly to increase salt excretion (see Figure

2.3, lines b and d).

A schematic of the features of a renal function curve has been presented in Figure

2.3. Line a represents a normotensive, salt-resistant individual, with a very steep renal

function curve. As the slope of the curve decreases, salt-sensitivity increases, leading

to line b. A shift in the curve to higher blood pressure levels (to the right) is associated

with chronic hypertension (line c) and again, if the curve has a decreased slope, salt-

sensitivity is also present (line d). In Dahl-S rats fed a high salt diet for a short time

(e.g. one week), the renal function curve is similar to line b, and in this thesis, it is

referred to as ‘acute salt-sensitivity’, with the increase in blood pressure fully reversible

when the salt intake is returned to normal levels. If the high salt intake is maintained

over a prolonged period of time, however, the slope of the line decreases progressively

(‘progressive acute salt-sensitivity’), a change which is also accompanied by a rightward
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Figure 2.3: Steady-state renal function curves, representing: line a - a normotensive

salt-resistant individual, line b - a normotensive salt-sensitive individual, line c - a hy-

pertensive salt-resistant individual and line d - a hypertensive salt-sensitive individual.

The figure is a modified version of Figure 4 in Van Vliet et al. (2006)

shift towards higher blood pressure levels (Van Vliet et al., 2006), which is referred to

here as a self-sustained hypertension here (line d).

The mathematical models of the blood pressure response to high-salt intake, presented

in Chapter 4, are developed in line with the mechanisms of SIH outlined here in Sec-

tion 2.4, giving a ‘transparent’ structure, based on the underlying physiology, and also

providing a capacity to generate the renal function curves shown in Figure 2.3.

2.5 Summary

This chapter has presented an overview of the main blood pressure control mechanisms

at the short, medium and long terms. The overview lays a background for the develop-

ment of a number of mathematical models related to blood pressure regulation.

Section 2.2 relates to the arterial baroreflex and provides a review of the existing

baroreflex sensitivity estimation techniques, which lays the foundation for a novel

system-identification approach to baroreflex sensitivity estimation, presented in Chap-

ter 5.

Section 2.3 provides an overview of the vasoactive mechanisms, and especially those

active in the renal vasculature, which provides the foundation of a mathematical model
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for renal vasoaction, presented in Chapter 6.

Finally, Section 2.4 gives a general overview of hypertension and, in particular, exam-

ines salt-induced hypertension in detail, as a background to modelling of salt-induced

hypertension in Dahl rats, as presented in Chapter 4.
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Chapter 3

Implementation of Guyton’s

integrative physiology model in

Simulink

In his 1972 “Circulation: Overall Regulation” paper (Guyton et al., 1972b) Arthur

Guyton affirms his observation that systems analysis should be used to its full potential

in order to study physiology from an analytical perspective. Mathematical models are

a useful tool to develop a deeper understanding of a physiological system under study.

In order to achieve structural information, the emphasis should be on models which

employ the physical system description. Guyton’s integrative physiology model, first

published in 1972, is a remarkable example of such a model, which incorporates a large

number of systems and was developed at a time when computational technology was

not nearly as advanced as it is today.

3.1 Introduction

The extensive Guyton circulation model, developed in 1972 (Guyton et al., 1972b),

is based on collective knowledge of physiology, and the model features and parameters

originate from collected experimental data. The model simulates and predicts a large va-

riety of both animal and human physiological conditions and circulatory stresses.

The model revolutionised the way physiology was studied, which was presented in a
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number of ways:

1. The model assembled the available knowledge on the dynamics of the body’s

circulatory components and how they interacted with each other,

2. The model presented a diagrammatic form, which allowed the totality of the model

to be viewed and interactions examined, and

3. The model was specified using the basic components of integrators, summers

and (sometimes nonlinear) gains, the fundamental building blocks of analogue

computers, facilitating computation.

The model comprises 354 mathematical blocks, where each block represents a particular

physiological signal or function. Originally, the model was implemented in the Fortran

programming language and was also published in a graphical format (Guyton et al.,

1972b). The original model has been enhanced and extended over the years, and was

translated in the C programming language in 1988, and an unpublished version of the

model from 1992, accompanied by the MODSIM environment (Montani et al., 1989),

has been made available.

The benefits of developing and utilising large physiological models for both teaching

and research purposes, have withstood the test of time, with numerous research groups

currently developing tools to enhance, store and make use of such models. A large

number of modern modelling and simulation environments is now available; unfortu-

nately, no common medium for development and sharing of integrative physiological

models has been agreed. Ideally, a common platform should be used to model, simulate

and store existing models and to allow updates in the knowledge and understanding

of the underlying physiological systems to be added easily by the research community.

Projects, such as the IUPS (International Union of Physiological Sciences) Physiome

Project (Hunter et al., 2008), attempt to directly address this issue with mixed success,

to date.

This chapter will examine the requirements of integrative physiology where modelling

and simulation is concerned, and the currently available tools that can satisfy those

requirements. A graphical modelling and simulation environment is proposed as an

integrated solution and a validated Simulink version of Guyton’s most recent (1992)

model (Montani, 2008) is presented as an example of such a solution, together with a
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discussion of outstanding issues which need to be resolved.

3.2 Model Development and Simulation

The development of mathematical models used for computation and simulation gener-

ally follow a similar pattern, as shown in Figure 3.1. Initially, the system is represented

as a set of continuous- or discrete-time equations, derived either from first principles,

or through a system identification process, where model parameters are optimised us-

ing measured experimental data. An appropriate mathematical representation is also

selected (difference/differential equations, state-space, transfer function) at this time.

For complex models, a hierarchical structure would allow users to conceal some of the

detail, thus employing an approach of grouping parts of the model into systems and

subsystems, which would improve the legibility of the model. A simulation environ-

ment, which satisfies the model representation requirements would then need to be

selected, and a suitable interface with the end user, as well as the model developer, is

also needed.

Define the model equations

Define the mathematical framework

Organise into blocks/boxes

Choose a simulation environment

Choose an interface with the user

Figure 3.1: Stages of the modelling process

Guyton’s original model followed a similar path of development, where the equations

were based on physiological principles and experimental data, and were represented in a

block diagram form with only a small set of simple mathematical operations (summers,

integrators and gains, some of which are nonlinear), components typical of analog com-

puter systems. For digital computer implementation, the model equations were discre-
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tised and translated into C-like code and the model was simulated using the aforemen-

tioned MODSIM environment. Implementing a large model in a high level programming

language, such as C or Fortran, has its limitations in both execution (sequential code)

and readability and newer models and implementations, such as QHP (Quantitative

Human Physiology) or HumMod (Hester et al., 2011), have similar drawbacks.

A more detailed discussion of the requirements and constraints in the process of mod-

elling and simulation in the integrative physiology field follows.

3.3 Modelling

In order to take a structured approach to the discussion of modelling and simulation for

integrative physiology, one must question the objective of the modelling and simulation

exercises. In modelling, the following set of objectives are pertinent:

• Develop a set of continuous-time equations which represent the underlying phys-

iological components (Garfinkel, 1983; Keener et al., 1998; Carson and Cobelli,

2000; Ottesen et al., 2004),

• Parameterise the equations using experimental data (Ljung, 1999), and

• Validate the model on previously unseen data (Cobelli et al., 1984)

In terms of defining a set of model equations, which represent the underlying physio-

logical phenomena, a number of modelling approaches are available:

• White-box models, where each parameter represents a physical physiological quan-

tity,

• Grey-box models (and the sub-classes of off-white, smoke-grey, steel-grey and

slate-grey (Ljung, 2008)), where some links between the physiological structure

and model parameters exists, and

• Black-box models, such as neural networks, where the model structure and pa-

rameters are not associated with particular physiological features and the model

simply reproduces experimental data.

The type of model that should be developed is determined by the purpose of the model

and the availability of system knowledge and experimental data. Even though all model
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types can be valuable in the biomedical field, Guyton’s model would fall in the grey-

box model category, and this model type is perfectly suited for teaching and research

purposes, where the link between model parameters and particular features in the un-

derlying physiology are important. Grey-box models allow us to simulate various ex-

periments and study their effects on the model parameters, and thus the physiology

features these parameters represent.

It is also worth mentioning that when defining the model equations of large integrated

models, such as Guyton’s model, a variety of time scales can be incorporated. In

addition, the model can be hierarchically built using progressively larger ‘component’

sizes, with a good example of such a hierarchy suggested by Hunter and Nielsen (2005)

in Figure 3.2.

Figure 3.2: Multiscale modelling hierarchy (Hunter and Nielsen, 2005).

An appropriate mathematical representation needs to be selected for any physiological

model implementation. A set of possible representations are differential equations, state

space models or transfer functions (TF), where the latter can be used for linear systems

only. The model representation will, again, depend on the purpose of the model. It

is beneficial to use representations that relate to physical or intuitive quantities, and
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ones that help with the visualisation of important connections in the model. Using

transfer functions, for example, allows us to easily note important features in the model

components, such as time constants and gains; however, with a TF representation,

initial conditions, which are vital for physiological systems, cannot be set.

A number of formalised modelling methods (Ljung and Glad, 1994), some of which

have the ability to deal with non-homogeneous systems (i.e. systems with mixtures of

mechanical, flow, electrical, etc. elements), such as bond graphs, are available. A variety

of system identification routines (Ljung, 1999) can be used to estimate parameter values

from experimental data, but care needs to be taken that the operating region, for which

the model is valid, is well defined.

3.4 Simulation

Mathematical models of physiological systems are sets of equations that represent the

system response and whose parameters may or may not have a direct relationship with

specific physiological quantities, depending on the model type (white-, grey-, black-box).

In order to use a mathematical model to simulate the physiological system response to a

particular input or with respect to a set of initial conditions, a computer implementation

of the model is vital.

One can document the steps required in simulating a system (physiological or otherwise)

on a digital computer as:

1. Model equations are assembled - structure and form, including interconnections,

2. Model parameters are determined (white, various shades of grey, black),

3. Model equations are discretized, and

4. Equations are implemented in computer code

In the case of item 3 above, it is useful to observe that there is no ‘perfect’ form of

discretization, which preserves all the properties of the original continuous-time system

(e.g. time response, frequency response, etc.) with exact fidelity (Ascher and Petzold,

1998). The same model, simulated using different discretisation techniques, may pro-

duce significantly different responses, depending on the nature of the system. Certain

nonlinear systems, stiff systems (systems containing both fast and slow dynamics) and
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systems containing algebraic loops may all be sensitive to the simulation engine and/or

discretization used.

Most discretisation methods are based on numerical integration techniques (e.g. Euler,

Runge-Kutta, methods based on the Adams-Moulton and Adams-Bashford families,

etc.) (Hairer et al., 1993; Hairer and Wanner, 1996; Molar and Van Loan, 2003), with

some based on frequency response mapping (e.g. pole-zero mapping) (Hori et al., 1992).

The 1992 Fortran implementation of Guyton’s model (Montani, 2008), for example, uses

a first order forward-difference discretization method.

In order to select a suitable discretisation technique, one must decide which particular

features of the continuous-time response of the system are most important to preserve

in the discrete-time approximation (Yates, 1978). Consequently, it is crucial that any

models that are published, or made available to the wider community, also carry infor-

mation on the discretisation method of choice and how to solve issues, such as algebraic

loops, in order for results to be reproducible.

It is also important to note that, depending on the environment selected for model

simulation, one may not need to discretise the continuous-time system ‘by hand’ be-

fore implementation. Advanced modelling and simulation environments, such as MAT-

LAB’s Simulink (The Mathworks Inc.), allow the user to implement the system using

continuous-time blocks and then configure the simulation to use an ‘integration method’

from a set of routines built into the software.

3.5 Modelling and simulation environments

A wide variety of modelling and simulation environments, with different features and

functionality, are available, and some are tailored to specific domains, while others are

generic. This section provides a succinct overview of the main modelling and sim-

ulation environments in use and examines their suitability for integrative physiology

modelling.
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3.5.1 Diagrams and equations

The original (for example, see Grodins (1959)) environment for the communication of

mathematical models is using block diagrams and differential or difference equations.

Specification of sets of continuous-time equations (with associated block diagrams) is

still prevalent in the published literature (Ringwood and Malpas, 2001; Karaaslan et al.,

2005). This form, usually specified in continuous-time, utilises well-accepted standard

mathematical and block-diagram notation, but is not directly computer readable and is

purely for representation purposes, with no simulation potential or information.

3.5.2 Markup languages

Markup languages (ML) are used to process, define and present text in a way that

it could be human- and machine- readable. A large number of markup languages

have been developed for many types of applications, with the most well known being

HTML, or HyperText Markup Language. HTML is used to define how text, images and

multimedia are displayed in web browsers. XML, or eXtensible Markup Language, can

be used to create new, application specific markup languages, for example MathML,

which is used for defining mathematical expressions (Foster, 1999).

The main benefit of using markup languages to specify content is the simplicity and

transportability of the definitions, which makes them machine independent and future

proof. In terms of defining biomedical models using markup languages, there are nu-

merous examples of such ‘MLs’:

• The set of markup languages associated with the IUPS Physiome project, which

provides a framework for modelling the human body, incorporating biochemical,

biophysical, and anatomical information on cells, tissues, and organs (see Fig.3.3,

and also Khodade et al. (2007)), namely (Hunter et al., 2002):

ProteinML , which can describe pathway models,

CellML (Cuellar et al., 2003), which provides a representation of the mathemat-

ical relationships of biophysical models at the cell level, allows nesting of

models,

TissueML , which describes models at the tissue level,
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FieldML (Chang et al., 2007), describing spatially and temporally varying fields

(such as electric fields) related to cell structure,

AnatML , which deals with physiology at the organ level, and

PhysioML (Ward et al., 2006), which addresses the organ system and organism

level,

• CML (Chemical ML) (Murray-Rust and Rzepa, 2003), which provides a repre-

sentation for managing molecular information, from macromolecular sequences to

inorganic molecules and quantum chemistry,

• SBML (Systems Biology ML) (Hucka et al., 2003), which describes models of

biochemical networks, such as signal transduction, metabolic pathways and gene

regulation, and

• SysML (Systems ML) (Bock, 2006), which caters for ‘systems’ engineering, typi-

cally supporting block diagrams of interconnected systems.
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Figure 3.3: Spatial (top) and temporal (bottom) scales encompassed by the Human

Physiome Project along with corresponding markup language (based on Hunter et al.

(2002)).

CellML, promoted by the IUPS Physiome Project (Hunter et al., 2008), is a subset of

Content MathML, which is the ‘active’ version of MathML (the other one is Presentation

MathML). CellML has been suggested as a potential solution platform for cell function

and to standardise the interface to other computer programs and probably represents

the most developed of the IUPS Physiome ‘MLs’. A CellML model contains both the

essential model equations, written in ascii/markup, and associated ‘metadata’ which

contains (Cuellar et al., 2003):
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• The units in which the variables associated with the model component are mea-

sured,

• Author, literature reference, creation date, and

• Biological context.

An element of hierarchy is also provided for in CellML via the encapsulation and con-

tainment grouping relationships. Simulation tools are available for CellML models, via

a CellML application programming interface (API) (Cuellar et al., 2003), and graphical

tools for the development of CellML models are under development. CML and SBML

appear to overlap in scope with some of the IUPS Physiome ‘MLs’, while PhysioML

(Ward et al., 2006) is somewhat unique in its ability to control the interface display

and can perform ‘computational steering’, which refers to the selection of particular

variables which can be altered during computation. However, there is currently no

means to incorporate model descriptions in PhysioML though there may be an option

in the future to achieve this using MathML. SysML operates at a high (systems) level

and it allows for the incorporation of ‘systems-level’ information, including hardware,

software, information, processes, personnel, and facilities.

3.5.3 Graphical modelling and simulation environments

Graphical modelling and simulation tools are, generally, an excellent choice for pre-

senting mathematical models as they facilitate the visual understanding of the inter-

connected systems under study, while also providing a simulation engine to run the

model. There is a wide range of graphical modelling and simulation environments

available, some of which are commercial proprietary products, while others are free

and/or open source. In general, graphical simulation packages offer very fast develop-

ment times for models, assisted by libraries of standard blocks and, in many cases (e.g.

Simulink/MATLAB, Scicos/Scilab), an associated macro language parser which allows

high-level calculations.

The range of graphical modelling/simulation environments includes the following (with

many more available):

• MATLAB/Simulink - a commercial, easy to use, software, which allows fast block

diagram graphical model development and provides a solver for ordinary differ-
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ential equations (ODEs) and an iterative solution to algebraic equations.

• Scicos/Scilab (The Scilab Consortium) - a free software for numerical computa-

tion providing a powerful computing environment for engineering and scientific

applications. It is similar to MATLAB/Simulink, and can be compatible with it

too; however, the functionality is not quite as advanced.

• Dymola/Modelica (The Modelica Association) (Larsson, 2006) - the modelling

environment Dymola, by Dynasim, is an object oriented tool for modelling and

simulation of dynamic systems of various fields including, mechanical, thermal,

control, pneumatic, hydraulic systems etc. Dymola is integrated with the Model-

ica modelling language, which supports the integration and reuse of code devel-

oped in different modelling and simulation environments.

• VisSim (Adept Scientific) - a visual tool for modeling and simulating nonlinear

dynamic systems. A free VisSim viewer is available for sharing the model with

others. Compatible blocks can be created in the C, Fortran or Pascal programming

languages.

• 20-Sim (Controllab) - a modeling and simulation graphical tool with equations

and blocks for electrical, mechanical, hydraulic systems etc. It allows subsys-

tems creation and has a graphical environment with simulator, as well as visual

representation of results through a plotting tool.

• SimApp - a dynamic simulation software for modeling systems in the time and

frequency domains. It uses a block diagram method of building models and can

help model full systems that cross various technical disciplines.

• Xcos - a block diagram environment, which enables the simulation of complex

systems - discrete, continuous, defined by symbolic equations (Modelica) and

Scicos.

• Easy-5 - a family of software tools used to model, simulate and analyze dy-

namic systems (multi-domain modeling and simulation of dynamic physical sys-

tems), graphical, schematic-based application, offering a comprehensive set of

pre-packaged ‘components’.

• Cytoscape - open source bioinformatics software platform for visualizing molecular

interaction networks and biological pathways and integrating these networks with

57



3. Implementation of Guyton’s integrative physiology model in Simulink

annotations, gene expression profiles and other state data.

• SAAM II - modeling and simulation tool with a user-friendly interface based on

compartmental models.

• SIMUL8 - allows the user to pick from a predefined set of simulation objects and

statistical distributions to create a model; it also allows hierarchical modelling

but the main focus is on discrete event simulation.

• MapleSim - a physical modeling and simulation commercial tool built on a foun-

dation of symbolic computation technology; it can be used for the development of

engineering models, including multi-domain systems, plant modeling, and control

design.

A large number of other environments, such as MATRIXx, ExtendSim/Extend 6, Jsim,

EcosimPro etc, are also available.

Of the listed packages, Simulink (Nuruzzaman, 2005) is probably the most popular,

though it has become relatively expensive and there are some compatibility difficulties

between the many releases. The Scilab/Scicos (Campbell et al., 2006) environment is

unlikely to suffer the same fate, being an open-source platform, but does not yet offer

the same level of functionality as MATLAB/Simulink. Modelica, which is promoted by

the non-profit Modelica Association, has the advantage of being object oriented and can

model complex heterogeneous systems. The most popular simulation engine for Model-

ica, Dymola is, however, a commercial product, though other (free) simulation engines,

including OpenModelica and Modelicac are also available. In addition, a Modelica to

XML translation is available (Pop and Fritzson, 2003), which would allow sharing of

the model in a generic format.

In terms of capability, Simulink performs best with pure ordinary differential equa-

tions, with algebraic equations solved iteratively, which can require excessive computa-

tion (though insertion of small artificial delays can circumvent this). Modelica/Dymola

provides a more natural way to simulate differential algebraic equations (DAEs) di-

rectly. In terms of model storage, Simulink uses a proprietary format, though translators

(Dempsey, 2003; Hornych et al., 2002) are available to convert between representations,

but these are unlikely to preserve the full detail of the original model description.

A particularly promising open-source offering under development is the ProMoT (Max
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Planck Institute) (Process Modelling Tool) environment (Tränkle et al., 1999), which

can build structured dynamic simulation models that are based on differential and

algebraic equations. Developed originally for process engineering, it has been more

recently applied to systems biology, with library modules available for application do-

mains such as separation processes, membrane processes, fuel cells, metabolic cellular

processes and signal transduction. Simulation is via the DIVA package, which uses some

commercial libraries for numerical computation, but a further open-source simulation

module (DIANA, Dynamic sImulation And Numerical Analysis tool) is currently un-

der development. ProMoT uses symbolic reduction for efficient simulation, which deals

effectively with algebraic loops. The scripting language, Python, is used as a command-

line interface, and an interface is provided to MATLAB, with other interfaces possible

using the SBML standard. Example applications which use ProMoT include those in

Bettenbrock et al. (2006) and Waschler et al. (2006).

3.5.4 High-level languages

High-level languages such as Basic, Fortran, C, C++ and Java are a popular choice for

the implementation of large, computationally intensive models (e.g. marine hydrody-

namics applications (Clement, 1999)), due to the speed of simulation. The main issue

with using high-level languages is the necessity to ‘manually’ discretise the equations of

continuous time systems before implementing, as well as solving the problems arising

from potential algebraic loops. Since there are many discretization techniques avail-

able, the same continuous time system may be implemented in very different manners

in discrete time, thus leading to disparate results between different implementations.

In addition, the code obtained after implementation, in general, runs in a sequential

manner (with the exception of subroutines and loops), which would not represent well

for e.g. a physiological system, where all parts of the body ‘run’ in parallel.

3.6 Existing large-scale physiology models

Since Guyton first published his original circulatory model in 1972 (Guyton et al.,

1972b), it has served as an inspiration and basis for many other integrative physiology

models, summarised in Figure 3.4.
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A model of overall regulation of the bodily fluids was published in 1979 by Ikeda et al.

(1979) and provides a more detailed representation of the renal system than Guyton’s

original model (Guyton et al., 1972b).

In 1983, a model called HUMAN (Coleman and Randall, 1983) was developed, which

markedly extended Guyton’s model and allowed the simulation of various pathologies

and treatment options on a virtual patient. HUMAN was implemented in sequential

Fortran code and suffered with similar drawbacks as Guyton’s Fortran implementations.

HUMAN was later developed further by Guyton’s colleagues and is now available un-

der the QCP (Quantative Circulatory Physiology) Windows software package (Abram

et al., 2007). The QCP model consists of 4000 variables (compared to 150 in Guyton’s

original model from 1972) and hundreds of mathematical functions. QCP describes

the cardiovascular, renal, neural, respiratory, endocrine and metabolic relationships in

multiple organ systems in the human body. Having been written in the C programming

language and being only available as a compiled program, QCP could not be altered in

any way by its users, so further development by the wider community was impossible.

In order to address this issue, QCP was translated into QHP (Hester et al., 2008) and

then HumMod (Hester et al., 2010), which is a slightly extended version of the QCP

model, but written in XML, so that it is human- and machine-readable. The code is

compiled in C++ and is available for free download on http://hummod.org/downloads,

but with the lack of a clear block diagram with the model structure, it is difficult to

envisage future contribution to it from external sources.

Meanwhile, the MODSIM environment (Montani et al., 1989) was used to simulate a

1992 version of Guyton’s model, while block diagrams, clearly describing the model

structure and connections, are available for this version of the model, as well as the

model equations in code (Montani, 2008).

In 1998 a Simulink model of the human circulatory system was published by Wabel

and Leonhardt (1998). This model was based on an earlier model by Coleman (1979),

since Wabel saw the need to present the model in a graphical block-diagram simulation

environment for improved user friendliness as a teaching and research tool.
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Figure 3.4: Existing integrative physiology models
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In 2001 Kofranek et al. (2001) published the development of GOLEM, a multimedia

medical training simulator for teaching purposes. The mathematical model behind

the simulator was based on models by Guyton et al. (1972b), Cameron (1977), Ikeda

et al. (1979) and Coleman and Randall (1983) and was designed for the teaching of

acid/base and electrolyte equilibrium, respiration, circulation and the renal system,

and it was implemented in the Simulink environment. In 2011, the the HumMod model

(Hester et al., 2010) was also implemented in the Modelica environment and was later

incorporated in the GOLEM simulator (Kofrnek et al., 2011).

In 2005 Karaaslan et al. (2005) also developed a mathematical model of the cardio-

vascular system in Simulink, which was based on models by Guyton et al. (1972b),

Coleman and Hall (1992) and Uttamsingh et al. (1985). In the same year, Hassan et al.

(2005) published a cardiovascular model with disorders also.

In 2006 the Virtual Human/Virtual Soldier project was developed to create complex

mathematical models to represent individual soldiers and the models are implemented

in PhysioML (Ward et al., 2006). The idea behind this project is to use the holographic

medical representations to improve medical diagnosis on and off the battlefield.

In 2007 Kofranek et al. (2007) published a Simulink implementation of Guyton’s original

model from 1972, as well as an extended version of the model from 1986.

Also in 2007, the SAPHIR project (Thomas et al., 2008) was set up to implemented

a collaborative open-source ‘toolbox’ or library of models and subsystem modules, so

that researchers working on different platforms, different modelling and simulation en-

vironments, different organs/systems or timescales can share new developments (and

implementations of older models, such as Guyton’s model from 1972 (Guyton et al.,

1972b) and Ikeda’s model from 1979 (Ikeda et al., 1979)). The Simulink implementation

of Guyton’s model under the SAPHIR project, however, is in discrete-time and loses

the natural relationship between the model diagrams and the computer implementation

in continuous time, as well as creating some odd computational difficulties.

In 2008 Guyton’s model (Guyton et al., 1972b) was implemented in the XML-based en-

vironment CellML (available at http : //models.cellml.org/workspace/guyton 2008).

Due to the differences between procedural code (in this case C-code) and declarative

languages (CellML), some aspects of the original model were not able to be encapsu-

lated by the CellML model (such as the damping of variables). This may effect the
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transient behaviour of the model, however the steady-state behaviour would remain the

same.

3.7 Guyton’s model implementation

Where modelling of physiological systems is concerned, the question of what level to

define the model at always arises. Models can be defined at a multitude of levels and,

potentially, models at different spatial levels and different levels of timescale resolution

can be integrated. The necessity of such integrated implementation needs to be assessed,

taking into consideration the computational intensity, the purpose of the model, and

the aptness of carrying a large complexity.

An example of model implementation at the ‘macro’ level (systems physiology, organ

systems) has been shown by Cabrera et al. (1999), who look at the dynamics of lactate

production during exercise. The model is in a block diagram form and at the ‘Organ

systems’ (or inter-organ) level in Figure 3.2.

The 1992 version of Guyton’s model (Montani, 2008), which is implemented here in

the Simulink environment, is at the ‘Organ systems’ level also and an example of the

systems and subsystem levels is shown in Figure 3.5. The top level is shown and two

subsystem levels, including one at the lowest, first order, dynamic level.

The 1972 published version of Guyton’s model has been implemented by a number of

researchers (Kofranek et al., 2007; Thomas et al., 2008) in the Simulink format suggested

in this study. A 1986 version of Guyton’s model, which was not published, has also

been implemented by Kofranek et al. (2007).

In this present study, the most current version of Guyton’s model from 1992 was imple-

mented in Simulink, using a set of model diagrams, similar to those published in 1972,

and a Fortran code implementation of the model equations in discrete time (Montani,

2008). Our Simulink version of the model was implemented in continuous time, i.e.

using continuous-time integrator blocks, while the discretization method for model sim-

ulation in Simulink can be chosen from a variety of solvers, with either a fixed- or

variable-step size.

63



3. Implementation of Guyton’s integrative physiology model in Simulink

 
 

ADH

ADHMK

ADHMV

75s+1
1 

Unit step response of a first order dynamical system 

A
D

H
 c

on
ce

nt
ra

tio
n 

1
75s + 1 

1 
s 

Circulatory 
Dynamics 

Capillaries 
Tissue 

Fluid & 
Protein 

Pulmon 
Fluids 

Volume 
rec.  

Kidneys 

Auto- 
nomics 

Elect- 
rolytes 

ANP 

ADH 

ANG 

Aldo 

Thirst 

Red 
Cells 

Autoreg Stress 
Relaxation 

Heart 
Hypert. 

HR&SV 

Pulmon 
O2 

Muscle 
O2 Non- 

muscle 
O2

Figure 3.5: Novel Simulink implementation of the 1992 version of Guyton’s model
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Since the model size, and number of variables and parameters, has increased immensely

since the first version of the model from 1972, a hierarchical structure with multiple

layers of subsystems were used. At the lowest level, a first order dynamic system was

implemented as in the original model diagram (Guyton et al., 1972b) with an integrator,

a gain and a summer (the basic blocks of an analog computer), as shown in Figure 3.6,

and this level was subsequently ‘masked’ as a transfer function in the s-domain of the

form:

G(s) =
Y (s)

X(s)
=

kss
1 + sτ

. (3.1)

This transfer function representational form allows an easy deduction of the system’s

steady-state gain kss and time constant τ . Figure 3.7 shows a sample step response of

such a first order system, where kss > 1.

1
s1/τ

∑
kss

+

−

x y

kss
1+sτ

≡

Figure 3.6: First order system with steady-state gain kss and a time constant τ

Some issues transpired during the model implementation and validation. In the Fortran

implementation of the model (Montani, 2008), first order ‘damping dynamics’ were in-

cluded. These seem to have been added to avoid numerical instability; however, it is not

completely clear whether these dynamics have any physiological function or are simply

a feature of the model computer implementation and due to, in particular, a possibly

unsuitable discretization method. In addition, most of these discrete-time first order

dynamic ‘damping’ equations included specific integration step sizes, as expected, while

a few of the equations did not feature a particular step size. A discrete-time dynamic

equation not a function of the integration step size has no continuous-time counterpart

and cannot be implemented in our Simulink model without making unreasonable as-

sumptions, such as that the step size is included in the gain parameter, which defines

the time constant of the system.

An example of a first order damping equation from the model code used in the MODSIM

implementation, the calculation of angiotensin secretion, where a step size is included,
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Figure 3.7: First order system step response with steady-state gain kss > 1 and time

constant τ

is as follows:

ANX1 = ANX1 + (ANX −ANX1)/(ANV ∗ I) (3.2)

where:

ANX = angiotensin secretion,

ANX1 = actual ANX after damping,

ANV = time constant of angiotensin secretion, and

I = time incrementation step.

Alternatively, an example of a dynamic equation without the necessary step size is the

damping of renal peritubular capillary reabsorption (RFAB1):

RFAB = RFAB + (RFAB1−RFAB)/(RFABDP ) (3.3)

where:

RFAB = RFAB1 after damping,

RFAB1 = renal peritubular capillary reabsorption, and

RFABDP = RFAB damping factor.

We can only assume that the step size was incorporated into the RFABDP time con-

stant parameter. This is an inadequate implementation solution, since the integration
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step sizes seem to vary during model simulation, giving somewhat unpredictable re-

sults.

The Simulink model implementation presented here was validated against the 1992

version of Guyton’s model, implemented in Fortran and simulated in the MODSIM

environment (Montani, 2008). A sample ‘reference’ experiment, is included here and

it is similar to those described in Guyton et al. (1972b) and Thomas et al. (2008).

The experiment simulates a reduced kidney mass to 30% of normal and increased salt

intake to 9 times normal at the start of the experiment. The responses of the MODSIM

implementation and our Simulink version of the model are shown in Figure 3.8. It can be

seen that the Simulink model output is comparable to the MODSIM simulation output,

while the small difference in response could be due to a number of factors, namely

the different discretization methods used and the issues with damping dynamics, as

explained earlier. A variable step solver, based on numerical differentiation formulas,

was used for the Simulink model, as the system is highly stiff, with time constants

varying from a few seconds to over thirty days. It is possible to use a fixed step

integration method; however, due to the stiffness of the system, simulation can take a

very long time to complete, since the step size must be chosen according to the shortest

time constant.

The Simulink models by Kofranek et al. (2007) and especially the 1986 version of

Guyton’s model (Kofranek et al., 2007), also produce similar results to ours. The

model presented in this work, however, is more recent and also presents the first order

dynamics in transfer function form, which is more intuitive and gives direct information

on steady-state gain and time constant.

The Simulink implementation of Guyton’s model under the SAPHIR project (Thomas

et al., 2008) differs significantly from the model presented here. Thomas et al. (2008)

specified the model in discrete-time, using discrete-time integration blocks and a forward

Euler method. In addition, all subsystems were treated as ‘atomic subunits’; thus, all

computations within a subsystem were executed before moving to the next subsystem.

Variable integration step sizes were also employed. All of these described features mimic

closely the Fortran implementation of the model and thus do not provide the desirable

properties of:

• Providing a generic representation of the underlying continuous-time physiology,
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Figure 3.8: Comparison between the MODSIM and the Simulink implementations of

the 1992 version of Guyton’s model for an experiment with reduced kidney mass and

increased salt intake

and

• Using a numerical integration technique, appropriate for the stiff system under

consideration, which can be applied consistently across all model subsystems,

without recourse to any custom discretization within the model.

Correctly addressing the above two issues is vital if a transportable, open-access model

is to be developed. Nevertheless, the use of custom discretization can, in some cases,

result in shorter simulation times, but also results in a model where the model and

discretization are inextricably intertwined.
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3.8 Discussion

Considering the numerous large scale physiological model implementations in the last

40 years, it becomes quite clear that such mathematical models should be managed in

a ‘community’ way to embrace collaboration and advancement in the field and in the

current modelling standards. The essential objective of any evolution of the modelling

standard is to preserve the original inter-operability ethos, while taking advantage of

technological developments and addressing perceived weakness in the ‘standard’ as ex-

perience with it builds. MATLAB’s Simulink environment has proven quite popular

for the development of large (and small) physiological models, however the commercial

nature of the software is becoming problematic. Ironically, MATLAB and its Simulink

toolbox were built on the original EISPACK (Smith et al., 1976) and LINPACK (Don-

garra et al., 1979) open source libraries. EISPACK AND LINPACK, developed as

Fortran libraries to implement eigensystem and linear algebra routines and originat-

ing from the Argonne National Laboratory, aimed to be portable, robust and reliable.

The Numerical Algorithms Group (NAG) then provided these routines in a commercial

package. Issues with MATLAB/Simulink, such as the incompatibility of new and older

versions of the software, are becoming frustrating. Building libraries of physiological

models is a long-term goal, and as such, it would be difficult to re-implement older

models in the newer versions of MATLAB/Simulink at regular intervals, just to keep

them compatible with newer developments. Open source standards generally preserve

inter-version compatibility as a priority, since they aim to serve community, rather than

commercial, needs, therefore a free and/or open-source modelling and simulation envi-

ronment for community-wide model development would be a natural choice. The benefit

of using a well developed commercial tool such as MATLAB’s Simulink, however, lies

in the fast and easy model development and validation.

Our Simulink model was developed in a single week, though requiring significantly

more time to ‘validate’ it against the 1992 MODSIM Fortran implementation (mainly

due to the custom implementation features in the Fortran code). This highlights two

issues:

1. The model development time in Simulink can be extremely fast, once the under-

lying physiological structure is known, even when the model is complex, and
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2. Discretization issues can be significant in getting agreement between different

implementations of the same model.

Due to the large number of modelling/simulation environments, it may be difficult to

impose a single standard on all researchers, who may have very different backgrounds.

Simply using a common interface could be a practical solution to the problem (e.g.

CellML or QHP); however metadata containing information about the numerical inte-

gration method needs to be included.

In summary, three main components are necessary for successful model development,

implementation and improvement:

• A modelling tool - preferably graphical, which allows networks or interconnections

of subsystems to be built up in a hierarchical manner,

• Simulation tools, with the ability to simulate ODEs, DAEs and partial differential

equations and implement a variety of numerical integration methods, including

the efficient solution of stiff systems, and

• A non-proprietary interface standard, probably XML-based, which allows models

to be readable across a wide variety of platforms.

3.9 Conclusions

Over forty years ago, Dr. Arthur Guyton suggested that circulatory physiology was

starting to change into, and use the techniques of, engineering science (Guyton et al.,

1972b) and his model made large strides towards this change. Unfortunately, his famous

circulatory physiology model has not developed significantly since 1992 in the practical

form of a block diagram of systems and subsystems. A variety of simulation environ-

ments and existing large scale physiological model implementations have been examined

here with a view to present options for future modelling and simulation developments;

however not many environments allow the desired visual diagrammatic representation

and speed of implementation.

Some computer implementations of the original 1972 Guyton model exist (Thomas

et al., 2008; Kofranek et al., 2007), as well as an implementation of a 1986 version of

the model (Kofranek et al., 2007); however the Simulink model presented here is the
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first implementation of the most recent 1992 version of the model. If a core model is to

be created and made available for extension/improvement, it should be the most up to

date model recognised by the research and teaching community.

Guyton’s model has been expanded previously under the QHP project, and with the

QHP computer program now being open source, the community can, in theory, con-

tribute to it. This new model, however, is implemented in an XML format and is

difficult to read. In addition, appropriate structures have not been put in place to deal

with model additions and a repository system for alternative model subsystems has not

been created.

Technical implementation issues also make QHP unsuitable for development as a com-

munity project. Differential equations are implemented using one of three provided

methods, where the model developer has to nominate a particular discretization method

for each equation. The discretization methods include a first order (forward difference)

Euler method and a stiff system discretization method, while the third method is un-

defined. The QHP model is defined in an XML format, while the model solver can be

downloaded only in executable form from the QHP website, but details of its features

are not available. QHP could be a good solution with further development. A graphical

environment for faster development time would be very beneficial while better trans-

parency and documentation in relation to the solver is required. Finally, a repository

system, catering for community contributions to the model needs to be created, if it is

truly to be treated as a open-source resource.

For the present, Simulink remains one of the few viable options for large scale model

visualisation and implementation. Both development and validation are fast and eas-

ily executed with an intuitive graphical environment and results display. MATLAB

also allows us to emulate the continuous-time nature of physiological systems by using

continuous-time dynamic blocks and allows us to select an appropriate solver for the sys-

tem. Nevertheless, compatibility issues impinge significantly on the utility of Simulink

as a community platform on which an integrated physiology model can evolve.

Finally, if a common XML standard is to be agreed upon, as a model sharing interchange

standard, three important features must be complied with:

• The model needs to be specified in continuous-time as a fundamental representa-

tion,

71



3. Implementation of Guyton’s integrative physiology model in Simulink

• Discretization information needs to be included as metadata, and

• Graphical editing tools, allowing block diagram representation with hierarchical

visualisation capabilities must be available.

These features would ensure the successful reproduction and simulation of the model

in any chosen environment, given suitable conversion tools, such as in Pop and Fritzson

(2003), Dempsey (2003) and Hornych et al. (2002).
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Chapter 4

A model for salt-induced

hypertension in Dahl rats

4.1 Introduction

As previously outlined in Section 2.4.1, a large proportion of the human population

is salt-sensitive and salt-sensitive individuals are more likely to develop hypertension

and cardiovascular disease (Weinberger et al., 2001). A common animal displaying

salt-sensitivity is the Dahl-S rat, frequently used to study the interacting factors caus-

ing salt-induced hypertension (SIH) (Dahl and Schackow, 1964). The availability of

new meaasurement and instrumentation technologies has allowed continuous long-term

collection of blood pressure data, providing the opportunity to study the exact time

course of the development of SIH (Van Vliet et al., 2006). This study examines the

data from four different experimental protocols involving Dahl-S rats and a number

of mathematical models are developed to describe the relationship between high salt

intake and blood pressure.
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4.2 Experimental Protocols

All experimental protocols, previously described in Van Vliet et al. (2006) and McLoone

et al. (2009), include 3-month old male Dahl-S and Dahl-R rats from the Brookhaven

strain, provided with food and water ad libitum, at an ambient temperature of 22◦C,

and a 12-h light12-h dark cycle. Blood pressure was measured in the abdominal aorta

and the measurements were transmitted using telemetery technology. A recovery period

of at least 1 week, following surgery to implant the blood pressure measurement and

telemetery device, was allowed before the experiments commenced. BP was recorded

continuously for the duration of the protocols, and the daily mean BP levels were

calculated as the average level of mean arterial pressure sampled once or twice each

minute. The control, or regular salt, diet contained 0.7% NaCl, while the experimental,

high-salt, diet contained 4% NaCl. Four distinct experimental protocols were used in

this chapter. Protocols 1 and 3 comprise two data sets each, one for Dahl-S rats and

one for Dahl-R rats, while protocol 2 contains one data set for Dahl-S rats and protocol

4 includes one data set for hybrid rats (progeny of Dahl-S and Dahl-R rats).

4.2.1 Protocol 1: Time evolution of salt-induced changes of blood

pressure in Dahl-S rats

Experimental protocol 1, described in detail in Van Vliet et al. (2006), was conducted

on nine Dahl-S rats. After a control week on a regular salt diet (0.7% NaCl), a step

increase in dietary salt intake (4% NaCl) was applied for 6 weeks, followed by a 4-week

recovery period with regular salt intake. A set of seven Dahl-R rats were used as control

subjects and were fed the same diet as the Dahl-S rats. Figure 4.1 shows plots of the

individual animals and the average responses for the Dahl-S and Dahl-R groups, as

well as the associated salt intake levels. The average responses are referred to as the

‘mean animal’ in this thesis and represent the signal obtained by averaging all data

recordings within a data set at each point in time. It is important to note that the

‘mean animal’ is an average response across all animals in the data set and no actual

animal has such response, though some animals’ responses can be very similar to the

mean response.
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Figure 4.1: SIH Protocol 1, individual and ‘mean animal’ responses for the Dahl-S and

control Dahl-R animals

4.2.2 Protocol 2: Reversibility of salt-induced changes in blood pres-

sure in Dahl-S rats

Experimental protocol 2 investigated the reversibility of salt-induced hypertension and

was originally reported in Van Vliet et al. (2006). The experiment was performed on

five male Dahl-S rats. During weeks 1, 3, 7 and 11 of the experiment, the animals were

given a normal salt diet of 0.7% NaCl, while during weeks 2, 4-6 and 8-10, dietary salt

intake was increased to 4% NaCl. Figure 4.2 shows a plot of the mean arterial pressure

response to salt intake for the individual rats and gives the average, or ‘mean animal’

response as well.
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Figure 4.2: SIH Protocol 2, individual and ‘mean animal’ responses

4.2.3 Protocol 3: Response of blood pressure in Dahl-S and Dahl-

R rats to a pseudo random binary sequence (PRBS) salt in-

put

Protocol 3, described in McLoone et al. (2009), investigates the effect of short-term

variations in salt intake on the daily MAP levels of eight Dahl-S rats and five control

Dahl-R rats. The salt levels in the diet were varied between regular- and high-salt levels

in a pseudo-random binary sequence manner where, at each day of the experiment, the

level of salt was either changed (from high to regular or from regular to high) or it

stayed the same. The protocol was 72 days long in total.

The dietary salt level was manipulated in the following manner, 000000000 1111110

1010110 0110111 0110100 1001110 0010111 1001010 0011000 0100000, with each ‘0’

representing a 24-hour exposure to a regular-salt diet (0.7% NaCl) and each ‘1’ repre-

senting a 24-hour exposure to high-salt diet (4% NaCl). Figure 4.3 shows plots of the

MAP responses of individual animals, as well as the ‘mean animal’, for the salt-sensitive

and salt-resistant rats, in addition to the salt intake levels.
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Figure 4.3: SIH Protocol 3, individual and ‘mean animal’ responses for the Dahl-S and

control Dahl-R animals

4.2.4 Protocol 4: Time evolution of salt-induced blood pressure changes

in Hybrid rats

Protocol 4, described in detail in Van Vliet et al. (2006) and similar to Protocol 1, was

conducted to study the BP response to a step increase in salt level in the diet of rats.

Thirteen male F2-hybrid rats, the progeny of a cross between Dahl-S and Dahl-R rats,

were studied. Following a control week on a regular-salt diet containing 0.7% NaCl, a

high salt diet of 4% NaCl was provided for 10 weeks and then returned to a regular-salt

diet for 1 week. The 24-hour average MAP responses are presented in Figure 4.4 for

individual animals and for the mean of the hybrid rat data set.
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Figure 4.4: SIH Protocol 4, individual and ‘mean animal’ responses for the hybrid

animals

4.3 Model structure development

Based on the literature motivation, presented in Section 2.4.1, for a multi-phasal re-

sponse of blood pressure to a high-salt intake, a number of model structures, of varying

complexity, are developed in this chapter. The model structures aim to represent the

main features of the blood pressure response, without fitting noise or random variations,

which are generally animal-specific and lead to overfitting. The ‘mean animals’ for each

data set were used to determine the model structures, since the average of all data in a

data set is relatively noise-free and emphasises the main characteristic features present

in most of the animals within the data set. For each of the model structures, the model

input was defined as the salt content of the animal’s diet (in %), while the model output

was the MAP variation from baseline. The baseline pressure was taken as the mean

blood pressure over the week before a high-salt diet was commenced. Three incremen-

tal model structures will be presented in the following sections, and an attempt will be

made to provide a potential explanation for each component of each structure, in order

to deliver a model with as much physiological fidelity as possible with respect to the

available experimental data. The initial model contains 3 components, while additional

elements are subsequently included, in 4- and 5-component models, in order to improve

the model fit and to provide sufficient flexibility to capture more subtle, but important

features in the MAP response.
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4. A model for salt-induced hypertension in Dahl rats

4.3.1 3-component model

An initial three-component model, presented in Figure 4.5, was developed to capture

the main blood pressure response features and incorporates the following basic ele-

ments:

Acute salt-sensitivity

Progressive acute component

Self-sustained component

Salt input BP change

Gpr
1
s

X

+

+

Gas
1+sτas

1
sGss

Figure 4.5: SIH 3-component model structure

• An ‘Acute salt-sensitivity’ component, comprising a first order transfer function

with a steady state gain Gas (mmHg/%NaCl) and a time constant τas (days).

The element of the blood pressure response resulting from this model component

is an exponential, and is evident in the data from all four experimental protocols,

shown in Figures 4.1 - 4.4. The ‘acute salt-sensitivity’ component represents the

reversible rise in BP over the days to weeks, following a step increase in salt

intake and shown in studies in salt-sensitive humans (Kawasaki et al., 1978),

monkeys (Srinivasan et al., 1984), mice (Leonard et al., 2006), and rats (Osborn

and Hornfeldt, 1998; Van Vliet et al., 2006). This component possibly denotes

the re-establishment of sodium balance, as described in Section 2.4.1. The gain

Gas determines the degree of acute salt-sensitivity and is inversely proportional

to the slope of the chronic pressure natriuresis curve, shown in Figure 2.3.

• A ‘Progressive-acute’ component is included, consisting of an integrator term with

gain Gpr, which creates a progressive and irreversible amplification of the gain Gas
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of the ‘Acute salt-sensitivity’ component of the model, and is proportional to the

length of high-salt diet exposure. In practice, Gas is amplified by a factor of

‘Gpr · (increase in dietary salt content above baseline level of 0.7% NaCl) · (time

spent above baseline salt level in days)’. This effect is consistent with progres-

sive worsening of the acute salt-sensitivity and has been demonstrated in chim-

panzees (Denton et al., 1995), rats (Dahl et al., 1968) and humans (Weinberger

and Fineberg, 1991). The ‘Progressive acute’ component represents the effect of

high salt intake to increase acute salt-sensitivity and has an effect to progressively

decrease the slope of the pressure-natriuresis curve. Again, physiological changes

due to the prolonged exposure to high-salt diet and/or high blood pressure are

possibly responsible for the increase in salt-sensitivity.

• A ‘self-sustained’ component consisting of a simple integrator with a gain Gss,

simulating a slow, progressive and irreversible BP increase in blood pressure while

salt intake remains high and even after returning to baseline level of 0.7%NaCl. A

self-sustaining hypertension due to exposure to a high-salt diet, which continues

after the end of a high-salt intake period, is evident again in all four protocols, but

is most obvious in the BP data of Protocol 1 (Figure 4.1), where the animals were

allowed a number of weeks to recover from the high-salt diet, yet blood pressure

remained well over the baseline up to the end of the experiment. As already

outlined in Section 2.4.1, a possible cause for this element of the blood pressure

response may be the presence of some renal injury or vascular remodelling and

has been previously shown in outbred rats also (Dahl, 1961).

4.3.2 4-component model

Even though the three-component model includes elements to represent the general

characteristics of the blood pressure response to a step increase in salt intake, some

aspects of the response cannot be modelled. The tendency of blood pressure to un-

dershoot when the high-salt input has been removed, and before it settles to its new

steady state value, is evident in Protocols 1, 2 and 4, but most apparent in the data

from Protocol 1 (Figure 4.1). It is impossible to achieve the undershooting response

without including an additional component to the three-component model.

The four-component model, featuring a ‘compensatory’ element, and designed to help
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Salt input BP change
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Figure 4.6: SIH 4-component model structure

model the overshoot in the data, is shown in Figure 4.6. The ‘Compensatory’ compo-

nent consists of a first order transfer function, whose response opposes the increase in

BP due to high salt intake (the output of the ‘Compensatory’ component is subtracted at

the summation point of all BP responses shown in Figure 4.6). This compensatory effect

is generally consistent with the physiology of the blood pressure control system, where

numerous systems balance their effects to maintain the required blood pressure lev-

els. Systems that, under normal circumstances, counteract the blood pressure increase

due to high salt intake, include the renin-angiotensin-aldosterone system (Cholewa and

Mattson, 2001; Denton et al., 1995) atrial natriuretic factor (Mullins et al., 2006) and

nitric oxide release (Simchon et al., 1989), however some of these systems may be im-

paired in Dahl-S rats (Simchon et al., 1989).
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4.3.3 5-component model

A close examination of the data in all four protocols confirmed that the transient BP

response during a step increase in salt intake is actually different to the response dur-

ing step decrease in salt intake. Consequently, a further set of dynamic components

was added to the 4-component model to enhance the model response by accounting

for different rates of BP increase and decrease during the stimulation and relaxation

phases of the experiments (increase and decrease of salt contents in the diet). The re-

sulting 5-component model comprises an additional switch, along with separate ‘stim-

ulation’ and ‘relaxation’ dynamics of the ‘Acute salt-sensitivity’ component (Figure

4.7). Consequently, during high salt intake, the ‘Stimulation’ component of ‘Acute salt-

sensitivity’ is activated, while when the high salt stimulus is removed, the ‘Recovery’

component takes over. This is reasonable, since substances involved in BP control may

have different formation and dispersion mechanisms and rates, leading to different time

constants.

4.4 Model parameter determination

The parameters of all model structures, proposed during the model development pro-

cess, were initially determined by visual inspection to fit the ‘mean animal’ for each of

the data sets. Subsequently, the parameters of each model structure was numerically

optimised for the ‘mean animal’ of each data set, as well as for all individual animals

from all available data sets.

The MatLab Simulink environment was used for model implementation, while the pa-

rameter optimisation was accomplished using a Nelder-Mead simplex algorithm (Nelder

and Mead, 1965), implemented in the MATLAB Optimisation toolbox. The objective

function to be minimised (J) was defined as the mean squared error (MSE) between

model results and experimental data, defined in Equation (6.2). The MSE was used as

a measure of model fit since it disregards whether the number is negative or positive

and, thus, avoids the positives and negatives canceling each other out, but also the

MSE penalises larger errors more heavily.
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Figure 4.7: SIH 5-component model structure

J =
1

N

N∑

i=1

(yi − ŷi)2 (4.1)

where,

• N is the number of samples in the data,

• ŷi is the blood pressure data obtained from the model simulations, and

• yi is the experimental blood pressure data.

The Nelder-Mead simplex optimisation algorithm was selected due to its suitability for

multidimensional unconstrained problems. The simplex method is an iterative direct

search technique, which employs (n + 1)-point simplices in n-dimensional space (for
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example for a 2-dimensional problem a simplex has the shape of a triangle). The value

of the function to be minimised is obtained at each vertex of the simplex, and at each

iteration, the simplex point with the highest function value is replaced with a new

lower-value point. This movement of the simplex towards the function minimum is

achieved using some basic operations:

• reflection and/or expansion,

• contraction, and

• reduction.

xh

xr

xe

xo

xh

xr

xo
xc1

xc2

xl

Reflection/expansion Contraction Reduction

xl xl

xm xm

xh

xm

Figure 4.8: Simplex method operations

The simplex method operators are illustrated in Figure 4.8 (for a two-dimensional

problem). Briefly, the reflection operation is used in the following manner: each simplex

has three starting points, in the case of a two-dimensional problem. A new simplex point

(xr) is obtained by reflecting the point with the highest objective function value (xh)

through the centroid (xo) of the two lower simplex points (xl and xm). If the new

simplex point xr is found to have the lowest objective function value of all simplex

points (i.e. point xr has the best data fit), the expansion operation can be applied, so

that the vertex point xr can be expanded along the same direction to search for the

function minimum, and the point xe is obtained.

If the initial reflection operation is not successful, i.e. a lower value than xh is not

achieved, the contraction operation can be applied, so that the new point is moved

back in direction towards the original point (xh) in search for an improvement in the
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function value, obtaining either xc1 or xc2, depending on the value of the function f(xr)

relative to f(xh). At any stage, when the objective function is evaluated at a particular

point, if a point better than xh is found, xh is replaced and the process starts again,

with the reflection operation. If the basic operations of expansion and contraction fail

to find a better point than xh, the simplex appears to contain the minimum objective

function point and therefore reduction of the simplex is applied around the best current

point xl. The simplex search can then begin from the start until a convergence criterion

is met.

The simplex method is a fast and computationally efficient optimisation technique,

which does not require knowledge of the gradient of the objective function. However

the simplex method does not guarantee that a global minimum will be obtained and the

final result is dependent on the starting point, therefore a variety of initial conditions

should be tried.

4.5 Results

In this section, the results for each data set are presented for each of the three model

structures. Each set of results will include parameter values and errors for the four

different experimental protocols, which include 6 data sets in total:

• Protocols 1 comprises two data sets, one for nine Dahl-S rats and one for seven

Dahl-R rats,

• Protocol 2 contains one data set for five Dahl-S rats,

• Protocol 3 includes two data sets, one for eight Dahl-S rats and one for five Dahl-R

rats, and

• Protocol 4 has one data set for 13 hybrid rats.

Error results were obtained by comparing experimental data with the model response

and are presented in the form of the mean absolute error (MAE), rather than the MSE

form used for model optimisation. The MAE indicates the average difference between

each point in the data and the corresponding point in the model response in mmHg,

which is a more intuitive measure of model fit.

The results presented in this chapter include:
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• the model parameters and errors obtained for the ‘mean animal’ of each data set,

and

• the average parameter values and average errors for the individual animals across

each data set, accompanied by the associated standard deviations.

A detailed account of the results for each individual animal can be found in Appendix

A, while summary results are shown in the following section.

The results of an F-test, which assesses whether the increase in model complexity in

the 4- and 5-component models, compared to the 3-component model, is justified, are

presented in Section 4.5.4.

4.5.1 3-component model

This section presents error and parameter estimation results for the 3-component model

structure, and includes plots with the model responses compared to the experimental

data.

Figure 4.9, parts A, B and C, show a comparison of the model results with the experi-

mental data for the ‘mean animal’ of each data set involving Dahl-S rats from protocols

1, 2 and 3, while plot D shows the ‘mean animal’ response for the hybrid rats in Protocol

4.

The 3-component model seems to capture well the main characteristics of the model

response, shown in Figure 4.9, especially in the case where the high-salt intake is sus-

tained over a number of days to weeks, as in Protocols 1 and 2. In the case of the

PRBS-style stimulus in Protocol 3, the 3-component model seems to lack the complex-

ity to respond to rapid changes in salt-intake. Another issue evident from the model

responses is the inability to represent the undershooting blood pressure response when

salt intake switches from high to low, most evident in the Protocol 1 results (Figure 4.9

A).

Table 4.1 presents the mean absolute errors and the model parameters resulting from

the optimisation of the 3-component model to fit the ‘mean animals’ from the four

experimental protocols, while Figure 4.10 shows the contribution of each of the elements

in the 3-component model to the overall BP response.

86



4. A model for salt-induced hypertension in Dahl rats

0 10 20 30 40 50 60 70 80

0

5

10

15

20

25

30

35

Time (Days)

M
A

P
 v

a
ri
a

ti
o

n
 f

ro
m

 b
a

s
e

lin
e

 (
m

m
H

g
) Protocol 1

 

 

0 10 20 30 40 50 60 70 80

0

5

10

15

20

25

30

35

Time (Days)

M
A

P
 v

a
ri
a

ti
o

n
 f

ro
m

 b
a

s
e

lin
e

 (
m

m
H

g
) Protocol 2

 

 

0 10 20 30 40 50 60 70

0

2

4

6

8

10

12

14

16

Time (Days)

M
A

P
 v

a
ri
a

ti
o

n
 f

ro
m

 b
a

s
e

lin
e

 (
m

m
H

g
) Protocol 3

Experimental Data

Model Response

0 10 20 30 40 50 60 70 80 9090

0

2

4

6

8

10

12

14

16

Time (Days)

M
A

P
 v

a
ri
a

ti
o

n
 f

ro
m

 b
a

s
e

lin
e

 (
m

m
H

g
) Protocol 4

 

 

A B

C D

Figure 4.9: ‘Mean animal’ model response for the 3-component model structure

From both the parameter values and the plot of the various model component responses,

it is evident that each of the model components plays an important role in the blood

pressure response to high salt intake. The acute salt-sensitivity component, as expected,

represents the blood pressure increase within a few days of the onset of high-salt intake.

In addition, both irreversible model components, namely Gss and Gpr seem to have a

large effect on the BP levels, with a large self-sustained BP increase due to Gss and a

substantial increase in the acute salt-sensitivity response due to Gpr.

The promising results obtained for the ‘mean animals’ shown in Figure 4.9 led to the

parameter optimisation of the 3-component model for each individual animal as well.

Table 4.2 shows the average values of the model parameters and the associated stan-

dard deviations for the four experimental data sets comprising salt-sensitive and hybrid

animals, and, for comparison, the results for the control salt-resistant animals from

Protocols 1 and 3 are given in Table 4.3. There is a significant variation in the param-

eter values between control animals, reflected in the standard deviation values. This
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Table 4.1: ‘Mean animal’ model MAEs and parameters for the 3-component SIH model

Protocol Protocol1 Protocol2 Protocol3 Protocol4

MAE 1.192 1.257 1.727 0.872

Gas 3.3975 2.626 1.660 1.275

τas(days) 1.0698 1.283 1.548 1.701

Gpr 0.0046 0.007 0.002 0.003

Gss 0.1043 0.077 0.066 0.022

Table 4.2: Average individual animal MAEs and parameters for the 3-component SIH

model

Protocol Protocol1 Protocol2 Protocol3 Protocol4

MAE 1.915± 0.644 2.213± 0.796 2.034± 0.335 1.112± 0.271

Gas 3.4680± 0.4264 2.617± 1.655 1.6593± 0.6819 1.268± 0.599

τas(days) 1.3035± 0.4649 1.470± 0.489 1.5784± 0.2884 1.852± 0.287

Gpr 0.0045± 0.0035 0.013± 0.008 0.0065± 0.0129 0.004± 0.003

Gss 0.1035± 0.0284 0.073± 0.079 0.0647± 0.0463 0.025± 0.024

variation, however, is not surprising considering the diversity of BP responses to iden-

tical stimuli, shown in Figures 4.1–4.4, due to differences in the salt-sensitivity levels

between animals.

Table 4.3: Average MAEs and parameters for the control Dahl-R rats for the 3-

component SIH model

Protocol Protocol1 Protocol3

MAE 0.842± 0.191 1.293± 0.081

Gas 1.041± 0.732 0.681± 0.426

τas(days) 2.101± 2.834 6.459± 10.723

Gpr −0.004± 0.003 0.014± 0.013

Gss 0.027± 0.010 −0.011± 0.043

A comparison between the results for the salt-sensitive (Table 4.2) and salt-resistant

(Table 4.3) animals show that the acute salt-sensitivity component gain Gas is much

lower for the salt-resistant animals, as expected, while the progressively increasing Gpr

gain and the self-sustained component Gss gain are either very small or even negative
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Figure 4.10: Model component contribution for the 3-component ‘mean animal’ model

for some individual salt-resistant animals. A negative value of the Gpr gain leads to

a decrease in the total acute salt-sensitivity component, while a negative Gss value

results in a long-term blood pressure decrease, which appears to be irreversible for the

duration of the experiments. The time constant of the acute salt-sensitivity component

τas is longer for the Dahl-R animals, indicating that if they have any BP increase due

to high-salt intake, it is much slower than in the Dahl-S case. The hybrid animals

of Protocol 4 (Table 4.2) have average parameter values that fit between those of the

Dahl-S and Dahl-R animals, as their genetic make-up varies between salt-sensitive and

salt-resistant.

4.5.2 4-component model

Figure 4.11 presents the 4-component model response compared to the experimental

data for the ‘mean animals’ for the salt-sensitive animals in Protocols 1, 2 and 3 (plots
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A, B and C, respectively) and the hybrid animals of Protocol 4 (plot D). The additional

compensatory component in the 4-component model (shown in Figure 4.6) provides for a

better fit across all data sets. The improvement in model fit, however, is most noticeable

in the case of Protocol 3, where the rapid blood pressure changes are followed much

better by the model response, compared to the response of the 3-component model,

shown in Figure 4.9 C.
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Figure 4.11: ‘Mean animal’ model response for the 4-component model structure

Figure 4.12 shows each of the model components’ response for the mean animals. It

is evident that the compensatory component has a major contribution to the model

response and allows for the BP undershoot, when high-salt intake is ceased, to be

modelled. This has a direct effect to improve significantly the model response to the

PRBS salt input signal (Figure 4.11 C) where multiple cessations of salt stimulation

are present.

The improvement in the 4-component model response is also accompanied by a reduc-
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Figure 4.12: Model component contribution for the 4-component ‘mean animal’ model

tion in the MAE values across the ‘mean animals’ of the various data sets compared

to the 3-component model. The MAE and parameter results for the ‘mean animals’

of the salt-sensitive and hybrid animals of Protocols 1,2 3 and 4 are detailed in Table

4.4.

The average individual animal MAEs and model parameters for the salt-sensitive and

hybrid data sets are given in Table 4.5 and those for the individual control salt-resistant

animals are shown in Table 4.6. As before, the average acute salt-sensitivity gain Gas

is higher for the salt-sensitive rats compared to that of the hybrid and salt-resistant

rats. Similarly, the longer term progressive salt-sensitivity (Gpr) and self-sustaining

(Gss) gains are highest for the salt-sensitive animals, while the gain values for the

hybrid rats are similar to those of the salt-resistant rats, and are lower possibly due

to the lower genetic predisposition to salt-sensitivity. In the case of the salt-sensitive

animals, Gss is lowest in the Dahl-S rats of Protocol 3, presumably due to the lack of a
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Table 4.4: ‘Mean animal’ model MAEs and parameters for the 4-component SIH model

Protocol Protocol1 Protocol2 Protocol3 Protocol4

MAE 1.084 0.999 0.972 0.892

Gas 3.829 3.216 2.906 2.391

τas(days) 1.893 1.981 2.066 2.819

Gpr 0.006 0.007 0.008 0.002

Gss 0.147 0.102 0.068 0.022

Gc 4.135 2.581 2.583 1.187

τc(days) 34.1811 29.217 9.999 4.321

prolonged continuous exposure to a high-salt diet. The compensation gain Gc is lower

for the hybrid and salt-resistant animals, since the increase in BP due to the remaining

components is also low.

Table 4.5: Average individual animal MAEs and parameters for the 4-component SIH

model

Protocol Protocol1 Protocol2 Protocol3 Protocol4

MAE 1.728± 0.447 2.045± 0.899 1.479± 0.257 1.107± 0.279

Gas 5.792± 2.845 3.819± 2.164 3.076± 2.527 2.968± 1.549

τas(days) 2.645± 1.229 2.61± 1.038 2.7± 1.460 2.955± 0.853

Gpr 0.005± 0.005 0.009± 0.006 0.017± 0.017 0.0017± 0.0015

Gss 0.129± 0.046 0.139± 0.153 0.074± 0.027 0.029± 0.025

Gc 4.584± 3.199 8.54± 10.684 4.732± 3.872 2.019± 1.608

τc(days) 18.609± 10.899 30.659± 24.978 19.324± 12.249 6.899± 3.738
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Table 4.6: Average MAEs and parameters for the control Dahl-R rats for the 4-

component SIH model

Protocol Protocol1 Protocol3

MAE 0.799± 0.148 1.234± 0.148

Gas 2.034± 2.099 2.256± 0.482

τas(days) 3.561± 5.229 2.194± 0.204

Gpr −0.003± 0.004 0.003± 0.002

Gss 0.029± 0.011 0.017± 0.019

Gc 1.155± 1.953 2.537± 0.549

τc(days) 30.057± 37.333 5.558± 1.338

4.5.3 5-component model

The 5-component model response for the ‘mean animals’ of each of the experimental

data sets is shown in Figure 4.13. The plots in Figure 4.13 demonstrate the ability of

the model to mimic the BP response very closely and this is confirmed by a reduction

in the mean absolute errors for the ‘mean animals’, as shown in Table 4.7. Virtually

all the correlated components of the blood pressure response to high-salt intake have

been captured by the 5-component model. Figure 4.14 demonstrates each of the model

components’ contribution towards the final overall response.

Table 4.7: ‘Mean animal’ model MAEs and parameters for the 5-component SIH model

Protocol Protocol1 Protocol2 Protocol3 Protocol4

MAE 0.942 0.9728 0.734 0.859

Gst 6.461 5.319 6.119 1.664

τst(days) 5.656 3.032 2.547 1.384

Grec 15.655 6.956 0.640 4.328

τrec(days) 1.828 1.953 2.124 3.286

Gpr 0.0015 0.003 0.004 0.004

Gss 0.118 0.094 0.068 0.017

Gc 3.003 2.936 3.940 0.457

τc(days) 8.656 5.931 2.976 2.794

The average individual animal errors and parameters are given in Table 4.8 for the salt-
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Figure 4.13: ‘Mean animal’ model response for the 5-component model structure

sensitive animals of Protocols 1,2 and 3 and the hybrid rats of protocol 4 and in Table

4.9 for the salt-resistant animals of Protocols 1 and 3. Again, as for the ‘mean animals’,

there is a reduction in the average MAE, compared to the 4-component model, across

all protocols involving salt-sensitive animals. However, in the case of the salt-sensitive

animals from Protocol 3, the reduction is smaller than for Protocols 1 and 2. For the

salt-resistant and hybrid animals the reduction in the average MAE compared to the

4-component model is also not very large.

The addition of separate stimulation and recovery components for the ‘Acute salt sen-

sitivity’, with gains Gst and Grec and time constants τst and τrec, has allowed us to

provide a more complex shape of the short-term BP response. The flexibility of hav-

ing different time constants during step increases and step decreases in salt intake is

an important improvement since physiological responses often occur at different time

scales during stimulation and recovery. The stimulation and recovery time constants

have different values, with τst generally being larger than τrec, which demonstrates the
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Figure 4.14: Model component contribution for the 5-component ‘mean animal’ model

necessity of including separate dynamics for increase and decrease in salt intake. One

notable exception to this is the average recovery time constant τrec of the salt-sensitive

animals in Protocol 2 being similar in size to the stimulation time constant τst. This

is misleading, since the large average recovery value is due to one individual animal

having a much larger τrec than the rest, but the model fit of that particular animal is

also not very good, therefore the time constant can be taken as an outlier in the set of

results.

In the cases where salt intake is not sustained and continuous, such as in Protocol 3, or

where the animals are not salt-sensitive, the additional model components, compared

to the 4-component model, could be redundant.

An F-test is applied to the individual animals results, and is described in the following

section, to verify if the 5-component model provides enough improvement in results to

justify the additional components.
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Table 4.8: Average individual animal MAEs and parameters for the 5-component SIH

model

Protocol Protocol1 Protocol2 Protocol3 Protocol4

MAE 1.553± 0.259 1.584± 0.611 1.304± 0.226 1.065±0.277

Gst 9.766± 4.909 9.550± 5.056 5.814± 2.281 2.856± 1.091

τst(days) 8.766± 10.005 3.239± 1.650 4.565± 4.574 3.416± 5.354

Grec 17.628± 11.497 7.497± 5.548 1.359± 1.221 6.224± 3.101

τrec(days) 2.224± 1.041 3.781± 3.075 1.631± 1.018 3.552± 1.186

Gpr 0.001± 0.001 0.003± 0.003 0.006± 0.004 0.003± 0.003

Gss 0.126± 0.030 0.086± 0.118 0.068± 0.048 0.021± 0.018

Gc 6.358± 4.608 7.249± 6.244 2.931± 3.043 1.655± 1.227

τc(days) 14.711± 20.753 4.067± 3.078 2.142± 2.497 3.479± 1.750

Table 4.9: Average MAEs and parameters for the control Dahl-R rats for the 5-

component SIH model

Protocol Protocol1 Protocol3

MAE 0.764± 0.16 1.1205± 0.066

Gst 2.111± 0.806 4.447± 0.946

τst(days) 2.699± 2.69 2.745± 2.491

Grec 14.099± 18.263 1.388± 0.615

τrec(days) 55.148± 61.182 0.979± 0.462

Gpr 0.001± 0.001 0.001± 0.001

Gss 0.032± 0.082 0.016± 0.019

Gc 22.571± 50.729 2.876± 1.002

τc(days) 104.5805± 222.35 1.590± 1.252
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4.5.4 F-test

An F-test (Ludden et al., 1994) was performed to assess whether the increase in model

complexity from 3 to 4 components and from 4 to 5 components is justified, especially

for the salt-sensitive and hybrid animals. In general, an F − value, shown in Equation

(4.2) can be calculated to compare the performances of two models, a simple and a

more complex one, with respect to the number of model parameters.

F − value =
(RSS1−RSS2)/(DF1−DF2)

RSS2/DF2
(4.2)

with

DF1 = n− p1 DF2 = n− p2 (4.3)

where

• RSS1 and RSS2 are the residual sum of squares or the square of the error between

model response and experimental data for model 1 and model 2 respectively, where

model 1 is the simpler of the two models,

• DF1 and DF2 are the degrees of freedom of model 1 and model 1 respectively,

• n is the number of points in the data set, and

• p1 is the number of parameters in model 1 and p2 is the number of parameters in

model 2.

As the result of the F-test is, essentially, a ratio of performance versus complexity

between the simpler and the more complex models, an F − value of 1 signifies that

the two models perform equally well for their respective degree of complexity, while an

F − value greater than 1 signifies some merit in the use of the more complex model.

The degree to which the F−value exceeds 1 can also be used as a measure of confidence

(P − value) on the F − value, taking into account the number of samples in the data

set and the number of parameters used.

In this study, two sets of F − values were calculated for each data set, one comparing

the 3- and 4-component models (F3/4) and the other comparing the 4- and 5-component

models (F4/5). The average F − values with their associated confidence intervals are
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presented in Table 4.10 for the salt-sensitive animals of all protocols and for the hybrid

animals of Protocol 4. Table 4.11 gives the F-test results for the control salt-resistant

animals of Protocols 1 and 3. An increase in model complexity from 4 to 5 components

gives higher F − values than an increase in complexity from 3 to 4 components for the

salt-sensitive and hybrid animals, with the exception of the Dahl-S rats from Protocol

3, where there is a very large improvement in model fit in the 4-component model,

compared to the 3 component model, while the improvement in the 5-component model

fit in comparison to the 4-component model seems much more moderate. The hybrid

animals of Protocol 4 have, on average, an F − value < 1 for a change from 3 to 4

components ( F4/5 = 0.8), while the F −value > 1 for a change from 4 to 5 components

(F4/5 = 3.77). This indicates that adding the compensatory component to the 3-

component model structure on its own, without the addition of different stimulation

and recovery dynamics, did not improve the hybrid animals model fit enough, compared

to the increase in model complexity. The F − value for a change from 3 components

to 5 components for the hybrid animals is 2.35, however, which indicates a moderate

improvement in the results. Increase in model complexity from 3 to 4 or from 4 to

5 components is possibly not well justifiable for the salt resistant or hybrid animals,

even though the F − values > 1 in most cases. As a result of the lack of some of the

response features in the Dahl-R and hybrid rats compared to the Dahl-S rats, it appears

that not all model components are necessary to represent the responses of the former

two. It is the intent, however, to have a general model, which can represent both salt-

sensitive and salt-resistant animals, thus some model components may inadvertently

appear redundant in the latter case but are essential in the former.

Table 4.10: Mean F-test values for the Dahl-S rats of Protocols 1, 2 and 3 and the

hybrid rats of Protocol 4

Protocol F3/4 P3/4 F4/5 P4/5

Protocol1 5.01 < 0.01 7.51 0.001

Protocol2 10.76 < 0.001 18.7 < 0.001

Protocol3 23.49 < 0.001 8.65 < 0.001

Protocol4 0.8 < 0.5 3.77 < 0.05
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Table 4.11: Mean F-test values for the control Dahl-R rats of Protocols 1 and 3

Protocol F3/4 P3/4 F4/5 P4/5

Protocol1 3.5 > 0.1 2.34 > 0.1

Protocol3 3.6 > 0.1 5.82 < 0.05

4.5.5 Renal function curves

In previous studies, the slope of the steady–state pressure-natriuresis relationship has

been used to define the acute salt-sensitivity of BP (Guyton, 1980; Kimura and Bren-

ner, 1997). The 5-component model (Figure 4.7) can be used to generate steady-state

pressure-natriuresis relationship curves, which allow the visualisation of the progression

of the development of SIH and worsening of the subjects’ salt-sensitivity with prolonged

high salt intake.
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Figure 4.15: Steady-state pressure-natriuresis relationships for the ‘mean’ salt-sensitive

and salt-resistant animals of Protocol 1

A combination of the ‘Acute salt-sensitivity’ and ‘Compensatory’ components impact

on the initial slope of the chronic pressure-natriuresis relationship. The slope is deter-

mined by the magnitude of the animals response to high salt intake and is inversely

proportional to the Gst gain, and directly proportional to the compensatory compo-

nent gain Gc. Thus, for animals that are very salt-sensitive, the slope has a low value.
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The ‘Progressive acute’ component in the model results in a further reduction of the

slope value with continued exposure to high salt diet and this reduction is inversely

proportional to the Gpr gain. This effect corresponds to an increase in acute salt-

sensitivity with time. The ‘Self-sustained’ component in the model contributes to the

pressure-natriuresis relationship by shifting the curve to the right, i.e. towards higher

resting BP levels (Van Vliet et al., 2006; Van Vliet and Montani, 2008). Since this

component of the BP response is self-sustained, even when salt intake reduces back

to normal, the shift in the pressure-natriuresis curve is also permanent and the Gss

gain is proportional to the amount of rightward shift in the curve. All of the effects

described here can be clearly seen in Figure 4.15 for the mean salt-sensitive animal of

Protocol 1. In the same figure, the pressure-natriuresis curve progression is also shown

for the mean salt-resistant animal from Protocol 1. The rightward shift in the Dahl-R

rat curve is very small, compared to that of the salt-sensitive animal, and there is no

overall reduction in the slope of the relationship. A further example of the different

characteristic pressure–natriuresis relationships exhibited by four hybrid rats is shown

in Figure 4.16.
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Figure 4.16: Steady-state pressure-natriuresis relationships for four hybrid rats
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4.6 Discussion

Dahl-S rats have been specifically bred for their genetic predisposition to develop hy-

pertension, due to a high-salt intake level, in an accelerated manner (within weeks of

the initiation of salt-loading). The combination of genetic and environmental factors

in the etiology of hypertension in the Dahl-S rat makes them valuable for investigation

of the underlying mechanisms of the disease. The process of salt-induced hypertension

has been studied in detail recently due to the availability of the telemetry technology,

which allows continuous recording of long-term experimental data (Van Vliet et al.,

2006; Van Vliet and Montani, 2008).

In this present study, the blood pressure response to a high-salt intake in the Dahl-S rat

is represented as a multi-component process by a non-linear mathematical model. Three

different model structures, of varying complexity, have been proposed to characterise

the relationship between salt and blood pressure.

The simplest model, shown in Figure 4.5, consists of 3 elements representing distinct

phases in the blood pressure response to salt intake. The ‘Acute salt-sensitivity’ com-

ponent is a completely reversible first order exponential, whose time constant τas of

1-3 days resembles the effect of re-establishment of salt balance during salt-loading

(Van Vliet et al., 2006; Osborn and Hornfeldt, 1998). The Gas gain of the acute

salt-sensitivity component is proportional to the degree of salt-sensitivity in the sub-

ject.

The ‘Progressive acute’ model component was included to represent the progressive

worsening of some subjects’ salt-sensitivity with continued high salt consumption. This

component is an integrator, whose response, in practice, amplifies the gain of the ‘Acute

salt-sensitivity’ component. The effect of progressive worsening of salt-sensitivity caused

by an extended exposure to high dietary salt is particularly evident in the animals from

Protocol 2, as shown in Figures 4.2 and 4.9 (B). Similar effects of reversible progressive

increase in blood pressure, due to high salt intake, has been found in chimpanzees

(Denton et al., 1995). In humans, progressive worsening of salt-sensitivity has often

been contributed to the process of aging; however, the lifetime exposure to high dietary

salt in the developed world could provide an alternative hypothesis (Weinberger and

Fineberg, 1991).
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4. A model for salt-induced hypertension in Dahl rats

The ‘Self-sustained’ model component consists of an integrator with a very low gain and

represents a slow, irreversible increase in blood pressure due to high salt intake, which

has been well described previously (Dahl, 1961; Van Vliet et al., 2006). The exact

mechanisms underlying the effects of the ‘Progressive acute’ and the ‘Self-sustained’

components are not known; however, there are a number of possible explanations behind

these features of the blood pressure response. Both the progressive worsening of salt-

sensitivity and the irreversible hypertension due to prolonged salt exposure could be

attributed to vascular remodelling and/or renal damage such as fibrosis and hypertrophy

or lesions (Rapp and Dene, 1985; Jaffe et al., 1970; Chen et al., 1993). Changes in renal

structure have been identified as a possible cause for the development of salt-sensitivity

in rats (Johnson et al., 2002).

The 3-component model performed relatively well for most data sets used in this study,

but not all features of the blood pressure response to salt were captured. A further

‘Compensatory’ element (Figure 4.6) was added to the model with the purpose of im-

proving the data fit. The ‘Compensatory’ component is represented by a first order

exponential, which counteracts the blood pressure increase due to salt. Considering

that blood pressure control is achieved by balancing numerous physiological systems,

it is reasonable to expect that a balance of model component responses would yield a

better overall model fit. Physiological systems that could counteract the blood pressure

increase due to high-salt intake are the renin-angiotensin-aldosterone system (Cholewa

and Mattson, 2001; Denton et al., 1995) atrial natriuretic factor (Mullins et al., 2006)

and nitric oxide release (Simchon et al., 1989) though it is impossible to assign an ex-

act physiological significance to the ‘Compensatory’ model component without further

experiments.

The 4-component model is a significant improvement over the 3-component model and

the results shown in Figure 4.11 confirm this view. The addition of the compensatory

component provides a most noticeable improvement in the data fit for Protocol 3, also

reflected in the high associated F-value in Table 4.10. The compensatory component

also aids in representing the blood pressure undershoot, clearly visible in Figure 4.11

(A); however, the BP data is still not entirely accurately represented. The addition of

a fifth component, which allows for different rates of blood pressure response during

salt-loading and depletion, achieves a much better result.
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The separate ‘Stimulation’ and ‘Recovery’ dynamics in the ‘Acute salt-sensitivity’ com-

ponent are first order exponentials with different characteristics during salt-loading and

depletion. The response of the 5-component model captures very closely the character-

istics of the experimental data for all protocols, and includes all major features of the

BP response to high salt intake, especially for the salt-sensitive animals. The goodness-

of-fit is also reflected in the improvement of the mean absolute errors compared to the

3- and 4-component models. The increase in complexity in the 5-component model

may not be justifiable for the salt-resistant or hybrid animals, as reflected in the low F-

and P-values in Tables 4.10 and 4.11. The Dahl-R and hybrid rats have an attenuated

response to salt intake compared to their salt-sensitive counterparts, thus some of the

model components may not be significantly activated. The model is primarily aimed

at the Dahl-S rats, however, and it should be able to represent their BP reponse with a

reasonable accuracy, even if some of the features are redundant for some of the hybrid

and the salt-resistant animals. An example of the functionality of the 5-component

model is its ability to generate the steady-state renal function curves at any point in

time during the experiment as already outlined in Section 4.5.5.

Finally, the parameters of the 3 models presented in this work were optimised for the

‘mean animal’ of each data set and for each individual animal also.

An attempt was made to train each model using all but one animal within a data

set, in order to predict the final animal’s response which is, in effect, making use of

separate training and validation data. This, however, has the effect to average the

model parameters across all animals, but one, and did not yield good results unless the

‘validation’ animals response was similar to that of the ‘mean animal’. The large inter-

animal variability, thus, requires that models are trained separately for each animal. In

order to obtain a truly generic model, additional variables would need to be recorded

during the experiment and included in the SIH model.

4.7 Conclusion

This study highlights the multi-component nature of salt-induced hypertension in Dahl-

S rats by describing five distinct model components, whose combined responses repre-

sent the time course of BP response to high salt intake. The 5-component model de-
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4. A model for salt-induced hypertension in Dahl rats

veloped here is, so far, the most comprehensive model of the dynamics of salt-induced

hypertension in Dahl-S rats and it helps gain an insight into the processes involved in

blood pressure control. The model components are reasonably intuitive, though it is not

possible, with the available experimental data, to assign exact physiological meaning to

the various model elements. Nevertheless, it is believed that the 5-component model

articulates clear and distinct characteristics, which may correspond with completely

separate physiological phenomena.

Additional explanatory variables and protocols may also be studied in the future in

order to provide the model with the ability to model inter-animal variation in blood

pressure as, presently, the model is optimised to simulate the response of individual

animals only. The measurement of additional variables could also aid in identifying,

with more certainty, the underlying physiology behind each model component.
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Chapter 5

Baroreflex sensitivity

estimation

Many studies have been conducted to develop reliable techniques for baroreflex sensitiv-

ity (BRS) estimation over the years and a detailed overview is available in Section 2.2.

Some protocols have provided external stimuli to the patients, while others studies been

conducted in spontaneous conditions. This chapter develops a systematic approach to

BRS estimation, which accounts for the closed loop nature of the system, and the Eu-

roBaVar data set (Laude et al., 2004) has been employed to evaluate the quality of the

approach. The following sections of this chapter will examine the experimental protocol

and then will describe in detail the new BRS estimation technique developed in this

work. Finally, a comparison between this new method and existing methods will be

provided.

5.1 Experimental protocol

The EuroBaVar data set (Laude et al., 2004), used in this study, was provided by

the European Society of Hypertension working group on baroreflex and cardiovascular

variability. The data comprises non-invasive spontaneous blood pressure recordings

for twenty one subjects, obtained using a Finapres 2300 device (Ohmeda, Helsonki,

Finland). Concurrent electrocardiography (ECG) recordings were also made, using a

Datex Cardiocap II device (Datex Engstrom, Helsinki, Finland). Data was collected
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5. Baroreflex sensitivity estimation

over 10-12 min in the supine position and 10-12 min in the standing position, for each

subject. Systolic, mean and diastolic pressures, as well as RR interval, are provided on

a per-beat basis. The collected raw data, including the ECG recording from which the

RR interval signal was derived, is also available, sampled at 500Hz.

The twenty one subjects who participated in the study comprised four men and sev-

enteen women. They ranged in age from 17 to 68 years. Two subjects were confirmed

to have baroreflex failure; one was a recent heart transplant patient, while the other

was a diabetic with cardiac autonomic neuropathy. Twelve subjects were normotensive

outpatients; of the remaining subjects, one was an untreated hypertensive, two were

treated hypertensives and four were healthy volunteers. One woman was pregnant in

her first term. The records of two subjects were duplicated in order to test if the results

were reproducible, therefore the total data set contains twenty three sets of data.

5.2 System characteristics and implications

Based on the experimental protocol, outlined in the previous section, some observations

about the EuroBaVar data set are noteworthy. The characteristics of the system under

study, as well as the method of data collection and recording, will determine the type

of data preprocessing needed and the required system identification framework.

• In the EuroBaVar data set, the subjects are at rest in either the supine or standing

positions, with no external excitation applied. The spontaneous nature of the data

results in relatively small variations in SAP and RR around their equilibrium

values; therefore, it is reasonable to assume that a linear model could be employed

to represent the SAP → RR relationship.

• A further implication of the small variation in the spontaneous SAP and RR

signals is the possible poor excitation of the baroreflex. Poor excitation of the

system can affect the identifiability of the baroreflex across a range of frequencies.

• The EuroBaVar data is collected under closed-loop conditions, i.e. the baroreflex

loop was intact. This consideration is vital when selecting a system identification

routine, as the feedforward and feedback paths of a closed-loop system can only

be separately identified within a limited set of conditions. It is also worth noting,

when examining Figure 2.2, that no external inputs to the closed-loop system (ns
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or nr) are available as measured signals and that there is also no measured SAP

setpoint or desired reference value.

• The EuroBaVar data is available on a ‘per beat’ basis i.e. a measurement of SAP

and RR is provided after each RR interval, so the data is irregularly sampled,

i.e. it is on a non-uniform time base. This has important implications for any

frequency domain calculations, or model generalisation.

5.3 Outline of the SID framework for BRS estimation

Ljung (1999) identifies a framework within which a system identification problem can

be placed, from a mathematical perspective, given the conditions under which the data

were recorded and the nature of the data itself. The framework encompasses both time-

and frequency domain models, though the focus in this study will be on time domain

models.

5.3.1 Families of model structures

Whilst a variety of models of different complexities are available (Ljung, 1999), the

most general mathematical model that will be employed in this particular study is

the ARMAX (Autoregressive moving-average with eXogenous input) model given by

Equation (5.1).

y(k) =
B1(q)

A(q)
u1(k − nd1) + . . .+

Bm(q)

A(q)
um(k − ndm) +

C(q)

A(q)
e(k) (5.1)

where Bi(q), A(q) and C(q) are polynomials of order nbi, na and nc respectively in the

delay operator q, and ndi is the number of pure steps delay between each input i and the

output ( τndi = ndi ∆T is the time it takes for a change in an input to affect the system

output). Within a system identification framework, the index k is taken to mean a time

index, so that t = k ∆T , where t is (continuous) time and ∆T is the (fixed) sampling

period, both given in seconds. It is worth noting that the analysis of data on a ‘per-beat’

basis does not allow any frequency domain calculations/interpretations.
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The system is, in general, a multi-input, single-output (MISO) system. Equation (5.1)

can also be represented in the form of a difference equation, as shown in Equation (5.2),

which would allow the comparison to models of other researchers as in Equations (2.1)

to (2.6), outlined in Section 2.2.4.

y(k)+a1y(k − 1) + . . .+ anay(k − na) =

b10u1(k − nd1) + b11u1(k − nd1 − 1) + . . .+ b1nb1u1(k − nd1 − nb1)

+ . . .

+ bm0um(k − ndm) + bm1um(k − ndm − 1) + . . .+ bmnbmum(k − ndm − nbm)

+ e(k) + c1e(k − 1) + . . .+ cnce(k − nc)

(5.2)

The ARMAX model has an output, which regresses on itself via the A(q) polyno-

mial; it has a moving-average on the noise/error term, e(k), via the C(q) polynomial,

and includes the deterministic (exogenous) input u(k). AR (AutoRegressive), MA

(Moving-Average) and ARX (Autoregressive with eXogenous input) models are clearly

incorporated within the ARMAX structure, by choosing B(q) = 0, C(q) = 1; A(q) = 1,

B(q) = 0; and C(q) = 1 respectively.

5.3.2 Persistence of excitation

This section documents the conditions on the input signal, u(k), which allow the param-

eters of a mathematical model to be uniquely determined. In general, if the spectrum,

Φu(ω), of u(k) is different from zero at, at least, n points, a model of order n can be

uniquely identified. A convenient mathematical formulation, involving the covariance

matrix, C̄u, of u(k), which is of size n× n, can be given as follows:

C̄u =




Cu(0) Cu(1) . . . Cu(n− 1)

Cu(1) Cu(0) . . . Cu(n− 2)
...

...
. . .

...

Cu(n− 1) Cu(n− 2) . . . Cu(0)




(5.3)

where:

Cu(τ) = E[u(k)u(k − τ)] (5.4)
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is defined as the covariance of u(k), where τ ε N, while E[ ] is the expectation (averaging)

operator. If C̄u is non-singular, then u(k) is persistently exciting of order n and a model

of order n can be uniquely identified. If C̄u is singular, the number of non-zero singular

values (i.e. the rank of the C̄u matrix, or the number of linearly independent rows or

columns in the matrix) determines the order of the model that can be identified. A

useful relation is that, for each separate sinusoidal frequency in u(k), C̄u contains two

non-zero singular values.

5.3.3 Identification in closed-loop

G(q)

F (q)

∑∑

∑

r u y

d

ξ

+
+

+

+

+

+

-

Figure 5.1: A closed-loop system

Since much of the system identification framework in this chapter is developed from

a control systems perspective, a visual representation of a closed-loop system is now

shown in Figure 5.1, where r is a reference (setpoint) input, y is the system output, d

is an unmeasurable disturbance, ξ is measurement noise and u is the input to the G(s)

block in the feedforward path. There is an obvious close relationship between Figures

5.1 and 2.2. It should be noted here that in the study described in this chapter, the

specific aim is to identify the G(q) block in the feedforward path of Figure 5.1 (and

Figure 2.2), which represents the arterial baroreflex.

In general, a number of basic conditions need to be met before identification of a system

in closed loop may be attempted:

• There needs to be a delay in either the forward path G(q) or the feedback path

F (q),

• The closed-loop system needs to be stable, and
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• The range of possible model structures, used for identification, needs to contain

the true system.

Three broad classes of methods for the identification of dynamical systems in closed

loop are available, and each one is described briefly in the following paragraphs.

Direct method The direct method is the most popular approach for closed-loop sys-

tem identification and has the following features:

• A prediction error method (PEM) (outlined in Section 5.3.4) is applied di-

rectly to the feedforward path as if no feedback exists. The signals used are

the input u(k) and output y(k), while the reference signal r(k) is ignored,

even if it is known. The system is treated similarly to an open-loop system.

• The actual system needs to be described within the model structure.

• If the overall closed-loop system is stable, the forward path can still be

identified even if it is unstable.

• The ARMAX model structure is well suited to this method but a good noise

model is necessary.

Indirect method In the case of the indirect method, for a feedback system such as

that in Figure 5.1, the regulator F (q) is assumed to be known, and preferably

linear. The overall closed-loop system

Gcl(q) =
G(q)

1 +G(q)F (q)
(5.5)

is identified using the reference signal r(k) and the output y(k). The open-loop

system G(q) is then calculated, as follows:

G(q) =
Gcl(q)

1−Gcl(q)F (q)
(5.6)

This method allows the use of any open-loop technique for the identification of

the overall system Gcl(q); however, any error in the assumed feedback F (q) will

lead to an erroneous G(q).

Joint input-output methods In the joint input-output approaches, both u(k) and

y(k) are considered as outputs of the closed-loop system. Some characteristics of
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the methods are:

• The regulator (F (q)) parameters can be unknown, but knowledge of its struc-

ture is required, as well as the reference signal r(k).

• The closed-loop transfer function Gcl(q) is identified using r(k) and y(k),

using open-loop methods.

• G(q) is estimated as:

G(q) =
Gcl(q)

Gur(q)
(5.7)

where the transfer function Gur(q) is defined as:

Gur(q) =
u(k)

r(k)
=

1

1 + F (q)G(q)
(5.8)

and Gur is calculated using r(k) and u(k) also using open-loop methods.

In the case of the arterial baroreflex, the reference signal (the desired value of blood

pressure), r(k), is unknown. In addition, the other branch of the baroreflex (F (q), or

the peripheral arc in Figure 2.2) is unknown, leading to a clear default choice of the

direct method. The direct method is often seen as the natural choice, due to the lack

of specific knowledge and the employment of fairly standard identification routines.

One particular requirement, however, is that the structure of the model must be well

specified, especially the noise model.

5.3.4 Model parameter determination

Given a suitable model structure, such as the ARMAX structure described in Equation

(5.1) in Section 5.3, a numerical algorithm must be employed to determine the param-

eters of the polynomials A(q), B(q) and C(q). Considering the necessary requirements

for identification in closed loop using the direct method, as described in Section 5.3.3,

and noting that a single-input, single-output (SISO) system is being considered, the

ARMAX model is formulated, in prediction form, as:

ŷ(k|Θ) =
B(q)

C(q)
u(k − nd) +

[
1− A(q)

C(q)

]
y(k) (5.9)
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where the ˆ denotes an estimate which depends on Θ. Θ contains the model parameters,

as follows:

Θ =
[
a1 . . . ana b0 . . . bnb c0 . . . cnc

]
(5.10)

and na, nb and nc are the orders of the A(q), B(q) and C(q) polynomials, respectively,

while nd is the step delay.

Note that the term
[
1− A(q)

C(q)

]
y(k) only involves values of the output up to and includ-

ing y(k − 1). We can now define the prediction error, ε(k), as:

ε(k,Θ) = y(k)− ŷ(k|Θ) (5.11)

A recursive optimisation algorithm is now employed to minimise the performance func-

tion:

J(Θ) =
1

N

N∑

k=1

ε(k,Θ)2 (5.12)

over N available input/output pairs. A variety of iterative estimation algorithms (Den-

nis Jr. and Schnabel, 1983) may be used to determine the optimal parameter set:

Θo = argmax
Θ

J(Θ) (5.13)

It is worth noting that:

• A cost function can be chosen to minimise the prediction error (in Equation

(5.11)), the output error, or the equation error (the difference between the left-

and right-hand sides of Equation (5.2) for example). It is only possible to look at

output error for models with no noise dynamics i.e. models of the form:

y(k) =
B(q)

F (q)
u(k) + e(k) (5.14)

where, in this case, e(k) is exactly equal to the error in the system output, y(k).

• The choice of na, nb, nc and nd is important, since the amount of excitation in

the input signal limits the number of parameters that can be identified by the

optimisation algorithm.
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• The correct specification of the noise model structure is vital, if accurate iden-

tification within closed loop is required. In particular, for the current case of

biological noise sources (dealt with in further detail in Section 5.5.2), some noise

colouring is highly likely, so a noise model reflecting this (as in Equation (5.2)) is

mandatory. It is well established (e.g. Ljung (1999)) that the absence or incorrect

specification of the noise model invariably leads to biased estimates, in the case

of misrepresented coloured noise.

• While, for a small subset of prediction-error models (those involving no noise

colouring), the unknown parameter vector Θ can be determined using a once-off

batch method (e.g. using least squares), the presence of the C(q) polynomial

necessitates the use of an iterative algorithm, where Θ̂ and e(k) are updated

in turn. Suitable recursive optimisation techniques include the Gauss-Newton,

regularised Gauss-Newton, adaptive regularised Guass-Newton and Levenberg-

Marquardt methods (Dennis Jr. and Schnabel, 1983).

5.4 Results of the system identification approach to BRS

estimation

The relationship between SAP and RR interval is identified for all subjects in the

EuroBaVar data set, based on the framework outlined in Section 5.3 and using the

direct method for identification in closed loop. Only one side of the closed loop, the

baroreflex dynamics, is identified, where SAP is the system input and RR is regarded as

the system output. Once the parameters of a suitable model have been determined for

each subject, the BRS gain is calculated for the low-frequency and high-frequency bands,

described in Section 2.2.4. A single subject from the available data set will be taken as

an example (Subject 5 in the supine position), for whom the entire identification routine

will be demonstrated, while the key summary results will be presented for all subjects.

Detailed modelling results for all remaining subjects can be found in Appendix B.

5.4.1 Data preprocessing

In order to obtain a valid frequency domain representation of the input/output signals,

the irregularly sampled per-beat data was interpolated and resampled at regular inter-
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vals using cubic splines. A fixed sampling frequency of 1.5Hz was chosen in order to

achieve a sampling interval of 2/3 sec, which is approximately equal to the average RR

interval.

A plot of both the irregularly and regularly sampled data for Subject 5 in the supine

position is shown in Figure 5.2.
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Figure 5.2: Irregularly sampled EuroBaVar beat-to-beat data compared to the interpo-

lated regularly sampled data (Subject 5, supine position)

In addition to resampling, the input and output data were also bandpass filtered in the

baroreflex region of interest (0.04-0.5 Hz) with a 7th order Butterworth filter (Parks and

Burrus, 1987). The filter was applied in both forward and reverse direction, in order

to avoid a phase distortion of the resulting signals (Oppenheim et al., 1999); therefore,

the effective filter order is 14. A plot of the filter’s response is shown in Figure 5.3,

while Figure 5.4 shows the filtered data, compared to the original, unfiltered, data for

Subject 5 in the supine position.
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Figure 5.3: Butterworth bandpass filter response
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Figure 5.4: Filtered SAP and RR interval data compared with the original unfiltered

data for Subject 5 in the supine position
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5.4.2 Persistence of excitation

Following the specification in Section 5.3.2, the persistence of excitation is assessed

up to a potential order of 50 by evaluating the singular values of a 50x50 covariance

matrix (C̄u, as defined in Equation (5.4)). By way of example, the singular values of

the covariance matrix for Subject 5 in the supine position are shown in Figure 5.5.

Clearly, in this case, at least 15 singular values are significantly above the base value of

zero, though large singular values are preferable from system identifiability perspective.

The number of singular values above the base determines the number of parameters

that can be comfortably estimated by the optimisation routine, as outline in Section

5.3.2.
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Figure 5.5: Persistence of excitation in SAP for Subject 5 in the supine position

In general, for all the data, the indication is that models of order 10 to 12 can be

identified with the level of excitation in the SAP signals.

5.4.3 Model order and parameter determination

The ARMAX model, as specified in Equation (5.1), is adopted to specify the relationship

between SAP and RR interval, as it allows modelling of some coloured unmeasured noise

disturbances. The EuroBaVar data does not contain respiration data, so the ARMAX

model, specified in Equation (5.1), is single input, single output, with a coloured noise
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term specified by e(k) and the C polynomial. The system identification problem now

concerns the determination of the values of the dynamical orders na, nb and nc of the A,

B and C polynomials (in Equation (5.1)) , respectively, and the associated parameter

values a1, . . . , ana , b1, . . . , bnb and c1, . . . , cnc . In order to facilitate the determination

of open-loop characteristics from closed-loop data, a prediction error method will be

employed to perform the system identification via the ‘direct method’, as articulated in

Section 5.3.3.

Given the diversity of the subjects used in the collection of the EuroBaVar data, and

the natural variance between individuals with seemingly similar characteristics (e.g.

age, gender, mass, height, etc.), there are two options in relation to model structure

determination:

1. Determine the best average model structure across all subjects, where only the

parameter determination is specific to each subject, or

2. Use the optimal model structure for each subject.

While the methodology of option 1 above might appear to provide the best basis for

inter-subject comparison (e.g. on a model parameter basis), option 2 has been chosen

for the following reasons:

• The main focus is on comparing the baroreflex frequency response of subjects,

rather than specific time domain parameters, so that overall model accuracy is

paramount.

• There is significant disparity between the optimal model orders (na, nb and nc)

for different subjects, making it difficult to achieve well-fitting models for any

individuals using a consistent model structure.

• The ability to compare model parameters across different subjects is not a high

priority (this will be discussed further in Section 5.6).

It should be noted that, since the input/output delay term, nd, in Equation (5.1) cannot

be included as a ‘linear in the parameter’ identification problem, it is included in the

model order determination exercise. Thus, four parameters (na, nb, nc and nd) need to

be determined during the model order/structure identification stage. In order to choose

a model structure which is not excessively complex, the overall performance function

used here, Akaikie’s Information theoretic Criterion (AIC) (Equation (5.15)) has a
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complexity-weighting term. Akakike’s information criterion is defined as follows:

J∗(Θ) = ln(J(Θ)) + 2
d

N
(5.15)

where

J∗(Θ) is the complexity-weighted performance function,

J(Θ) is the original performance function, as given in (5.12),

2 d
N is the complexity weighting,

d is the total number of model parameters (d = na + nb + nc), and

N is the number of training data points available.

The use of a complexity weighted performance function is essential in order to achieve

model parsimony, i.e. attempting to match the model complexity to that exhibited by

the training data.

For each individual in the data set, the input/output data was divided into training

(2/3rd of the data) and validation (1/3rd of the data) sections. A model was estimated

using the training data for a large range of structures (na = 1→6, nb = 0→6, nc =

1→5 and nd= 0→4). The model was ‘trained’ using the training data, while the AIC

cost function, specified in Equation (5.15) was estimated using the validation section of

the data set. The model structure with the lowest resulting cost function was selected

for each individual. The validation section of the data was used for cost function

estimation in order to ensure that the parameterised model is capable of predicting

previously ‘unseen’ data (Ljung, 1999), i.e. the model is robust for all data and not

only the data it was trained on.

Table 5.4.3 shows the model structures returned using the performance criterion of

Equation (5.15), along with the associated Mean Absolute model Errors (MAEs). The

MAE, JMAE is defined as:

JMAE =
1

N

N∑

k=1

|y(k)− ŷ(k)| (5.16)

whereN is the number of data points, and y(k) and ŷ(k) are the measured and estimated

outputs.
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The MAE is presented here, since it represents the exact average difference between the

model predicted RR interval and the measured RR interval (in sec.).

Note that there is significant disparity in the MAEs for different subjects, indicating

the lack of consistency with which a lumped-parameter model may be determined for

different subjects, even with freedom in model structure selection. There is also a

great variation in the model orders and delays across subjects; however, since we are

primarily interested in producing accurate BRS estimates, the main objective of the

time domain modelling is model fidelity, rather than enabling a direct comparison of

model parameters.

As outlined in Section 5.3.4, the ARMAX model parameters were determined using a

prediction error method. As an example, the model parameters, and the associated

variance, for the best model structure for Subject 5 in the supine position are shown in

Table 5.4.3. The variance value effectively illustrates how well that model parameter

satisfies all the training points. If, conceptually, the correct model parameter for each

equation represented by the training data (Equation (5.9)) is exactly the same, then

the variance of the parameter estimated will be zero. In practice, it is desirable that

the variance is significantly lower than the corresponding parameter value.
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Table 5.1: ARMAX model structures and corresponding MAEs for each EuroBaVar

subject in the standing and supine positions; na, nb, nc are the orders of the A, B and

C polynomials, respectively, and nd is the number of step delays in Equation (5.1);

MAE is the mean absolute error

Standing Supine

Subject Model struc. JMAE Model struc. JMAE

[na nb nc nd] (Secs.) [na nb nc nd] (Secs.)

1 5 6 5 1 0.0181 5 2 0 1 0.0107

2 4 2 1 1 0.0135 1 6 1 2 0.0077

3 5 3 4 3 0.0121 2 4 0 1 0.0129

4 1 6 1 2 0.0125 3 4 0 1 0.0283

5 4 5 5 0 0.0072 6 5 1 2 0.0099

6 5 5 0 0 0.0101 4 5 0 2 0.0282

7 5 5 0 0 0.0164 1 4 1 1 0.0185

8 1 5 3 0 0.0314 2 6 0 1 0.0301

9 4 2 3 0 0.0146 1 5 0 2 0.0107

10 3 3 1 1 0.0089 1 6 3 1 0.0169

11 1 5 3 1 0.0153 2 6 4 0 0.0263

12 5 3 2 0 0.0176 1 3 3 1 0.0158

13 3 5 5 2 0.0009 1 3 5 0 0.0021

14 3 5 4 4 0.0179 5 1 0 0 0.0117

15 3 5 1 0 0.0134 2 3 0 4 0.0205

16 1 2 1 1 0.0136 6 6 2 0 0.0172

17 4 2 4 1 0.0122 3 3 0 0 0.0219

18 2 2 0 4 0.0011 1 6 0 2 0.0018

19 1 6 4 4 0.0264 5 3 5 1 0.0351

20 1 3 0 3 0.0159 1 2 2 4 0.0271

21 1 4 0 0 0.0213 1 5 1 1 0.0492
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Table 5.2: ARMAX model parameters for Subject 5 in the supine position, with model

structure [6 4 1 2]; ai, bi and ci are the parameters of the A, B and C polynomials,

respectively.

Index (i) 0 1 2 3 4 5 6

ai 1 -1.450 1.468 -1.429 1.328 -0.8189 0.4319

ai variance 0 ±0.037 ±0.061 ±0.067 ±0.067 ±0.059 ±0.035

bi 1.37 -1.701 0.778 -1.602 1.19

bi variance ±0.186 ±0.272 ±0.310 ±0.276 ±0.1927

ci 1 0.951

ci variance 0 ±0.015

Again, considering Subject 5 (supine position), the match between actual and modelled

RR interval is shown in Figure 5.6. In general, the variations in RR interval are captured

by the model, though the accuracy at the extreme values of RR is not as good, which

may suggest that some nonlinear effects are present in the actual data and not captured

by the linear model.
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Figure 5.6: Plot of actual and modelled data for Subject 5 in the supine position

121



5. Baroreflex sensitivity estimation

5.4.4 BRS calculation

Given that a time domain model has been identified for each subject, this can now

be used to determine the magnitude of the frequency response across the frequency

range of interest in the training data. In particular, we are interested in the frequency

range from 0.04-0.4 Hz, containing the LF (0.04-0.15Hz) and HF (0.15-0.4Hz) baroreflex

bands (Pagani et al., 1986; Davies et al., 1999; Glos et al., 2007) described in Section

2.2.4.

In the frequency domain, the magnitude response of the model is determined from input

(u(k) = SAP (k)) to output (y(k) = RR(k)) as follows:

|Gyu(f)| =
∣∣[B(q)/A(q)]q=e2πjfT

∣∣ (5.17)

where f is frequency in Hertz and T is the sampling period of the data (the selected

sampling interval is 2/3 sec, as previously outlined).

To demonstrate some resulting model characteristics, Figure 5.7 shows the magnitude

of the frequency response for Subject 5 in the supine position.
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Figure 5.7: Baroreflex gain for Subject 5 in the supine position
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As shown in Figure 5.7, the baroreflex sensitivity can be calculated at low (LF BRS)

and high (HF BRS) frequency by evaluating an average gain over the low-frequency

(0.04-0.15 Hz) and high-frequency (0.15-0.4 Hz) intervals. In general, a representative

average gain value over a continuous frequency variable f can be obtained as:

BRS(fmin, fmax) =
1

Nw

∫ fmax

fmin

W (f).|Gyu(f)|df (5.18)

where W (f) defines the ‘weighting’ profile applied over the interval [fmin, fmax], and

Nw is a normalisation factor, where

Nw =

∫ fmax

fmin

W (f)df (5.19)

If Gyu(f) is only available at Nf discrete frequency points fi = fmin + i ∆f , i =

0, 1, . . . , Nf − 1, with ∆f being the frequency interval between points, then equation

(5.18) becomes:

BRS =
1

Nw

Nf−1∑

i=0

W (i).|Gyu(i)| (5.20)

and

Nw =

Nf∑

i=1

W (i) (5.21)

In uniform averaging, the mean BRS value over an interval [fmin, fmax] is determined

using W (f) = 1 , ∀ f . However, we can also propose non-uniform weighting using

Gaussian functions, where:

W (f) = e−
(f−f0)

2

2σ2 (5.22)

with σ a constant which determines the width of the Gaussian weighting function and

f0 is the centre frequency of each frequency band. There are a number of reasons for

considering non-uniform weighting:

• The value of the baroreflex gain at the centre of the frequency range is more

important than that at the fringes,

• The relatively large variation of baroreflex gain, particularly over the low fre-

quency range (e.g. see Figure 5.7) renders a standard average unrepresentative of

the central values, and
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• Applying significant weight to the baroreflex gain at the boundary between LF and

HF can result in considerable contamination between the BRSLF and BRSHF

values.

Figures 5.8 and 5.9 show the results for BRS calculation across all EuroBaVar subjects,

for standing and supine positions, respectively. In general, we note that the BRS is

higher in the case of the supine position compared to standing and that BRSLF >

BRSHF for standing (12 Vs 9), while BRSHF > BRSLF for supine (18 Vs 3). We

can also see that subjects with impaired baroreflex (Subjects 13 and 18) are clearly

identified.
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Figure 5.8: BRS estimates for all EuroBaVar subjects in the standing position

5.5 Discussion

A new systematic approach for BRS estimation has been developed in this chapter.

One of the most important issues is the use for which BRS estimation is intended and

whether it is fit for purpose, especially in the absence of a gold standard. One of

the principal uses of BRS is the potential detection of baroreflex pathology. In this

sense, we may consider BRS estimation with a classification objective, where the aim

is to maximise the separation between healthy and impaired baroreflex characteristics,

based on BRS calculations. There are a number of ways in which the classifier can be
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Figure 5.9: BRS estimates for all EuroBaVar subjects in the supine position

customised:

• High-frequency and low-frequency BRS values can be used or the two values can

be combined,

• The weighting given to baroreflex magnitude response values to determine an

‘average’ BRS value over a frequency interval may be adapted, and

• Data recorded for supine and/or standing positions can be used or combined.

From a system identification perspective, there are a number of important observations

to be made in relation to BRS estimation. The first one relates to the ability to

identify BRS consistently from spontaneous baroreflex data. Within the control system

community, it is well known that good regulation leads to poor identification and vice-

versa (Ljung, 1999). This is due to the fact that a regulatory loop (i.e. the baroreflex)

operating effectively will attempt to reduce, as much as possible, the variance of the

output (i.e. BP), resulting in poor excitation of the system from a system identification

perspective (see Section 5.3.2). The exception to this is where the regulatory loop is not

performing well, corresponding to the case of an impaired baroreflex. This is confirmed

by our results, where the modelling error is an order of magnitude less in the case of

impaired baroreflex (Subjects 13 and 18) than the MAE for the remainder of the subject

125



5. Baroreflex sensitivity estimation

population. For the standing case, the average MAE for the impaired subjects is 1ms

compared to 15.7ms for the remainder of the standing population. Similarly, for the

supine case, the average MAE for the impaired subjects is 1.95ms compared to 20.9ms

for the remainder of the standing population. This may give some comfort, since the

modelling error, and therefore corresponding BRS estimates, have less error for the

case of impaired baroreflex. This phenomenon does raise the issue of what measures of

accuracy in BRS estimates might be obtained, to provide some confidence to clinicians

in making diagnoses. A number of alternatives exist:

1. Some measure (e.g. MAE) of the modelling error in the RR signal,

2. Some aggregate measure of the variance in the identified model parameters, and/or

3. The variance of the baroreflex gain (compared to the average BRS value) over the

frequency interval.

However, the appropriate choice of error measure (which could be some aggregation of

the above individual measures) is complex and requires considerable further investiga-

tion. A more comprehensive understanding of the error measures across a significantly

greater variety of data sets is required; therefore, such issues are not pursued further

here.

A related issue concerns the use of minimum thresholds for correlation or coherence

between SAP and RR interval by various time and frequency domain methods, respec-

tively (Laude et al., 2004). The use of minimum thresholds attempts to ensure that

there is an actual relationship between variations in RR interval and SAP. The problem,

however, arises when an appropriate value needs to be selected, and currently, thresh-

olds seem to be chosen subjectively. Data not achieving the prescribed threshold are

excluded from the estimation routine, resulting in an inability to form a BRS estimate

in some cases. It is speculated that the consistent determination of a BRS estimate,

together with an appropriate measure of confidence/error, might be more useful in a

clinical setting.

5.5.1 Comparison with other methods

Based on the review of existing BRS estimation methods, it is clear that the method

proposed in this chapter has some similarity with other techniques, especially those
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utilising time domain models. As outlined in Section 2.2.4, a variety of models have

been used to model the relationship between BP and RR interval. The most complex

of these models, omitting the use of a separate external input (respiration) are those

of De Cecco and Angrilli (1998) and Nollo et al. (2001) which include a coloured noise

term. Our contention is that not all models have sufficient complexity to satisfy the

requirement that the range of models available includes the actual system model struc-

ture, particularly due to the omission of regressor on the noise term (coloured noise), for

example of Faes et al. (1999). It is clear that the noise in the system is coloured, since

the active noise term (nr in Figure 2.2) is mainly due to respiration, which has a strong

harmonic component. Baselli et al. (1988) provide a very comprehensive closed-loop

model identified using the joint input-output method (see Section 5.3.3), however, one

drawback of their method is the use of data on a ‘per beat’ basis, so that frequency

response measures (e.g. gain) cannot be reliably estimated. Notably, any frequency

domain modelling exercise using ‘per beat’ data is problematic, since Equation (5.17)

clearly shows the dependence of the BRS value (or at least each magnitude value) on T ,

the sampling period. It cannot be assumed that T is ‘naturally’ constant, as that would

imply that there is no variability in RR, which violates the identifiability criterion (see

Section 5.3.2). In reality, RR is not constant, hence the need to resample the signal at

a regular sample period in order to eliminate the risk of frequency distortion. A fur-

ther difficulty with the method of Baselli et al. (1988) is the use of an overly-simplistic

model, where their relationship between SAP and RR interval is modelled by a simple

gain plus a pure delay.

A brief comment is also necessary here on the variation in model orders across different

subjects, documented in Table 5.4.3. As mentioned previously, the aim of this study is

to provide accurate BRS estimates, rather than to build a transparent generic model

across all subjects. However, it might be expected that the delay term, nd, would be

consistent across models, since the model delay is predominantly a function of the nerve

conduction delays, but this ignores the complex relationship between nd and other model

orders, especially nb. Given then that a freedom in model order variation is allowed, it

would seem that the fixed model orders of Nollo et al. (2001), and Patton et al. (1996)

are limited in scope. De Cecco and Angrilli (1998) and Nollo et al. (2001) seem to

consider a range of model orders; however, the large number of possible parameters (in

some cases over 40) cannot be easily justified due to the low levels of excitation in the
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input signal and the short length of the data sets.

An additional issue with all spectral methods for BRS estimation, which employ the

DFT for calculation of the signal spectra, is the inability of these methods to perform

well for closed-loop data (Ljung, 1999). The popular sequence-based methods for BRS

estimation also disregard the closed-loop nature of the system, by applying a simple

open-loop technique and obtaining regression lines, whose slopes are taken as the BRS

estimate.

5.5.2 Results comparison with other methods

In order to assess the quality of a BRS estimate, Laude et al. (2004) investigate a

number of different properties of the various BRS estimation techniques used with the

EuroBaVar data set.

To assess the reproducibility of the results for each technique, the EuroBaVar data set

includes duplicate data for two different subjects. The modelling technique proposed in

this chapter always produces identical BRS estimate for the same data sets, while some

methods from Laude et al. (2004) show inconsistent reproducibility of results, due to

visual selection of data segments. In addition, six of the estimation techniques reported

in Laude et al. (2004) were unable to provide estimates for at least one subject, due to

various data conditions not being met. Some of the frequency domain methods in Laude

et al. (2004) impose minimum coherence thresholds, which were not satisfied by the data

for a number of subjects. In the case of the sequence methods, the minimum correlation

thresholds and minimum required number of sequences, as well as the minimum change

in SAP or RR applied to some of the estimates, were also not met, leading to an absence

of results for certain subjects/situations. In general, the thresholds imposed have been

designed to improve the reliability of the results; however, these conditions can lead

to a restriction in the use of certain methods in practice. In contrast, the procedure

described in this chapter does not apply specific thresholds but yields a low baroreflex

gain estimate where the data set does not show a well defined relationship between SAP

and RR.

BRS estimation techniques should also be able to distinguish well between data in

the standing and supine positions, since BRS tends to be higher in the supine case.

Most estimation techniques reported in Laude et al. (2004) were able to distinguish
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well between the two positions with an average ratio of supine to standing estimates

of 2.11:1. The high-frequency BRS estimates obtained here showed a much better

distinction between the standing and supine positions with an average ratio of 2.62:1,

while the low-frequency estimates were similar for both positions.

The most important feature of a BRS estimation technique, however, is its ability to

identify subjects with impaired baroreflex, due to the merit of its use as a prognostic

factor in cardiology (La Rovere et al., 1988). Many of the previously reported BRS

estimation techniques used with the EuroBaVar data set were unable to identify the

two subjects with impaired baroreflex, since some methods were not able to provide an

estimate due to threshold restrictions, especially in the supine position. Two techniques

were unable to identify a subject with impaired baroreflex, even if a BRS estimate for

that subject was available, as the values were not sufficiently different or smaller than

the healthy subjects in order to be clearly identified. The BRS estimation technique

developed in this thesis is well able to distinguish the two patients with baroreflex

failure, as the BRS estimates are very low, especially in the standing position, compared

to the other subjects. All the hypertensive subjects, numbered 3, 5 and 11 in Figures

5.8 and 5.9, also show consistently lower BRS values than the healthy population. In

general, the BRSHF index appears to have better selectivity, while BRS estimates for

the standing position also appear to be able to discriminate better between healthy and

impaired baroreflex, compared to the supine position estimates.

Figures 5.10 and 5.11 give the correlation coefficient, R(x,y), between the BRS estimates

obtained using the technique developed in this thesis and the estimates of the 21 BRS

estimation techniques reported in Laude et al. (2004).

The correlation coefficient R(x,y) between two signals, x and y, is defined as:

R(x,y) =
C(x,y)

σxσy
(5.23)

where σx and σy are the standard deviations of x and y, respectively, and C(x,y) is the

covariance of signals x and y, defined as:

C(x,y) =
1

n− 1

n∑

i=1

(x− µx)(y − µy) (5.24)
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and µx and µy are the means of signals x and y respectively.

Methods numbered 1:11 (both in Laude et al. (2004) and in Figures 5.10 and 5.10)

encompass various spectral techniques, methods numbered 12:18 are sequence-based

techniques, method 19 is a trigonometric regressive spectral analysis technique, method

20 is an ‘XAR’ time domain model developed by Porta et al. (2000) and described

in equation (2.2), while method 21 is a Z-coefficient statistical method (Laude et al.,

2004).
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Figure 5.10: Correlation of our LF and HF BRS estimates in the standing position with

results from methods reported in Laude et al. (2004)

The HF BRS estimates obtained here for the supine position seem to be well correlated

with a large number of the estimation methods reported in Laude et al. (2004), as

shown in Figure 5.11, while the LF BRS values have a medium correlation coefficient

with most techniques of about 0.5 or less. In the standing position, the LF and HF

BRS estimates reported in this chapter are well correlated with some of the spectral

methods used in Laude et al. (2004)(namely methods 1,3, 6 and 7 in Figure 5.10), which

are the low-frequency estimates of the transfer function and the α-index methods. The

LF BRS estimates obtained here are also well correlated with the time domain ‘XAR’

model results and those of the Z-coefficient statistical method. The HF BRS estimates

in the standing position are, in addition, well correlated with the estimates of two of
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Figure 5.11: Correlation of our LF and HF BRS estimates in the supine position with

results from methods reported in Laude et al. (2004)

the sequence methods (numbered 16 and 17).

The high correlation between the frequency domain methods employed in Laude et al.

(2004) and the results reported in this chapter is expected since, in effect, both the

method developed here and the frequency domain approaches calculate some form of a

dynamic relationship or transfer function between the input and output signals (SAP

and RR respectively). It is unclear whether all of the spectral methods included in

Laude et al. (2004) employed the DFT to estimate the signal spectra, but it is possible

that this could be the reason for the difference in actual BRS values between our results

and those reported in Laude et al. (2004), with open-loop methods potentially leading

to an overestimation of the BRS value. Despite the good correlation between our

method and the model by Porta et al. (2000), the results still vary significantly, which

is expected, since Porta’s model does not include any past output regressor values.

5.6 Conclusions

The accurate and consistent determination of baroreflex sensitivity is a difficult task.

This is due to the requirement to measure open-loop characteristics within a closed-
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loop system, and relying exclusively on spontaneous measurements. The closed loop

is a challenge for the identification method employed but, in addition, the feedback

system also tries to reduce variability of the controlled variable (blood pressure), further

reducing any natural excitation in the system. In order to address these challenges, this

chapter proposes a rigorous procedure which can assess whether sufficient excitation in

the input signal is available and then consistently provides reliable estimates of the

open-loop properties. BRS estimates under spontaneous conditions may be somewhat

challenging; however, it could be argued that it is preferable to using techniques where

external stimulus is applied due to the difficulty of selecting an input selective enough to

perturb BP without causing any other effects which might adversely affect the system

characteristics. For example, the ‘Oxford method’, which utilises a bolus injection

stimulus (Eckberg and Sleight, 1992) to alter BP, can also alter sinus node function,

which directly alters the RR interval, therefore affecting the correlation between SAP

and RR interval. Also, the intervention of external neck suction (Eckberg and Sleight,

1992) can result in conflicting signals from the two sets of baroreceptors, affecting the

characteristics of the neural arc. In addition, external stimulation, of either physical

or pharmacological nature, may be extremely undesirable in critically ill patients, who

would also be most likely to need a BRS estimate for prognostic purposes.

It is important to highlight that the attempt to identify open-loop characteristics from

closed loop-data is common in physiological system analysis. The body contains a huge

variety of feedback loops, virtually all of which contribute to retaining homeostasis.

It is difficult to isolate open-loop characteristics, or administer selective excitation to

these feedback loops ‘in vivo’. One notable exception, pertinent to the case of BRS

estimation, requires surgical intervention (e.g. denervation), but has a possible role

(using animal subjects) in the assessment of the accuracy of the many methods available

for BRS measurement. Until a true (non-invasive) ‘gold standard’ has been validated, a

rigorous method, which respect the true nature of the systems under study (closed-loop,

spontaneous irregularly-spaced measurements) must be employed.
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Chapter 6

Nonlinear model of renal

vasoaction

6.1 Introduction

The renal circulatory control is central to the overall long term control of blood pres-

sure, through the mechanism of salt and water reabsorption. In addition, sympathetic

stimulation of the renal nerves is the chief mechanism for mediating arterial vasoaction,

effecting short-term blood pressure control. This chapter investigates the development

of a non-linear model for short-term renal vasoaction, based on the dynamic relation-

ship between sympathetic nerve activity and renal blood flow. The model is developed

using experimental data obtained from New Zealand white rabbits, who have undergone

renal denervation and sympathetic nerve activity is artificially simulated.

According to Equation 1.1, blood pressure regulation is mainly achieved through vari-

ation in either cardiac output or peripheral resistance. In this chapter, the focus is on

mechanisms that mediate the resistance to blood flow, while CO is assumed to remain

relatively constant. This assumption is acceptable, since the experimental data showed

a very small standard deviation in heart rate of approximately 2beats/min.

Blood flow is differentially regulated according to physiological needs at any particular

time via a variety of hormonal, neural and intrinsic factors, and a succinct overview of

the local and systemic mechanisms involved in renal blood flow regulation is provided in

Chapter 2. Figure 6.1 (adapted from Richardson et al. (1998)) attempts to summarise
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the various factors involved in mediating vasoaction.

Figure 6.1: Summary of vasoactive mechanisms, adapted from Richardson et al. (1998)

Central to the short-term timescale considered in this chapter, with an approximate

time delay between stimulation and response of 0.6s in rabbits (Guild et al., 2001),

is the neural control of blood pressure, with sympathetic innervation of a number of

major organs and areas of the vasculature, allowing rapid control of resistance via the

central nervous system. Fast-acting local factors are also likely to be involved and will

be considered during the model development stage as well.

Since the purpose of this chapter is to develop a model that can help improve our

understanding of a complex system with multiple interactive mechanisms, it is worth

considering a model type that will give us structural information about the system.

A grey-box model incorporates a model structure based on a priori knowledge about

the system under study, while the model parameters, which generally relate to specific

system characteristics, are determined using experimental data. A grey-box model

would provide a perfect base to construct a model structure for the vasculature response

to SNA, exploiting aspects of the physical system description, while numerical methods

can be used for parameter optimisation, using experimental data from New Zealand

white rabbits.
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In previous work (Mangourova and Ringwood, 2006) a number of optimisation tech-

niques were compared to identify which numerical parameter optimisation method is

mostly suited to the parameter identification of an initial model (Model A), which will

be briefly presented in this chapter. Manual, deterministic and stochastic optimisa-

tion methods were included in the comparison in Mangourova and Ringwood (2006).

Deterministic optimisation methods, such as gradient descent and Newton’s method,

generally yield identical solutions when the same initial conditions are used. Deter-

ministic optimisation algorithms are relatively simple and, at least, a local minimum

solution is almost guaranteed. Stochastic optimisation methods, such as genetic al-

gorithms (GA), simulated annealing and swarm algorithms, on the other hand, use a

degree of randomness in their search methodology, and not only do they give different

solutions even when the same starting point is used, but they also have multiple start-

ing points, which can help to combat premature convergence due to local minima. A

combination of these two methodologies will be considered in this chapter.

6.2 Experimental protocol

Experiments were performed on anaesthetized New Zealand white rabbits at the Cir-

culatory Control Lab., University of Auckland (Leonard et al., 2000). A transit time

flow probe (type 2SB; Transonic Systems, Ithaca, NY, USA), connected to a compatible

flowmeter (T106, Transonic Systems) was used to measure renal blood flow (RBF), with

arterial pressure being monitored using a catheter inserted into the central ear artery

and connected to a pressure transducer (Cobe, Arvarda, CO). The measured signals

were sampled at 500Hz, digitized and saved continuously as 2s averages of each variable.

In addition, heart rate (HR, beats/min) was derived from the MAP waveform.

For stimulation, the renal nerves were placed across a pair of hooked stimulating elec-

trodes and were then sectioned proximal to the electrodes. Stimulation sequences using

frequency modulation (FM) were applied, all using a pulse width of 2ms. Frequencies of

0.5, 1.0, 1.5, 2.0, 3.0, 5.0 and 8.0 Hz were applied in random order using a voltage equal

to that required to produce a maximal RBF response. The data was recorded during

the stimulation interval of 3 min., followed by a 5 min. recovery period before delivering

the next stimulus. A sample of the data collected for one of the animals (Rabbit 1) is

shown in Figure 6.2. The data used in this chapter was normalised, so that instead of
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working with actual units of blood flow (ml/min), the percentage variation from the

initial blood flow level was used. The normalisation was performed separately for each

frequency of stimulation. The resulting scaled data for Rabbit 1 is shown in Figure

6.3.
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Figure 6.2: Experimental data for Rabbit 1 during electrical nerve stimulation and

recovery (includes data for all 7 frequencies of stimulation)
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(includes data for all 7 frequencies of stimulation)
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6.3 Model structure development

An initial model structure for the RBF response to SNA stimulation was previously

proposed in Mangourova and Ringwood (2006) and was parameterised for a single

animal. This initial structure was based on the signal flow diagram shown in Fig.

6.4.

Local effectors

Systemic effects

Smooth

(paracrines, etc)

muscle
dynamics

(other than SNA)

∑SNA Blood flow

+
−

−

Figure 6.4: Feedforward/feedback vasoaction model configuration

The SNA input into the overall system in Figure 6.4 is outside of the closed loop, since

the renal sympathetic nerves were severed, and an electric stimulation was artificially

applied on them, rather than arriving from the CNS. The neural control of the renal

vasculature (represented as smooth muscle dynamics in the control loop) is considered

central to the model, as it is the most significant mechanism acting at the short time

scale of interest, while other blood flow effectors are considered reactionary. The two

feedback paths represent the effects that local and systemic blood flow/pressure control

mechanisms have in response to SNA-induced reduction in RBF.

6.3.1 Model A

Model A, reported in Mangourova and Ringwood (2006), has the structure shown in

Figure 6.5. The dynamics of the two feedback paths, shown in Figure 6.4, are combined

in a single block in Model A. Since the renal vasculature is just one component which

regulates blood pressure, the response from systemic mechanisms to renal SNA stimu-

lation are unlikely to be as significant as that from local effectors. In addition, due to

the short time scales involved (180s of renal SNA stimulation), systemic effectors may
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not be activated sufficiently to be represented in the RBF signals.

∑+

−

Blood flowSNA

Frequency transform Smooth muscle dynamics

Activation levelLocal dynamics

kf
1+τfs

kb
1+τbs

Figure 6.5: Block diagram of vasoaction Model A

Model structure A is based on the following physiological premise. Above a certain

(threshold) value of (normal) blood flow, the response of blood flow to SNA is rela-

tively linear. The ‘Smooth muscle dynamics’ block represents the dynamic response of

the smooth muscle to the electrical stimulus (via a neurotransmitter) from an appropri-

ate receptor. SNA has a vasoconstrictory effect, thus blood flow is reduced. The speed

and magnitude of the response are defined by the time constant (τf ) and gain (kf ) of

the ‘Smooth muscle dynamics’ block. However, when blood flow drops below a certain

value, local factors work progressively harder, as blood flow decreases, to maintain an

acceptable level of local blood flow, causing reactive vasodilation. The magnitude of

this nonlinear response is captured by the ‘Activation level’ block in Fig. 6.5. The ‘Lo-

cal dynamics’ block in Figure 6.5 captures the speed and (linear) magnitude of response

of these local reactionary mechanisms (via the τb and kb parameters respectively). Fi-

nally, a representation of the relationship between the frequency of SNA stimulation

and steady-state blood flow response (reduction) is added. This (mildly) nonlinear

characteristic is given in Fig. 6.5 by the ‘Frequncy transform’ block.

Figure 6.6 shows the typical form of the response obtained from Model A. The initial

response to a step activation in SNA is roughly first order exponential but, as soon as

blood flow reduction reaches a certain (low) level, local (opposite) effects temper the

response. Following the release of the SNA activation, the response returns rapidly

to the original level (and even overshoots it) assisted by the slowly dispersing local

vasodilators.

From the above description, some aspects of the model can be clarified:
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Figure 6.6: Typical large-signal response to SNA activation

• The local vasodilatory response is not linear and has some ‘threshold’ of blood

flow change above which it is activated,

• The response of the local vasodilatory reaction is significantly slower than that of

the smooth muscle to the SNA stimulus (i.e. τb > τf ), and

• The magnitude of the action (to SNA) and reaction (by the local vasodilatory

mechanism) is comparable, at least to an order of magnitude.

6.3.2 Model B

An alternative model structure is proposed in this section, and even though it employs

the same static and dynamic blocks as Model A, it uses a different configuration. In

Model B, as shown in Figure 6.7, the smooth muscle dynamics are taken outside of the

feedback control loop. This structure again represents the reduction in blood flow due

to the neural constrictory effectors being counteracted by the increase in blood flow due

to the local dilatory effectors. The sympathetic input to the ‘Smooth muscle dynamics’

block, however, is not affected by the output of the local dynamics block, as it is in

Model A. It is felt that this modification is justified since the smooth muscle response

to SNA specifically does not change with the addition of local vasodilatory factors, but

rather the response is a balance of the two.
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Figure 6.7: Block diagram of vasoaction Model B

6.3.3 Stimulation/recovery models

A further necessary enhancement of the model accounts for the different time constants

during the stimulation and recovery stages of the experiment. These are due to different

activation and dispersion rates of vasoactive substances, with the slower response during

the recovery from stimulation. This is perfectly reasonable, since:

• Recovery from SNA activation is passive and the smooth muscle may take longer

to relax than contract under forced activation, and

• Hormones, paracrines, etc. may take much longer to disperse than the rate at

which they were formed.

Thus, though the model structure may remain the same for the two stages of the ex-

periment, the gains, time constants and nonlinearity parameters of Model B need to be

defined separately for stimulation (180s) and recovery (300s) in order to obtain a better

representation of the real system. Figures 6.8 and 6.9 show the Model B structure

and parameters for the stimulation and recovery phases of the experiment, respectively.

Since there is no SNA stimulation during recovery, the ‘Frequency transform’ nonlin-

earity during recovery is obsolete.

6.4 Model optimisation

In order to determine the best model parameters, an objective function (Jtot) was

defined as the sum of the errors, Jk obtained for each frequency of stimulation (n =
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Figure 6.8: Block diagram of Model B, during stimulation
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Figure 6.9: Block diagram of Model B, during recovery

number of frequencies of stimulation used):

Jtot =
n∑

k=1

Jk (6.1)

where Jk, the error for each frequency of stimulation, is defined in the form of the

traditional mean squared error (MSE) as:

Jk =
1

N

N∑

i=1

(yi − ŷi)2 (6.2)

• ŷi is the blood flow data obtained from the model simulations,

• yi is the actual blood flow data, and

• N is the number of points in the data (in this case it is 240 points for each

frequency of stimulation)

The purpose of the optimisation routine employed in this chapter is to minimise the ob-

jective function Jtot, and a number of optimisation methods are considered next.
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6.4.1 Manual parametrisation

Given the intuitive nature of the initial model and the strong relationship with the un-

derlying physiology, the first attempts focussed on tuning the model parameters by trial

and error. There are 4 parameters in the dynamic blocks, as well as two piecewise linear

functions, to determine. The relationship between SNA and blood flow is approximately

linear above a certain threshold level of renal blood flow, hence the feedforward loop

dynamics are relatively easy to determine. However, below that threshold level, local

factors are activated to oppose the reduction in blood flow, thus activating the feedback

path in the model. This latter relationship is nonlinear; hence, the feedback model com-

ponent is more challenging to parameterise manually. Once the potential of the model

was ascertained by relatively good results, more advanced numerical techniques were

applied to the models, namely genetic algorithms and gradient techniques.

6.4.2 Genetic algorithms

Genetic Algorithms (GAs) are stochastic and concurrent search methods, which sup-

port a set of individuals in a population of potential solutions, where each individual

contains information about the parameters to be optimised (Mitchell, 1999). These

methods offer a set of solution vectors at every iteration and the fittest individuals can

proliferate to improve the solution sets of future generations. GAs attempt to mimic

the natural selection process by a number of specific operators: selection, mutation and

crossover. At every generation (iteration), the ‘fitness’ of each individual is assessed and

the fittest members of the population are selected for the recombination process. These

fittest individuals recombine and then mutate in order to produce a new generation

of solutions. However, the effectiveness of the algorithm can depend on the encoding

technique used, the size of the population or the number of generations used. GAs can

be coded either as binary strings, real numbers, integers or characters. There are many

advantages to using GAs, which make them suitable for the optimisation problem of

the arterial vasodilation model.

• GAs are initiated with a diverse set of potential solutions, also called hyperspace

vectors and, usually, a new population of the same size is obtained at every

iteration. Using a whole population of solutions facilitates the exploration of a

large solution space, where multiple minima can be identified, reducing the risk
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of premature convergence to a suboptimal solution.

• GAs use probabilistic methods to determine the next generation, which is an

advantage over deterministic methods, as converging on a local minimum can be

easily avoided.

• Even though GAs are probabilistic search methods, they are not random in their

search process, as solutions with better fitness values are ranked higher, thus the

search is directed to solution spaces with better a chance of convergence to a

global minimum.

The above characteristics of genetic algorithms make them particularly suitable for

the optimisation problem of this chapter, as the solution space is likely to be highly

uneven, with multiple local minima, thus numerous concurrent searches would render

the problem more manageable.

The main disadvantages of using GAs come from the fact that, in general, GAs do not

guarantee to converge on a global minimum and also large population sizes and large

number of iterations are needed to ensure good results. This tends to be computation-

ally intensive and time consuming under normal laboratory conditions. Furthermore,

a large numbers of parameters to be optimised can cause the algorithm to behave sub-

optimally, especially if narrow bands for the parameter values are not specified.

6.4.3 Gradient techniques

Gradient descent search methods attempt to find the maximum or minimum of a cost

function by taking the direction and sometimes the relative ‘steepness’ of the slope

at any point in order to approximate the next point in the search. Gradient descent

methods are deterministic in nature, which indicates that they will always arrive at the

same solution, given the same starting point (initial conditions).

One of the advantages of using a gradient method is the speed of response from the

optimiser. In cases where the initial conditions of the search are in the vicinity of the

optimum solution, the function minimum can be found in a few iterations. Furthermore,

these methods almost always guarantee at least a local, but accurate, minimum solution

(Renders and Flasse, 1996). However, the success of the gradient technique in finding

a global minimum is highly dependant on the starting point of the algorithm.
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The parameters of a quadratic cost function, with a single minimum point, would be

easy to optimise with a gradient search method. The cost function of a higher order

optimisation problem, however, would often have an irregular surface with multiple local

minima, apart from the global minimum. The problem at hand, falls into the second

category of optimisation problems, i.e. there are numerous parameters to be optimised,

including some nonlinearities, which indicates that a highly irregular solution surface

is likely to emerge. In the case of multiple minima, it is very likely that the method

would converge on the closest minimum point, rather than the global one.

6.4.4 Combination of GAs and gradient techniques

Despite the wide search for a global solution, genetic algorithms present an important

trade off between computation time, accuracy and reliability, often leading to inef-

ficiency and lack of precision (Renders and Flasse, 1996). An easy solution to this

problem is the combination of genetic algorithms and gradient methods. Since the ge-

netic algorithm covers a wide solution space with numerous individual solutions, the

‘best’ solution is likely to be close to, even if not exactly at, a ‘good’ minimum. The end

point of a GA routine can thus be used as starting point for the gradient optimisation

technique, i.e. the final parameter values obtained from the GA can be set as initial

values in the gradient search algorithm. This would almost certainly lead to a cost

function minimum, either local or global, depending on the original GA solution and

the shape of the cost surface.

In this chapter a quasi-Newton gradient algorithm was employed to determine the

minimum of the objective function. Most Newton gradient search algorithms require

calculations of the gradient and Hessian (second partial derivative of the function,

representing the curvature). Numerical calculation of the Hessian often entails the

addition of very large, with very small, numbers. Such computer operations can cause

the loss of precision and even lead to divergence from the minimum, in some cases.

However, in the quasi-Newton method, the parameter approximations for the next

point in the search are calculated using estimates of the Hessian, calculated in a specific

manner to reduce precision loss (Schoenberg, 2001). The gradient is also approximated,

so the user is not required to explicitly specify it.
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Table 6.1: Dynamic parameters for the manually optimised vasoaction Model A and

the computer optimised vasoaction Model A and Model B

Parameter ModelA(GA+Grad) ModelB(GA+Grad) ModelA(manual)

kf 1.04 1.12 1

kb 72.15 83.097 80

τf (s) 20.09 17.86 20

τb (s) 179.98 150.45 200

Jtot 102.46 97.19 234.59

6.5 Results

A number of result sets are presented in this section. Initially, the parameters for both

Model A and Model B were optimised with genetic algorithms and then the quasi-

Newton method for a single animal, Rabbit 1, and these results are presented next.

For comparison purposes, the parameter values obtained by manually parameterising

Model A are also presented. Subsequently, a set of results will be presented for the

parametrisation of Model B separately for the stimulation and recovery stages of the

experiment. Parameter values are obtained for three different animals.

6.5.1 Model A vs Model B

The results for Model A and Model B, optimised with GAs and the quasi-Newton

method, are compared in this section. The dynamic parameters, as well as the minimum

cost function (for Rabbit 1), are presented in Table 6.1. The models were trained with

all frequencies of stimulation (0.5Hz, 1Hz, 2Hz, 3Hz, 5Hz and 8Hz). The two piecewise

linear functions are shown in Figures 6.10 and 6.11. They are marked as ‘Model A’

and ‘Model B’ on each of the figures. For comparison, the values for the manually

parameterised model A are also shown. As can be seen in Table 6.1, the parameters

for the manually optimised Model A are very similar in values to those optimised by

the GAs and the gradient method. This result confirms the quality of the initial model

structure. The nonlinearities in Figures 6.10 and 6.11 are also very similar.
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Figure 6.10: ‘Frequency’ transform function for the manually optimised Model A (Man-

ual) and the computer optimised Model A and Model B
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Figure 6.11: Local vasodilator ‘Activation level’ for the manually optimised Model A

(Manual) and the computer optimised Model A and Model B
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In terms of comparing Model A and Model B, both the parameter values and the cost

functions are similar. Nevertheless, since Model B yields slightly better cost results, and

also considering the hypothesis that the structure of Model B is a better representation

of the true system, Model B was selected for further enhancement, namely the separate

numerical optimisation of the stimulation and recovery stages of the model.

6.5.2 Stimulation/recovery models

In this section, Model B is parameterised separately for the stimulation and recovery

stages of the experiment, shown in Figures 6.8 and 6.9, thus accounting for the dif-

ferent blood flow responses during stimulation and relaxation. Again, GAs and the

quasi-Newton method were used. In the GA optimisation, the average population size

used was 700 individuals. The starting values were randomly determined by the GA al-

gorithm. The optimum GA solution was selected from a populations of solutions, after

57 generations, on average. In the case of the quasi-Newton method, applied following

the GA search, the initial parameters values were taken to be the parameter values of

the best solution obtained with the GA. The gradient, quasi-Newton, method provided

minor improvements to converge on the local minima in the vicinity of the GA solutions

in an average of 252 iterations.

The stimulation and recovery models, which have the same overall structure (Model

B), but different parameter values, are optimised for three different animals. First,

the models were optimised for Rabbit 1, the original data set used for model structure

development. Then, the stimulation and recovery models were parameterised to fit two

other animal sets (Rabbit 2 and Rabbit 3) to assess the quality of the model structure,

when used across a number of animals.

In Mangourova and Ringwood (2006), Model A was both manually and numerically

parameterised (‘trained’) using all of the data (stimulation and recovery data for all 8

frequencies of stimulation) and a total cost function (Jtot)was evaluated based on the

difference between the training data and the model output. In this chapter, the models

are trained on four frequencies of stimulation, 1.5, 2, 5 and 8Hz, and are tested with

the fifth frequency of 3Hz, with Jtest being the MSE obtained for the test frequency.

This step was undertaken to evaluate the model response, given a previously ‘unseen’

input and data set.
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Table 6.2: Dynamic blocks parameters for the stimulation vasoaction models (Model

B) for 3 animals

Animal kfst kbst τfst (s) τbst (s) Jtot Jtest

Rabbit1 1.0639 40.6486 15.5304 33.9248 19.89 31.85

Rabbit2 1.3246 39.3004 15.2996 32.8461 67.02 25.37

Rabbit3 1.3824 40.5726 15.5118 33.8387 152.76 46.22

Table 6.3: Dynamic blocks parameters for the recovery vasoaction models (Model B),

for 3 animals

Animal kfrec kbrec τfst (s) τbrec (s) Jtot Jtest

Rabbit1 0.3058 524.568 30.7281 100.2366 65.93 87.89

Rabbit2 3.8658 506.744 30.48 229.3788 542.91 356.51

Rabbit3 0.2318 1105.89 43.7512 211.528 1003.01 242.45

Comparing the values in Tables 6.2 and 6.3, significant differences can be noted between

the dynamic parameters of the stimulation and recovery models, with larger gains and

time constants during recovery, as expected. It is also evident that the stimulation

models perform consistently better than the recovery ones, in terms of the training and

test cost function values, across all three animals. In addition, the cost function values

in Tables 6.2 and 6.3 show that Rabbit 2 and Rabbit 3 are not as well represented by

their models as the original data set (Rabbit 1), for which the model structure was built.

It should be noted here that the cost function Jtest is obtained for a single frequency of

stimulation only (3Hz), while the training cost function Jtot is the sum of cost functions

for all 4 training sets, thus a difference of a factor of 4 between them is expected (Jtot

being the higher value). The test results for 3Hz are inferior to the training results,

which is misleading, since including the 3Hz data as part of the training set yields very

similar results to those when the 3Hz data is used for test only (i.e. unseen during

training). This confirms the generalisation capability of the model and suggests that

the 3Hz data has somewhat different characteristics to the rest of the data set.
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Figure 6.12 shows the ‘Frequency transform’ function for all three animals for the stim-

ulation model. During recovery the model’s input is zero, therefore this nonlinear

block’s output is zero for all frequencies of stimulation and does not require graphical

representation. Similar values to ours, for normalised BF response to SNA stimulation

frequencies of 1.5, 2 and 3Hz were reported by DiBona and Kopp (2003).

From the plot in Figure 6.12 it is evident that there are subtle physiological differences

between the three animals, leading to different steady-state percentage blood flow re-

ductions, even if the same frequency of stimulation is applied.
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Figure 6.12: Model B (stimulation/recovery) ‘Frequency transform’ function for three

animals

The ‘Activation level’ nonlinearity for the stimulation model of all three animals is

shown in Figure 6.13, while Figure 6.14 shows the same nonlinearity for the recovery

models. One distinctive feature of the models is the hysteresis effect in the identified

‘Activation level’ characteristics. These roughly take the form shown in Figure 6.15,

which shows a classic hysteresis shape, typical of systems (e.g. electro-magnetic sys-

tems) which have ‘memory’ that takes some time to neutralise. In the case of local

vasoaction, the memory effect possibly comes from the persistence of local vasodilators

which take some time to be dispersed by the bloodstream.
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Figure 6.13: Local factors ‘Activation level’ function for the stimulation model of three

animals (Model B)
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Figure 6.14: Local factors ‘activation level’ function for the recovery model of three

animals (Model B)
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Figure 6.15: Hysteresis effect diagram

A plot of results for the stimulation and recovery stages for Rabbits 1, 2 and 3 is shown

in Figures 6.16, 6.17 and 6.18, respectively. There is a noticeable deterioration in the

quality of the fit for the recovery stage of Rabbits 2 and 3 compared to Rabbit 1, even

though the stimulation stage of the data is relatively well represented. In addition, the

data for Rabbit 3, with a stimulation frequency of 8Hz, appears to be very different

in its characteristics during the recovery stage of the experiment. Since the blood flow

levels during both 5Hz and 8Hz stimulation are saturated close to zero, it is possible

that it took a particularly long period of time before blood pressure returned to normal

levels during recovery (possibly due to very high levels of vasoconstrictory substances,

or else, very low levels of local vasodilators).

6.6 Discussion

This chapter presents a number of large-signal grey-box models for neurally-induced

vasoaction in the renal vasculature. The initial model (Model A), developed in Man-

gourova and Ringwood (2006), even when manually optimised, provided evidence that

there is some merit in this proposed model structure and gives some confidence that

the model maps well onto the underlying physiology. However, the new alternative

model (Model B) more accurately represents the local effector activation since it better

reflects the relative spatial locations of systemic and local actions, leading to slightly

improved numerical results. An improvement from previous work introduces separate

151



6. Nonlinear model of renal vasoaction

0 50 100 150 200 250
−80

−60

−40

−20

0

20

40

Sample time (T=2s)

C
ha

ng
e 

in
 b

lo
od

 fl
ow

 (
in

 %
)

3Hz 

1.5Hz 

2Hz 

5Hz 

8Hz 

Experimental data 

Model results 

Figure 6.16: Comparison of model output and experimental results for Rabbit 1 (Model

B: stimulation and recovery plotted together)
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Figure 6.17: Comparison of model output and experimental results for Rabbit 2 (Model

B: stimulation and recovery plotted together)

optimisation of the model parameters for the stimulation and recovery stages of Model

B. This technique yields mixed results. For Rabbit 1, noting that the cost (MSE) is a
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Figure 6.18: Comparison of model output and experimental results for Rabbit 3 (Model

B: stimulation and recovery plotted together)

‘per sample’ (mean) measure, the training MSE for the stimulation model is 19.9 (Table

6.2), while the recovery stage has a cost value of 65.9 (Table 6.3). Additionally, the test

MSE for stimulation is 31.8, with an MSE value of 87.9 for recovery, which suggests

that the structure of Model B is more representative of the vasculature response during

neural stimulation and may need to be altered in order to better match the recovery

stage.

The work developed in this chapter also improves on previous work by presenting model

results for three different animals. Prior work concentrated on Rabbit 1 only while, in

this chapter, the stimulation and recovery models were optimised for two additional

data sets (Rabbit 2 and Rabbit 3). Additionally, in Mangourova and Ringwood (2006),

the model was trained on data for all frequencies of stimulation. An improvement here

sees training of the stimulation and recovery models on four frequencies of stimulation

and testing them using the remaining frequency of 3Hz.

A number of limitations of this work also need to be mentioned. As evident from the

results, Model B performs better for Rabbit 1 and Rabbit 2 than for Rabbit 3. Also,

the results for individual animals are relatively good, but it has been difficult to obtain

a true generic model. A number of possible explanations exist:
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6. Nonlinear model of renal vasoaction

1. Different voltage levels were used for each animal, as seen in Section 6.2.

2. The various frequencies of stimulation were applied in a random order for each

animal, resulting in possibly different substances being active in each animal dur-

ing the same stimulation frequency, inadvertently leading to differential response

to the same input.

3. The animals were under anaesthesia, which can affect their response.

4. There was no way to ensure that the same number of nerve fibers were recruited

for each animal during stimulation.

The model presented in this chapter focuses on the renal vasculature only and cau-

tion must be exercised in any attempt to extend its applicability to other vasculature

components or, indeed, to TPR in general. The renal vasculature, however, is a major

component of innervated resistance (approximately 30%) and therefore the models have

a significant relevance to TPR.

6.7 Conclusions

In conclusion, the proposed model provides a good representation of the relationship

between SNA and RBF and gives a good basis for developing a truly generic model.

To date, a number of research groups have focused on modelling the relationship be-

tween blood pressure and renal blood flow, where particular attention has been paid to

autoregulation and the tubuloglomerular feedback mechanism (Holstein-Rathlou and

Marsh, 1994; Loutzenhiser et al., 2002). In this chapter the model represents the RBF

response to SNA stimulation. It is likely that autoregulation has a contribution to

the total blood flow response in the system considered in this chapter; however, it is

beyond the scope of this work to quantify specific components and the magnitude of

their action. Nevertheless, it is reasonable to suggest that the feedback loop represents

a sum of the responses of all local mechanisms, which may be of both a vasodilatory

and vasoconstrictory nature.

A study on conscious animals (Berger and Malpas, 1998), which focused on modelling

the BF response to SNA and BP, demonstrated that using both SNA and BP as input to

the model leads to better results than modelling separately the relationships between
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6. Nonlinear model of renal vasoaction

SNA and BF and that between BP and BF. Therefore, future work could attempt

to incorporate previously identified models for the renal blood flow response to blood

pressure and nerve activity. This would be an important step forward, as it is suggested

that 80% of the variation in renal blood flow can be accounted for by changes in blood

pressure and SNA (Berger and Malpas, 1998).

The proposed model structures deliberately separate dynamic and nonlinear elements

(with a Hammerstein structure (Ljung, 1999) in the feedback path) in an effort to

make the model as transparent as possible and facilitate parameter tuning. A success-

ful model can be helpful as part of the modelling effort to investigate the origins of

low-frequency (circa 0.1 Hz in humans) oscillations in blood pressure. Current models

utilise a relatively simple linear first-order dynamic element to represent the resistance

component of the vasculature (Ringwood and Malpas, 2001), and while this representa-

tion is adequate for small-signal situations, it is known that oscillations of a significant

amplitude can occur under certain physiological conditions e.g. haemorrhage (Mal-

pas and Burgess, 2000). Inclusion of the counteractive vasodilatory mechanism in the

models presented in this paper is likely to make a significant change to predictions of

oscillation amplitudes (particularly at higher amplitudes) compared to current models

utilising simple linear models.

Finally, using a slightly different modelling methodology could yield a better representa-

tion of the the physiological system. Instead of using genetic algorithms for parameter

optimisation, a genetic programming (Smith and Cagnoni, 2010) approach could be

taken. This would involve the use of computer software not only to tune the parame-

ters of a predefined set of ‘blocks’ in the model, but also to select the model ‘blocks’

and configuration that are most appropriate to represent the data.
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Chapter 7

Conclusions and future work

7.1 Summary and conclusions

This thesis presents the development, implementation and simulation of a number of

novel mathematical models of important short- and long-term blood pressure control

systems in the body.

A wide variety of mathematical models exist, including, among others, continuous- and

discrete-time, linear and nonlinear, white-, grey- and black-box models. The model

type is selected based on the type of system under study, the availability of a priori

information about the system structure and parameters, and on the application and use

of the resulting model. Models can also be designed using mathematical equations from

first principles or they can be implemented and simulated in a modelling and simulation

environment.

A nonlinear, grey-box modelling approach has been taken, in this thesis, for two dif-

ferent system representations. Grey box models combine the characteristics of white-

and black-box models, by adopting a model structure, which is based on some known

physical system characteristics, while the model parameters are identified using nu-

merical optimisation methods and experimental data (Ljung, 2008). The modelling

applications, where nonlinear grey-box modelling was applied in this thesis, were those

of salt-induced hypertension and local vasoaction under SNA stimulation. The parame-

ter identification methods, used in the two different modelling exercises, were markedly

different, thus demonstrating a modest range of possible techniques for physiological
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modeling.

In the local vasoaction model, described in Chapter 6, a significant external excitation is

applied to the system, namely, electrical stimulation of the renal nerves, while the regu-

latory system operates in open loop, due to the severing of the renal nerves connection

with the central nervous system. A model (Model B) was optimised separately for the

stimulation and recovery stages of the model experiment with a combination of genetic

algorithms and a quasi-Newton method. The parameter identification routine, proved

to be very computationally intensive, while not necessarily obtaining optimum results,

possibly due to the unsuitability of the model structure for the representation of the

recovery part of the experiment. With the recent leap in computational power, how-

ever, genetic algorithms are now much less time-consuming and provide a very valuable

technique (in combination with a gradient descent method, such as the quasi-Newton

method), for physiological model parameter identification. It is worth noting that the

vasoaction model, developed in Chapter 6 was very successful in representing the blood

flow dynamics during nerve stimulation, but a different structure for the recovery pro-

cess is needed, in order to understand and better represent the mechanisms involved in

arterial vasoaction. The development of models such as the nonlinear grey-box model

described in Chapter 6 is an important step in producing an overall model of the neural

control of the circulation.

Similarly, modelling of the dynamics of salt-induced hypertension, using a nonlinear

grey-box model (Chapter 4), proved to be very successful for a variety of experimental

protocols. The model was developed to represent the blood pressure response to a high-

salt diet in the Dahl rat. Three different model structures of varying complexities were

proposed and their parameters were optimised using four distinct data sets (obtained

from 4 separate experimental protocols). Even though the regulatory control loops of

all animals were intact from a surgical and pharmacological perspective, and thus one

would expect that a linear model would be adequate, this did not prove to be the case.

A nonlinear model structure was necessary possibly due to a genetic predisposition of

the Dahl-S rat to SIH, which would have led to one or more of the blood pressure

control systems in the Dahl-S rat to malfunction, especially after prolonged exposure

to a high-salt diet. Combining a model structure based on some physical character-

istics of the system and the simplex method (Nelder and Mead, 1965) for parameter

optimisation proved to be very successful in achieving a high-fidelity blood pressure
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model response. The most complex of the three SIH models, developed in Chapter 4,

showed the distinct multi-component nature of the long-term blood pressure response

to a high-salt diet. Even though it is difficult to assign exact physiological meaning to

each model component with certainty, the distinct components indicate the magnitudes

and time scales(time constants) of the various processes involved in the development of

salt-induced hypertension in the Dahl-S rat.

In contrast, a black-box modelling approach was taken to derive a mathematical model

of the arterial baroreflex, with the purpose of establishing a rigorous procedure for

baroreflex sensitivity estimation in humans. The ARMAX black-box model, employed

to represent the baroreflex (Equation (5.1)), is linear, since it was designed to utilise

spontaneous closed-loop SAP and RR interval data, as the system input and output

respectively, and the RR signal variation around the equilibrium point is relatively

small. The black-box structure of the model does not lend itself to assigning physio-

logical meaning to the model components; however, the purpose of the model is quite

different - the focus is on estimating the BRS index from the model’s frequency re-

sponse characteristics. The novel system identification approach to BRS estimation

developed in Chapter 5 (based on the black-box model of the baroreflex) appears to be

very successful in estimating BRS and distinguishing subjects with BRS failure. The

BRS estimation method developed in this thesis also adheres tightly to the principles

of system identification in closed loop, which are not commonly observed in some of the

popular existing BRS estimation methods, as outlined in Chapter 5. The system identi-

fication approach to BRS estimation, employed in Chapter 5 has only been tested using

the EuroBaVar (Laude et al., 2004) data set, but if tested and validated on a variety

of additional data sets, it could possibly be incorporated and used in clinical settings

as a predictor of future adverse outcomes (La Rovere et al., 2008). While the system

identification approach described in Chapter 5 in this thesis is primarily concerned with

the development of a systematic and rigorous method for BRS estimation, this mod-

elling method can also be potentially applied to other regulatory loops within the body,

where identification of open-loop properties from closed-loop data, is required.

Finally, this thesis has taken a large integrative model (Guyton et al., 1972b) and has

taken its implementation to a new level. Guyton’s model equations were previously

implemented in a C-like programming language and the model was simulated in the

MODSIM environment (Montani et al., 1989). Guyton’s model conception and com-
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puter implementation was, at the time, a huge achievement and provided a tremendous

research tool to the physiological community; however, the potential for modernisa-

tion of the model implementation, and hopefully further development of the model

itself, grew with the advent of more powerful computing and modelling and simulation

software with more advanced visualisation capabilities. This thesis has taken a new

approach to Guyton’s model implementation, the model was implemented in a visual,

hierarchical block-diagram environment (MATLAB’s Simulink), where each block of the

model has a specific meaning, but individual blocks are also combined into meaningful

subsystems and systems. In addition, some of the most basic blocks were combined

in such a way that they could visually provide basic information on parts of the sys-

tem characteristics, such as steady-state gains and time constants. It is anticipated

that concealing the, sometimes, visually unnecessary detail of the various systems and

subsystems, would facilitate researchers in improving and building on sections of the

model. Even though some other Simulink implementations of older versions of Guyton’s

model exist (Thomas et al., 2008; Kofranek et al., 2007), none have used the most up to

date version of Guyton’s model and none have employed the specific hierarchical visu-

alisation method used in this thesis. Guyton’s model has been developed further under

the QHP/HumMod project (Hester et al., 2008, 2010, 2011); however, there are sig-

nificant discretisation and implementation issues, due to the model being implemented

in a high-level programming language in sequential code, as discussed in Chapter 3.9.

In addition, the XML format of the HumMod model equation presentation is not user

friendly, as the model’s overall structure is not easily visualised.

Currently, Simulink-like environments remain one of a few limited options for the de-

velopment and validation of an integrative model with the capability of visualising and

emulating the hierarchical continuous-time nature of physiological systems (by using

continuous-time dynamic blocks) and simulating the model with a numerical solver

that is appropriate for the system.

The breadth of applications, and modelling and optimisation methods, in this thesis

present an opportunity to make general observations about modelling of physiological

systems. Even relatively uncomplicated techniques, from an engineering perspective,

can significantly aid the advancement of physiological research. The variety of meth-

ods used here are applicable to many different physiological systems and there is a

huge potential for future physiological exploration with the aid of mathematical mod-
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elling.

7.2 Future work

There is enormous potential to further develop the work presented in this thesis. Four

distinct applications of mathematical modelling were examined in this work and each

of these areas can be improved on in the future.

Guyton’s model implementation

There is considerable opportunity to develop Guyton’s integrative physiology model

further, in the form of a community project, in order for researchers to be able to use

and add to and improve the existing model. The hierarchical, block-diagram, form

of the Simulink implementation of the latest version of Guyton’s model, presented in

Chapter 3, has a very intuitive nature and visualisation. The addition of an open-access

repository system for model components, where researchers can store various updates

and suggestions, would benefit the whole physiology community and would help further

the research into systems physiology. A potential improvement would also see the model

implemented in a free open-access modelling and simulation environment, which does

not suffer with compatibility issues between ‘versions’ of the software; however, it is

currently difficult to identify a good potential solution, as the need for a stable, visual,

block-diagram, hierarchical environment places a lot of constraints on the possible choice

of software.

Baroreflex sensitivity estimation

The system identification approach to BRS estimation proposed in this thesis has

tremendous potential for development and application in both research and clinical

practice. The approach would need to be tested further, and validated, with addi-

tional experimental data, while clear guidelines for distinguishing between subjects

with healthy and impaired baroreflex are required. The ARMAX model (Equation

(5.1)) of the baroreflex used in Chapter 5 has a single input (SAP) and a single output

(RR interval). Arguably, a better model representation of the system could be obtained
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by measuring respiration and including it as an external input to the model. Another

direction for further work, in the BRS estimation field, is currently being investigated.

The validity of using the very popular sequence method for BRS estimation is being

examined. The work is concentrating on artificially designed signals, so that the ‘cor-

rect answer’ of the estimation method is known with certainty in advance. Preliminary

results show that there is a strong positive bias for a system with positive gain when

a sequence method is used for gain estimation; thus, the use of sequence methods for

BRS estimation may need to be reconsidered.

Modelling of salt-induced hypertension

The models of salt-induced hypertension in the Dahl rat, presented in Chapter 4 could,

in the future, be tested and validated against data from other animal species, in order

to investigate the generic applicability of the model structure. The models could also

be used to investigate the specific physiological mechanisms that each block represents,

as it would be possible to design more informative experimental protocols in the future,

with the specific knowledge of the type of blood pressure response that is obtained by

salt loading. Additionally, the current models, described in Chapter 4, are optimised

for individual animals only, while the measurement of additional variables during fu-

ture experimental protocols could potentially allow the development of an inter-animal

model. Furthermore, analysis of the health status of the kidneys could also potentially

provide information on the nature of some of the blocks in the model structure.

Modelling of vasoaction

Mathematical modelling of the behaviour of the renal vasculature, and the resulting

renal blood flow, during and after electrical nerve stimulation (simulating SNA), has

much potential for future developments. The novel model structure (Model B), de-

veloped in Chapter 6, performed better for the stimulation than recovery part of the

experiment, even when the model parameters were optimised separately for stimulation

and recovery. A different model structure is possibly needed to represent the recov-

ery stage of the experiment. An attractive method for improving the model structure

would be to use a genetic programming approach (Smith and Cagnoni, 2010), where

the optimisation process selects not only the model parameters, but also the ‘blocks’
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and ‘links’ in the model structure too. Once a satisfactory model is obtained, it can

be used as part of an overall model for the neural control of the circulation (Ringwood

and Malpas, 2001).
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Appendix A

Salt-induced hypertension model

results

A.1 3-component model results

Table A.1: SIH modelling results for individual salt-sensitive animals of Protocol 1,

3-component model

Animal MSE MAE Gas τas (d) Gpr Gss

SB1 3.7547 1.3586 3.4075 2.3076 0.0009 0.0745

SB2 4.2531 1.7405 3.4113 1.7416 0.004 0.1077

SB5 4.0675 1.5246 3.4453 1.3718 0.0027 0.0611

SB7 4.0702 1.585 3.4821 1.1801 0.0031 0.1177

SB10 4.2693 1.735 2.5603 1.2141 0.0101 0.1491

SB11 22.8316 3.6309 4.0055 0.6265 0.0112 0.1452

SB12 5.4995 1.9524 3.8247 0.9377 0.0004 0.0875

SB13 4.5589 1.5886 3.1035 0.961 0.0044 0.0855

SB16 6.6754 2.1206 3.9735 1.391 0.0034 0.1034
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Table A.2: SIH modelling results for individual salt-sensitive animals of Protocol 2,

3-component model

Animal MSE MAE Gas τas (d) Gpr Gss

R07 15.1644 3.0629 5.8042 2.2654 0 0.1257

R08 3.2228 1.4455 1.7589 1.1805 0.0132 0.0223

R10 3.5696 1.4297 2.5544 1.2678 0.0079 0.0133

R11 5.8613 1.8569 1.1525 1.7609 0.0268 0

R19 17.7748 3.2704 1.8125 0.8755 0.0172 0.2041

Table A.3: SIH modelling results for individual salt-sensitive animals of Protocol 3,

3-component model

Animal MSE MAE Gas τas (d) Gpr Gss

SB23 8.5748 2.2531 1.4931 1.4729 0 0

SB24 5.1826 1.9478 1.2628 1.0685 0.0016 0.042

SB31 9.3277 2.409 1.4415 1.8262 0.0091 0.1298

SB32 7.7997 2.3398 2.4206 1.8306 0.0008 0.133

SB33 2.9092 1.2953 1.2535 1.8343 0.0067 0.0488

SB35 6.7102 2.1777 0.4547 1.5082 0.0391 0.0184

SB36 5.4087 1.8664 2.4207 1.6652 0 0.0404

SB37 5.7305 1.9905 2.188 1.5938 0 0.097
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Table A.4: SIH modelling results for individual hybrid animals of Protocol 4, 3-

component model

Animal MSE MAE Gas τas (d) Gpr Gss

FF2 2.2176 1.1944 1.2322 1.746 0.0039 0.0252

FF5 1.6622 0.997 0.6352 2.4346 0.0108 0.0559

FF6 2.4552 1.2963 1.1463 1.3991 -0.0003 0.0068

FF8 1.8653 1.0994 1.0103 1.9893 0.0083 0.0242

FF9 1.2757 0.8091 1.7362 1.7337 0.0002 0.0351

FF11 6.8646 1.864 0.9307 1.5328 0.0056 -0.0324

FF14 1.2649 0.7888 0.6986 1.5304 0.0026 0.0162

FF17 2.4316 1.1129 1.074 1.8358 0.0062 0.0271

FF21 1.4008 0.9335 1.1121 1.7858 0.0025 0.0159

FF24 2.9448 1.221 3.0251 1.9617 -0.0011 0.0593

FF25 1.9724 0.988 1.38 2.2358 0.0054 0.0501

FF27 2.1311 1.0426 1.231 2.033 0.0042 0.0121

Table A.5: SIH modelling results for individual salt-resistant animals of Protocol 1,

3-component model

Animal MSE MAE Gas τas (d) Gpr Gss

RB2 2.1481 0.8118 1.0061 9.0046 -0.0061 0.0095

RB3 2.5335 1.088 1.5873 0.6264 -0.0061 0.0285

RB5 1.8012 0.9586 1.503 1.2229 -0.004 0.0407

RB6 0.8892 0.5585 1.5407 1.2505 -0.0063 0.0364

RB8 3.2859 0.8598 1.5743 1.3519 -0.0074 0.0308

RB10 0.8263 0.5888 -0.5476 0.6266 -0.0012 0.0159

RB11 1.9693 1.0268 0.6223 0.6265 0.0005 0.0258
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Table A.6: SIH modelling results for individual salt-resistant animals of Protocol 3,

3-component model

Animal MSE MAE Gas τas (d) Gpr Gss

RB18 3.4655 1.3196 0.3177 1.1123 0.0141 -0.0006

RB19 3.2785 1.4388 0.4529 1.6614 0.0059 -0.0106

RB20 2.3774 1.2583 0.8742 0.7585 -0.0056 0.033

RB21 2.6686 1.2418 1.4303 27.8952 0.0333 -0.0913

RB22 2.3793 1.2072 0.3304 0.8668 0.0219 0.0163
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A.2 4-component model results

Table A.7: SIH modelling results for individual salt-sensitive animals of Protocol 1,

4-component model

Animal MSE MAE Gas τas (d) Gpr Gss Gc τc (d)

SB1 3.5517 1.2934 5.5183 4.1536 0.0007 0.0801 2.4827 8.7662

SB2 3.5951 1.5238 12.3905 5.0189 0.0021 0.1296 11.4317 8.7813

SB5 4.1402 1.5355 4.6272 2.6138 0.0028 0.0696 1.9611 10.1671

SB7 3.7503 1.5295 3.4024 1.5743 0.0031 0.1121 -0.5193 39.3592

SB10 3.9285 1.5289 3.4927 2.4075 0.01 0.1904 4.3759 22.2371

SB11 14.4892 2.8884 4.059 0.6877 0.0156 0.2101 5.7202 28.5162

SB12 4.9526 1.8528 8.8138 2.4143 0.0007 0.0946 5.7417 4.6302

SB13 4.205 1.4947 3.647 1.9484 0.0055 0.1206 3.481 26.7849

SB16 5.6452 1.9055 6.1784 2.9862 0.0042 0.1591 6.5791 18.2401

Table A.8: SIH modelling results for individual salt-sensitive animals of Protocol 2,

4-component model

Animal MSE MAE Gas τas (d) Gpr Gss Gc τc (d)

R07 13.7273 3.1533 8.0644 4.5671 0 0.0861 0.6375 6.438

R08 1.9622 1.1137 2.8052 2.1506 0.0089 0.0493 2.8939 17.988

R10 2.4772 1.2273 2.5719 1.7242 0.009 0.0057 0 18.664

R11 4.2577 1.6309 3.475 2.7366 0.0086 0.117 10.6539 32.3719

R19 16.2897 3.0981 2.1817 1.8714 0.0195 0.4343 28.5152 77.8351
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Table A.9: SIH modelling results for individual salt-sensitive animals of Protocol 3,

4-component model

Animal MSE MAE Gas τas (d) Gpr Gss Gc τc (d)

SB23 5.0288 1.7229 5.2519 1.9077 0.0024 0.0131 5.0945 5.1413

SB24 2.1573 1.0948 2.2808 1.5697 0.0091 0.0404 2.1391 9.2932

SB31 5.6248 1.8609 0.8883 2.1761 0.0638 0.1158 1.9696 20.7528

SB32 4.1656 1.604 3.3549 2.5361 0.0092 0.138 3.4513 17.2127

SB33 2.0626 1.1599 3.4697 3.0668 0.0071 0.0543 3.5832 8.3518

SB35 4.4001 1.6518 3.3557 2.7279 0.0125 0.0199 4.5858 6.9818

SB36 2.8215 1.3286 4.2908 1.8874 0.003 0.0342 2.3302 4.0819

SB37 2.971 1.4066 19.5399 2.5113 0.0008 0.083 17.737 2.8027

Table A.10: SIH modelling results for individual hybrid animals of Protocol 4, 4-

component model

Animal MSE MAE Gas τas (d) Gpr Gss Gc τc (d)

FF2 2.3509 1.2208 1.8751 2.5606 0.0027 0.0278 0.8312 6.6798

FF5 1.5657 0.9382 2.0154 4.206 0.0039 0.0628 1.9667 10.7616

FF6 2.4852 1.3244 1.3221 2.1735 -0.001 0.0077 0.0923 1.4136

FF8 1.8733 1.0975 2.758 2.7559 0.0033 0.0229 1.8036 3.0626

FF9 1.1782 0.7964 2.0672 2.2268 0.0002 0.0366 0.4102 5.9518

FF11 6.7752 1.859 1.7351 2.3884 0.0035 -0.0274 1.1599 8.3323

FF14 1.2302 0.7733 1.6775 2.7239 0.0013 0.0236 1.4205 8.8538

FF17 2.4052 1.1269 3.4881 3.7462 0.0023 0.0293 2.7446 6.4253

FF21 1.347 0.8914 6.7723 4.5313 0.0006 0.0214 6.099 6.218

FF24 2.6244 1.2069 3.2444 1.5145 0 0.072 1.3236 16.2809

FF25 2.0147 0.9938 3.4859 3.2779 0.0022 0.0512 2.2399 4.4555

FF27 2.1541 1.053 5.1742 3.3593 0.0011 0.0139 4.1339 4.3532
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A. Salt-induced hypertension model results

Table A.11: SIH modelling results for individual salt-resistant animals of Protocol 1,

4-component model

Animal MSE MAE Gas τas (d) Gpr Gss Gc τc (d)

RB2 2.1389 0.7895 1.3729 16.3126 -0.006 0.0078 0.0082 63.1923

RB3 2.4304 1.0882 1.6294 1.1208 -0.0063 0.0291 0.0533 107.6718

RB5 1.182 0.7725 6.9832 1.3551 -0.0004 0.0431 5.8375 2.0107

RB6 0.8962 0.577 1.8182 2.4093 -0.0055 0.0376 0.3031 7.3988

RB8 3.1701 0.7949 1.5502 0.7838 -0.0071 0.0309 0.0457 3.65

RB10 0.9883 0.6881 0 1.8193 0 0.019 0.6185 7.2624

RB11 1.7543 0.8841 0.8814 1.126 0.0038 0.0384 1.2188 19.2154

Table A.12: SIH modelling results for individual salt-resistant animals of Protocol 3,

4-component model

Animal MSE MAE Gas τas (d) Gpr Gss Gc τc (d)

RB18 3.431 1.362 2.6261 2.4257 0.0012 0.0112 2.7551 4.6791

RB19 3.1508 1.4512 2.1927 2.3506 0.0039 0 2.5757 5.0532

RB20 1.8695 1.0586 2.4995 2.0291 0.0002 0.0492 2.7227 8.0771

RB21 2.3426 1.161 1.3444 1.8845 0.0032 0 1.502 4.3077

RB22 2.0572 1.1358 2.6179 2.2817 0.005 0.0263 3.13 5.6707
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A.3 5-component model results

Table A.13: SIH modelling results for individual salt-sensitive animals of Protocol 1, 5-component model

Animal MSE MAE Gst τst (d) Grec τrec (d) Gpr Gss Gc τc

SB1 2.6928 1.2262 7.1025 4.029 5.9177 2.0673 0 0.0767 3.3133 2.7626

SB2 3.3133 1.4937 16.7147 4.9955 27.2904 4.7199 0.0012 0.1241 14.8307 6.9824

SB5 3.8153 1.4948 3.7756 3.6891 12.7433 2.0594 0.0034 0.1181 7.0431 71.7445

SB7 2.9125 1.3721 5.0696 5.8774 8.7936 1.2741 0 0.118 0.4389 0.9995

SB10 3.391 1.4276 10.5689 36.4752 29.99 1.914 0 0.1649 2.6967 11.5944

SB11 8.656 2.0892 14.653 10.4533 3.5932 1.1117 0 0.1832 6.36 8.8459

SB12 4.7376 1.8092 8.2252 2.8935 13.8756 2.128 0.0003 0.0949 4.7999 4.8165

SB13 3.4267 1.3206 4.8048 5.4613 16.6319 1.6048 0.0035 0.1232 4.071 18.6358

SB16 4.7098 1.7397 16.9832 5.0204 39.8196 3.1402 0.0007 0.1268 13.6714 6.0209
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Table A.14: SIH modelling results for individual salt-sensitive animals of Protocol 2, 5-component model

Animal MSE MAE Gst τst (d) Grec τrec (d) Gpr Gss Gc τc (d)

R07 6.4887 1.9963 5.4193 1.1212 4.7085 9.679 0.0069 0.0034 0 0.7085

R08 1.5356 1.0009 9.4688 3.2723 14.5958 2.4505 0.0021 0.0482 8.2965 4.5322

R10 2.1747 1.1376 4.0396 1.6727 2.1227 1.217 0.0048 0.0152 1.3078 0.5961

R11 2.0212 1.1962 18.4811 5.1436 13.7851 3.8122 0.0011 0.0435 17.338 5.9077

R19 12.256 2.5871 10.343 4.9855 2.2702 1.7453 0 0.3215 9.3052 8.5883
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Table A.15: SIH modelling results for individual salt-sensitive animals of Protocol 3, 5-component model

Animal MSE MAE Gst τst (d) Grec τrec (d) Gpr Gss Gc τc (d)

SB23 3.3981 1.4907 7.4912 2.3274 4.2053 0.4508 0.0021 0.0093 3.8004 0.6395

SB24 1.5423 0.9327 4.2798 5.1064 1.6026 0.5332 0.0093 0.0392 0.9756 1.2927

SB31 3.6685 1.4777 5.8899 2.6458 0.8608 1.7024 0.0062 0.1374 3.6511 2.6298

SB32 2.885 1.327 7.1238 3.7298 0.3609 3.2111 0.0047 0.1491 5.3152 7.8237

SB33 1.4848 0.9621 6.7422 16.316 0.1151 1.073 0.0146 0.0576 0.2639 0.2887

SB35 4.0233 1.5949 9.8601 3.2347 1.9181 3.2738 0.0037 0.0283 9.2584 4.0223

SB36 2.757 1.3039 2.7859 1.5182 1.2523 1.2194 0.0037 0.0364 0.1818 0.2051

SB37 2.7867 1.3457 2.3408 1.6437 0.5545 1.5822 0.0056 0.0866 0 0.231

173



A
.

S
alt-in

d
u

ced
h
y
p

erten
sion

m
o
d
el

resu
lts

Table A.16: SIH modelling results for individual hybrid animals of Protocol 4, 5-component model

Animal MSE MAE Gst τst (d) Grec τrec (d) Gpr Gss Gc τc (d)

FF2 2.3038 1.1995 3.0522 2.46 4.9961 3.0894 0.0025 0.019 2.2206 3.6124

FF5 1.6757 0.9972 1.0673 0.9549 2.6148 3.6389 0.0101 0.0414 0.9142 0.2077

FF6 2.2983 1.2615 2.1516 1.8135 7.7035 6.1407 0.0018 -0.0075 1.1058 3.5445

FF8 1.8942 1.0969 2.0488 1.3753 4.4309 2.4951 0.0028 0.0342 0.3732 2.8791

FF9 0.9802 0.7591 2.287 0.9734 12.4785 2.4797 0.0004 0.0342 0.4282 1.4887

FF11 6.4479 1.8315 4.0681 1.9808 0.8155 3.029 0.0007 -0.0167 2.7361 4.9829

FF14 0.9231 0.7093 3.6404 1.665 5.5883 5.2617 0.0017 0.0063 2.8305 3.576

FF17 2.1061 1.0636 3.3524 1.5827 7.8912 3.9303 0.0024 0.0256 1.9917 3.8067

FF21 1.315 0.8798 5.3994 4.2776 5.8413 4.4384 0.0007 0.0222 4.625 6.544

FF24 2.0084 1.0108 2.5756 20.941 10.2154 1.909 0.0001 0.0341 0.4234 4.3177

FF25 1.7859 0.9434 2.5496 1.0004 8.0267 2.622 0.0038 0.0447 1.3558 1.2487

FF27 2.0261 1.0295 2.0778 1.9619 4.0896 3.5843 0.003 0.0116 0.849 5.5433
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Table A.17: SIH modelling results for individual salt-resistant animals of Protocol 1, 5-component model

Animal MSE MAE Gst τst (d) Grec τrec (d) Gpr Gss Gc τc

RB2 2.0512 0.7658 3.6076 18.417 231.1979 210.2479 0.0027 -0.0934 0.2393 2.6079

RB3 2.3587 1.0209 1.8588 0.511 11.5364 58.3347 0.0006 -0.0033 0.4063 4.9349

RB5 1.1831 0.781 2.5663 0.5463 5.8415 1.1042 0 0.0429 1.6538 3.6746

RB6 0.8077 0.5152 1.5561 0.7551 2.7628 53.2987 0.0007 0.0323 2.6185 64.1616

RB8 3.2156 0.8249 1.5092 0.641 19.892 188.3452 0.0029 0.2026 146.7916 646.8745

RB10 0.8126 0.5666 3.5197 5.8764 1.9807 8.2046 0.0013 0.0096 4.2962 5.9846

RB11 1.5666 0.8526 2.5707 3.0705 0.5419 1.2184 0.0003 0.0307 2.1069 4.1926
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Table A.18: SIH modelling results for individual salt-resistant animals of Protocol 3, 5-component model

Animal MSE MAE Gst τst (d) Grec τrec (d) Gpr Gss Gc τc (d)

RB18 2.8892 1.1487 3.8675 1.1199 2.3014 0.5118 0 0.0104 2.8894 0.4452

RB19 2.2907 1.2156 5.4806 2.0532 1.4772 1.1464 0.0007 0.0022 3.9128 1.0391

RB20 1.5534 1.0147 5.2544 7.535 0.4354 0.8848 0 0.0432 1.2102 3.4383

RB21 1.9766 1.0894 2.9153 0.5297 1.0956 0.5694 0.0014 -0.0083 2.4826 0.3322

RB22 1.925 1.134 4.7192 2.488 1.6295 1.7834 0.0019 0.0305 3.8858 2.697
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B. Baroreflex sensitivity estimation results

B.1 Persistence of excitation figures
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Figure B.1: Persistence of excitation in SAP for EuroBaVar Subjects 1-6 in the standing

position
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B. Baroreflex sensitivity estimation results
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Figure B.2: Persistence of excitation in SAP for EuroBaVar Subjects 7-12 in the stand-

ing position
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B. Baroreflex sensitivity estimation results
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Figure B.3: Persistence of excitation in SAP for EuroBaVar Subjects 13-18 in the

standing position
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Figure B.4: Persistence of excitation in SAP for EuroBaVar Subjects 19-21 in the

standing position
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B. Baroreflex sensitivity estimation results
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Figure B.5: Persistence of excitation in SAP for EuroBaVar Subjects 1-6 in the supine

position
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B. Baroreflex sensitivity estimation results
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Figure B.6: Persistence of excitation in SAP for EuroBaVar Subjects 7-12 in the supine

position
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Figure B.7: Persistence of excitation in SAP for EuroBaVar Subjects 13-18 in the

supine position
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B. Baroreflex sensitivity estimation results
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Figure B.8: Persistence of excitation in SAP for EuroBaVar Subjects 19-21 in the

supine position
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B. Baroreflex sensitivity estimation results

B.2 ARMAX model parameters - standing position

Table B.1: ARMAX model parameters, Subject 1, standing position, nd=1

index (i) 1 2 3 4 5 6

ai 1 -2.0712 1.6979 -1.279 0.9481 -0.2768

bi -0.3355 4.9536 -10.462 8.1577 -2.474 0.2651

ci 1 0.6755 -1.769 -1.46 0.8025 0.7703

Table B.2: ARMAX model parameters, Subject 2, standing position, nd=1

index (i) 1 2 3 4 5

ai 1 -1.3017 0.9406 -0.8004 0.4215

bi 0.9198 -0.1879

ci 1 0.9265

Table B.3: ARMAX model parameters, Subject 3, standing position, nd=3

index (i) 1 2 3 4 5 6

ai 1 -2.089 1.614 -1.2397 1.1774 -0.4373

bi 1.1591 -2.1667 1.0339

ci 1 0.1795 -1.7251 -0.1759 0.7264 0
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B. Baroreflex sensitivity estimation results

Table B.4: ARMAX model parameters, Subject 4, standing position, nd=2

index (i) 1 2 3 4 5 6

ai 1 -0.7264

bi 3.608 -5.0422 4.0526 -2.4493 1.2953 -0.9252

ci 1 0.9137

Table B.5: ARMAX model parameters, Subject 5, standing position, nd=0

index (i) 1 2 3 4 5 6

ai 1 -1.2466 0.2269 -0.1657 0.2771

bi 0.3926 -0.2626 0.8468 -1.2101 0.3408

ci 1 1.5912 -0.7851 -1.9657 -0.211 0.3788

Table B.6: ARMAX model parameters, Subject 6, standing position, nd=0

index (i) 1 2 3 4 5 6

ai 1 -1.7521 1.7357 -1.527 1.0548 -0.3675

bi 2.5422 -3.1296 2.837 -2.2914 1.1966

ci 1

Table B.7: ARMAX model parameters, Subject 7, standing position, nd=0

index (i) 1 2 3 4 5 6

ai 1 -1.4682 1.4095 -1.277 0.8109 -0.2041

bi 3.6829 -6.2392 4.9481 -2.8778 1.8359

ci 1

Table B.8: ARMAX model parameters, Subject 8, standing position, nd=0

index (i) 1 2 3 4 5

ai 1 -0.1107

bi 5.0702 1.3057 -3.4039 1.8808 3.4338

ci 1 2.5582 2.3289 0.75
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B. Baroreflex sensitivity estimation results

Table B.9: ARMAX model parameters, Subject 9, standing position, nd=0

index (i) 1 2 3 4 5

ai 1 -0.1388 0.1849 -0.449 0.3079

bi -0.2122 1.6619

ci 1 2.3764 2.1368 0.7032

Table B.10: ARMAX model parameters, Subject 10, standing position, nd=1

index (i) 1 2 3 4

ai 1 -0.4956 0.4454 -0.44

bi 4.116 -5.4588 2.2804

ci 1 0.7899

Table B.11: ARMAX model parameters, Subject 11, standing position, nd=1

index (i) 1 2 3 4 5

ai 1 -0.6802

bi -0.2325 0.6363 0.7715 -0.541 -0.5448

ci 1 2.9629 2.9511 0.9874

188



B. Baroreflex sensitivity estimation results

Table B.12: ARMAX model parameters, Subject 12, standing position, nd=0

index (i) 1 2 3 4 5 6

ai 1 -1.7461 1.672 -1.584 0.9043 -0.241

bi 3.816 -6.6089 3.1008

ci 1 -0.1019 -0.8878

Table B.13: ARMAX model parameters, Subject 13, standing position, nd=2

index (i) 1 2 3 4 5 6

ai 1 -1.8056 0.9141 -0.047 0

bi -0.2061 0.4791 -0.4121 0.1588 -0.0142

ci 1 -0.3947 -1.3504 0.7714 0.5281 -0.5611

Table B.14: ARMAX model parameters, Subject 14, standing position, nd=4

index (i) 1 2 3 4 5

ai 1 -2.3589 1.8071 -0.433

bi 0.6459 -0.9593 0.6355 -0.869 0.5971

ci 1 -0.0735 -1.7689 0.009 0.8501

Table B.15: ARMAX model parameters, Subject 15, standing position, nd=0

index (i) 1 2 3 4 5

ai 1 -1.0091 0.5447 -0.3187

bi 1.8094 -1.7622 2.0418 -2.3729 0.9848

ci 1 0.9051

Table B.16: ARMAX model parameters, Subject 16, standing position, nd=1

index (i) 1 2

ai 1 -0.648

bi 4.7739 -2.0015

ci 1 0.9314
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Table B.17: ARMAX model parameters, Subject 17, standing position, nd=1

index (i) 1 2 3 4 5

ai 1 -1.7372 1.1893 -0.6803 0.2783

bi 3.3306 -3.1916

ci 1 0.2373 -0.972 -0.4662 0.1772

Table B.18: ARMAX model parameters, Subject 18, standing position, nd=4

index (i) 1 2 3

ai 1 -0.2059 0.6689

bi -0.3569 0.2796

ci 1

Table B.19: ARMAX model parameters, Subject 19, standing position, nd=4

index (i) 1 2 3 4 5 6

ai 1 -0.9207

bi 0.3118 5.3521 -7.704 3.1541 -1.775 1.5984

ci 1 1.6463 -0.261 -1.6286 -0.7236

Table B.20: ARMAX model parameters, Subject 20, standing position, nd=3

index (i) 1 2 3

ai 1 -0.9015

bi -1.1272 0.6989 0.6827

ci 1

Table B.21: ARMAX model parameters, Subject 21, standing position, nd=0

index (i) 1 2 3 4

ai 1 -0.8237

bi 11.7197 -11.8309 4.7923 -0.8577

ci 1
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B.3 ARMAX Model parameters - supine position

Table B.22: ARMAX model parameters, Subject 1, supine position, nd=1

index (i) 1 2 3 4 5 6

ai 1 -1.588 1.7345 -1.5448 1.1355 -0.5321

bi 1.1987 -0.833

ci 1

Table B.23: ARMAX model parameters, Subject 2, supine position, nd=2

index (i) 1 2 3 4 5 6

ai 1 -0.6261

bi -2.6268 5.0026 -1.2249 -1.2462 -0.0323 0.5094

ci 1 1.01

Table B.24: ARMAX model parameters, Subject 3, supine position, nd=1

index (i) 1 2 3 4

ai 1 -0.942 0.3467

bi -2.3194 0.5922 3.6097 -2.015

ci 1
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Table B.25: ARMAX model parameters, Subject 4, supine position, nd=1

index (i) 1 2 3 4

ai 1 -1.5257 1.3773 -0.6665

bi 6.1663 -11.309 12.2311 -5.4263

ci 1

Table B.26: ARMAX model parameters, Subject 5, supine position, nd=2

index (i) 1 2 3 4 5 6 7

ai 1 -1.4498 1.4675 -1.429 1.3277 -0.8189 0.4319

bi 1.3699 -1.7015 0.7794 -1.6016 1.1901

ci 1 0.9509

Table B.27: ARMAX model parameters, Subject 6, supine position, nd=2

index (i) 1 2 3 4 5

ai 1 -1.718 1.6885 -1.0505 0.449

bi 6.9869 -14.848 13.6785 -8.5624 3.9228

ci 1

Table B.28: ARMAX model parameters, Subject 7, supine position, nd=1

index (i) 1 2 3 4

ai 1 -0.5924

bi 8.1488 -15.04 8.7761 0.3697

ci 1 0.9953

Table B.29: ARMAX model parameters, Subject 8, supine position, nd=1

index (i) 1 2 3 4 5 6

ai 1 -1.0198 0.6226

bi 12.0164 -36.2506 44.7118 -22.8853 8.7964 -5.1327

ci 1
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Table B.30: ARMAX model parameters, Subject 9, supine position, nd=2

index (i) 1 2 3 4 5

ai 1 -0.6548

bi 8.4376 -16.0996 14.6639 -10.7776 4.8919

ci 1

Table B.31: ARMAX model parameters, Subject 10, supine position, nd=1

index (i) 1 2 3 4 5 6

ai 1 -0.8801

bi 7.6579 -16.0704 13.3912 -11.5898 11.8563 -4.967

ci 1 0.5756 -0.8551 -0.6718

Table B.32: ARMAX model parameters, Subject 11, supine position, nd=0

index (i) 1 2 3 4 5 6

ai 1 -0.7895 -0.0517

bi -1.7155 5.7693 -5.6333 4.9267 -6.4883 4.0346

ci 1 2.1152 0.4773 -1.4339 -0.7965
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Table B.33: ARMAX model parameters, Subject 12, supine position, nd=1

index (i) 1 2 3 4

ai 1 -0.9038

bi 6.9369 -12.6298 6.3217

ci 1 1.0037 -0.9635 -0.9673

Table B.34: ARMAX model parameters, Subject 13, supine position, nd=0

index (i) 1 2 3 4 5 6

ai 1 -0.9791

bi 1.5645 -2.4646 1.2703

ci 1 0.7161 -0.7894 -0.4645 -0.1959 -0.3111

Table B.35: ARMAX model parameters, Subject 14, supine position, nd=0

index (i) 1 2 3 4 5 6

ai 1 -1.4581 1.513 -1.4446 0.8761 -0.4037

bi 1.3425

ci 1

Table B.36: ARMAX model parameters, Subject 15, supine position, nd=4

index (i) 1 2 3

ai 1 -1.3724 0.641

bi -2.1361 4.7584 -2.8054

ci 1

Table B.37: ARMAX model parameters, Subject 16, supine position, nd=0

index (i) 1 2 3 4 5 6 7

ai 1 -1.0058 0.9613 -0.9558 0.9264 -0.5179 0.2629

bi -3.4929 14.329 -14.591 10.994 -12.772 6.9559

ci 1 2.0006 1.0201
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Table B.38: ARMAX model parameters, Subject 17, supine position, nd=0

index (i) 1 2 3 4

ai 1 -1.4971 1.048 -0.3904

bi 7.136 -6.5916 3.7249

ci 1

Table B.39: ARMAX model parameters, Subject 18, supine position, nd=2

index (i) 1 2 3 4 5 6

ai 1 -0.2726

bi -0.6292 0.7752 -0.7689 0.5945 0.1241 -0.2846

ci 1

Table B.40: ARMAX model parameters, Subject 19, supine position, nd=1

index (i) 1 2 3 4 5 6

ai 1 -1.9629 1.353 -0.9029 0.7447 -0.2225

bi 5.8076 -10.6862 5.1193

ci 1 0.2655 -1.5636 -0.9436 0.6847 0.5624
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Table B.41: ARMAX model parameters, Subject 20, supine position, nd=4

20 index (i) 1 2 3

ai 1 -0.7594

bi 0.1586 0.2975

ci 1 1.7994 0.8977

Table B.42: ARMAX model parameters, Subject 21, supine position, nd=1

index (i) 1 2 3 4 5

ai 1 -0.5385

bi 43.9352 -90.7222 80.0899 -40.9882 13.9567

ci 1 0.9959
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