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Abstract

We simulate the performances of a standard derivatives portfo-

lio to evaluate the relevance of benchmarking in terms of downside

risk reduction. The simulation shows that benchmarking always leads

to significantly more severe losses in average than those generated

by letting the portfolio reach the end of a given horizon. Moreover,

switching from a 0-correlation across underlyings to a very mild form

of correlation significantly increases the probability of reaching the

downside benchmark before maturity, whereas adding more correla-

tion does not significantly increase this figure.

Keywords: Derivatives; Portfolio management; Benchmarking;

Downside risk; Monte-Carlo simulations.
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1 Introduction

Controlling the downside risk of derivative portfolios is a permanent concern

in financial practice. The first explanation to this phenomena is the long

series of financial disasters associated with derivatives, such as for instance

Barings Bank and Long Term Capital Management that resulted in losses

ranging in billions of US dollars. Lessons from those experiences led financial

regulators, through the Basel II Capital Agreement for instance, to severely

monitor the risk taken by financial institutions. The second explanation has

psychological roots, mainly associated with the largely-observed aversion to

losses as formalized by Kahneman and Tversky [10], and to a lesser extent

by the fear of mis-assessment of uncertainty as in Du and Budescu [3] (see

for instance Jarrow and Zhao [9] and Liu et al. [11] for a discussion).

Practical control of downside risk nearly always involves benchmarking ;

that is, liquidating or entirely reshuffling a position once a pre-determined

level of losses is reached. This issue is documented in Basak et al. [1] for

equities portfolios, and in Pedersen [12] for derivative portfolios. This prac-

tice is typically based on the belief that a trading strategy, leading to certain

level of losses once, is too risky and must be abandoned to a new one.

The objective of the paper is to evaluate the relevance of benchmarking

in terms of loss reduction, and to isolate some factors significantly affecting

the riskiness of derivative portfolios. We carry out a Monte-Carlo simula-

tion of the performance of a derivative portfolio consisting of four classes

of options (a European, Asian, lookback and cash-or-nothing option) with

3



same maturity, each class consisting of one hundred derivatives written on

one hundred different underlyings. The prices of the underlyings all follow

a standard geometric Brownian motion, as in the Black-Scholes framework.

The initial wealth is equally allocated across all options, and once maturity

is reached the proceedings are reinvested in the same portfolio in the same

manner. Such reinvestments span roughly six years, and the return of the

portfolio after those six years is compared with the potential losses generated

by benchmarking at pre-determined levels. The scenario is simulated 2500

times to generate Monte-Carlo estimators on which we base our discussion

(see Glasserman [6] for an introduction).

The experiment shows that benchmarking leads to significantly more se-

vere losses in average than those generated by letting the portfolio reach

the end of the six years, for every level of benchmark and for every level of

correlation across underlyings. The recovery rate, as defined in Section 1.3,

is however decreasing with the benchmark level albeit always significantly

high. Moreover, switching from a 0-correlation across underlyings to a very

mild form of correlation enormously increases the probability of reaching the

downside benchmark before maturity, for every benchmark level, whereas

adding more correlation does not significantly increase this figure.

The intuition for those results can be derived from the well-known Gam-

bler’s Ruin problem, as described in Grimmett and Stirzaker [7] Chapter 3,

even if the random process characterizing our portfolio return is far more

complex and thus requires simulations. Consider a gambler tossing a fair

coin, and winning (resp. loosing) one monetary unit if head (resp. tail) oc-
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curs at each toss. The gambler tosses the coin until either her wealth reaches

a pre-determined upper-bound or ruin occurs. Standard results claim that

the game will end for sure, and the average number of tosses needed to reach

one of those two events decreases exponentially as the bound get closer to

the initial wealth. A ruin corresponds to reaching a downside benchmark in

our setting, and we observe similar results in the portfolio simulation. How-

ever, letting the gambler’s game continue even ruin occurs (through retaining

barriers for instance) leads to a wealth distribution at a given future horizon

whose mean is different from zero. In our experiment, letting the portfolio

reach the horizon of six years leads to an average return always greater than

the considered benchmark levels (up to 30% losses).

The basic insight is that benchmarking is a one-off decision, which rules

out any possibility of recovering current losses. The simulation shows that

our fairly standard portfolio displays a surprisingly high potential for future

recovery, which cannot be exploited when benchmarking is implemented.

The paper thus suggests that benchmarking does not control downside risk

but rather aggravates it. Moreover, we point out that derivative portfolios

are particularly sensitive to correlation across underlyings, and diversifying

the underlyings appears as a safer way of controlling downside risk.

The paper is organized as follows: in Section 2 we describe the experiment,

in Section 3 we study the case of 0-correlation across underlyings, in Section

4 we study the consequences of adding a mild form of correlation, in Section

5 we study the average time before reaching a benchmark, and Section 6

concludes. Tables and figures are given after the Bibliography.
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2 The experiment

In this section, we describe the assumptions used for the numerical simu-

lation. We start by describing the underlying assets on which the options

are written. The simulation involves a set of 400 different underlyings whose

price processes in a risk-neutral world are described by the equation

dSt = µStdt + σStdWt, (1)

where St is the price of the underlying at time t, µ > 0 is the drift of process,

σ > 0 is the variance of the jumps assumed to be constant over time, and

Wt is a Brownian motion with law N(0, t) for every time t. Using standard

arguments in Stochastic Calculus, the solution to the stochastic differential

equation in (1) is given by

dln(St) = (µ− σ2

2
)dt + σdWt. (2)

We need a discretized version of the continuous-time process described in

Eq. (2) to carry out our numerical simulations. For every sequence of times

0 < t0 < ... < tn, the discretized price process above satisfies

Sti+∆ti = Sti exp

[
(µ− σ2

2
)∆ti + σε

√
∆ti

]
for every i = 0, ..., n− 1, (3)

where ε is a random variable generating the jumps with law N(0, 1). We will

fix the time horizon to be T = 3 months, and within this horizon we will

assume that there are 15 jumps occurring at the end of equal time intervals

(this would roughly correspond to weekly jumps) for every underlying. We
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assume that there exists a riskless asset whose return is r = 5% per annum.

By a standard no-arbitrage condition, it follows that µ = r. We assume that

the initial price of all the underlyings is St0 = 50, with volatility σ = 45% per

annum. The underlyings differ by the nature of the realized jumps ε, and the

way those jumps are correlated is central to our analysis. We will describe

later our assumptions on those correlations, as we present our results.

2.1 The options

We now describe the classes of options constituting our portfolio. The port-

folio formation will be described next section, for now we just focus on the

assets that constitute it. Those assets are separated into four classes of op-

tions, described next.

The first class of options, denoted by the letter e, consists of 100 European

calls, each of them written on one of the 100 different underlyings whose

processes are described in Eq. (3). The maturity of the calls is 3 months,

with strike price K = 49. For any such calls, the payoff at the end of the 3

months is thus max{0, ST −K}.
The second class of options, denoted by the letter a, consists of 100 Asian

options, each of then written on one of the 100 different underlyings. For any

possible realization of the underlying S = (St)t=0,...,T , the payoff of the Asian

option is max{0, ST − S̄}, where S̄ is the mean of S.

The third class of options, denoted by the letter l, consists of 100 lookback

options, each of then written on one of the 100 available usual underlyings.
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For any possible realization of the underlying S = (St)t=0,...,T , the payoff of

the lookback option is ST−min(S), where min(S) is the minimum of S.

The fourth class of options, denoted by the letter c, consists of 100 cash-

or-nothing options with strike price K = 49 and end-payment Q = 10, each

of then written on one of the 100 available usual underlyings. For any possible

realization of the underlying S = (St)t=0,...,T , the payoff of the cash-or-nothing

option is Q if ST > K and 0 otherwise.

Table 1 gives the theoretical prices of those derivatives, obtained with

standard Monte-Carlo simulations independent of the other simulations used

for evaluating the portfolio performances (see Boyle et al. [2], Glasserman

[2] Chapters 4-5 or Hull [8] Chapter 22 for an introduction to the methods

used here, see Detemple et al. [4] for asymptotic properties of our estimators

and Joy et al. [5] for alternative methods).

Table 1

Monte-Carlo estimations of the individual risk-neutral valuations of the op-

tions. Codes are written in R (see R project [13]). Figures between brackets

are the variances of the estimators. Estimators are calculated with N=100,000

simulations.

European call Asian call lookback call cash-or-nothing

5.2745 3.1966 7.3431 5.0668

(0.02542) (0.01425) (0.02470) (0.01560)
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2.2 Portfolio formation

We now describe how our portfolio is formed. For a given initial wealth w0,

we allocate one-fourth of this wealth to every class of options. For a given

wealth allocated to one particular class, we purchase an equal number of

contracts written on the 100 possible options available for trade. That is,

we consider 400 different underlyings, the first hundred are used to write

European calls, the second hundred is used to write Asian calls and so on.

The wealth is equally distributed across all of those assets to purchase a

portfolio of options at the prices given in Table 1.

Once the first time horizon is reached and payoffs are realized, the pro-

ceeds are reinvested in a similar portfolio in the same manner as above. This

operation is repeated at most 24 times, which would roughly correspond to

6 years of trades. The timing and allocations among classes of assets are

described in Fig. 1.

We call a quarter any of such times where options expire and proceeds are

reinvested. The fact that options are kept until expiration instead of being

sold before is not restrictive. Indeed, since the current reselling price of the

option reflects any loss-gain incurred during the exercise, the reinvestment of

the realized gain-loss into similar assets would not affect the portfolio value

since the underlyings follow a Lévy process.
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Figure 1: Portfolio formation in any given quarter.

2.3 Benchmarking policy

We now present how the performances of the above portfolio are measured,

and under which conditions the decision to cease further trades is made. The

initial wealth w0 is worth one million monetary unit, although this figure does

not affect the outcome of the simulation.

We first define benchmarking to be the decision to stop trades the first

quarter when the current wealth is below a pre-determined fraction of the

initial wealth. In contrast, we define no-benchmarking to be the decision

to carry on the trades until the last d = 24. We will consider N = 2500

simulations of the investment scenario above, and we define the failure rate

with benchmark to be the number of simulations where trades are stopped

because the benchmark is reached once, divided by N . Similarly, we define

the failure rate without benchmark to be the number of times during the

simulations where the final wealth is below a pre-determined benchmark at

quarter d = 24, divided by N . We abbreviate failure rate with FR forthwith.
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Those two notions allow us to define the recovery rate as

Recovery Rate =
FR with benchmark − FR without benchmark

FR with benchmark
,

so that it represents the percentage of simulations that have been wrongfully

stopped before the end of the planned exercise.

An interesting alternative to the above definition is first to assume that

the proceedings of a liquidation resulting from benchmarking is re-invested at

the risk-free rate until the end of the normal exercise, and then the recovery

rate can be defined by comparing the compounded proceedings with and the

final wealth without benchmarking. Similar qualitative results obtain in this

case, and this issue is thus omitted.

3 Benchmarking and recovery rate

We now present the results of our numerical simulations, allowing us to com-

pare the relative efficiency of policies with and without benchmark. In a

first step, we present the estimations of the various rates introduced in the

previous section, in the case where the underlyings are assumed to be all

uncorrelated pairwise. In a second step, we show how a mild pairwise cor-

relation among some underlyings can significantly affect the previous rates,

even if the main conclusions and policy recommendations remain the same.

The first set of results involves underlyings whose jumps have 0-pairwise

correlations. The experiment estimates the failure rates with and without

benchmarking of the portfolio scenario described in Section 1.2. The invest-
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ment scenario has been simulated N = 2500 times.

The experiment unambiguously shows that failure rates are significantly

higher when benchmarking is used, regardless of the benchmark level. More-

over, some figures in Table 2 are of practical relevance when evaluating the

riskiness of derivatives portfolio in general. A benchmark of .2 is quite

common in practice, and thus a well-diversified, fairly-priced portfolio has

a 13.08% chance of abruptly reaching this benchmark. That is; without mis-

management and with a good portfolio, there is roughly one chance in eight

for a business to go bankrupt when benchmarking. If instead managers show

more patience (or possibly stronger nerves), this same business has only a

very acceptable 4.44 % chances of reaching this level of losses if the portfolio

is run until the end of the scheduled exercise.

The benefits from avoiding benchmarking significantly depends on the

benchmark level. This aspect is illustrated in Fig. 6, where the failure rates

with benchmarking are contrasted with the corresponding recovery rates. Re-

covery rates are (approximately) decreasing with benchmark levels, although

they remain strikingly high with high benchmarks. For instance, for a bench-

mark of .2 roughly 65% of terminated trading exercises would have a yielded

a lower loss if benchmarking was avoided. That is; instead of stopping trades

and thus permanently accepting a 20% loss, in 65% of the cases carrying on

trades would have led to a loss (or possibly a profit) strictly less than 20%.

Our derivative portfolio thus have a strong recovery potential. This point

makes the case against benchmarking: once trades are stopped the loss is

permanent and strong recovery possibilities of such portfolios are foregone.

12



4 Correlated underlyings

We now carry out the same analysis as before with the additional assumption

that the underlyings display some form of mild correlation described later.

This new assumption will strikingly change the quantitative features of the

previous section, in particular the riskiness of the simulated portfolio, whilst

not changing the optimality of no-benchmarking. The effect of correlation

on the recovery rate is also examined.

We now describe how assets are correlated. We refine the notation in Eq.

(3), for exactly the same underlyings and for every i = 0, ..., n− 1, as

Sκ,j
ti+∆ti

= Sκ,j
ti exp

[
(µ− σ2

2
)∆ti + σεκ,j

√
∆ti

]
, (4)

where κ ∈ {e, a, l, c} is an index denoting the class of options the underlying

is assigned to as in Section 1.1, and j = 1, ..., 100 uniquely defines the option

within the class of options κ.

So far, we have assumed that the sequence of random variables (εκ,j)κ,j ex-

hibited 0-pairwise correlation. We now assume that the pairwise correlations

are described by variance-covariance matrices

cov(εe,j, εa,j, εl,j, εc,j) =




1 ρ ρ ρ

ρ 1 0 0

ρ 0 1 0

ρ 0 0 1




for every j = 1, ..., 100 and for some ρ ∈ (0, 1); all the other underlyings

exhibiting 0-pairwise correlation. In words, for every j the underlying with
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index j has a pairwise correlation of ρ with the underlying of the same j where

the European call is written on, and is uncorrelated with all the other 397

underlyings. This corresponds to a very mild form of correlation, although

this assumption will significantly change the results from the previous section.

Table 3 gives the results for two levels of correlation. Such levels display

a clear trend and considering more correlation levels would not add to our

point. The failure rates with and without benchmarking display a peak for

ρ = .5, and figures slightly decrease for ρ = .7. The significant variations from

the no-correlation case of the previous section show the extreme sensitiveness

of option portfolios to even a slight change in correlation.

Figure 3 gives the recovery rates for ρ = .5 and ρ = .7, derived from Table

3. Such recovery rates are comparable for those correlations, although they

are significantly lower than those in the no-correlation case. The main point

to notice is that the addition of those mild correlations have reduced the

recovery rate to roughly slightly more than 50% (depending on the experi-

ment), which is an intuitive recovery rate as explained in the Introduction.

In other words, the addition of correlation across underlyings (even if mild)

leads to reduce the recovery rate by roughly 25 %, whereas it remains roughly

stationary after values greater than ρ = .5.

5 Quarters before failure with benchmarking

We now turn to describing how quickly the simulated portfolio reaches its

downside benchmark. In particular, we are interested in observing how sen-
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sitive the benchmark occurrence is to the correlation form described in the

previous section.

The first fact to notice is that the first quarter to reach benchmark in-

creases with the benchmark level, for every level of correlation. This is a

very intuitive aspect of the simulation, since it natural to expect that more

time is needed for a portfolio to reach to even lower benchmark.

An important result of the experiment is the significant decrease in first

quarters to benchmark between the 0-correlation case and the case with

correlation level ρ = .5. The point to notice is that the very mild correlation

level, as introduced in the previous section, triggers a much earlier cessation

of activities caused by benchmarking. Adding more correlation (ρ = .7)

does not significantly increase the first quarter of occurrence, showing that

switching from 0-correlation to some form of correlation is a threshold that

significantly affects this event.

In all cases, the average first quarter of occurrence is before the end of

our horizon. This reinforces our point that benchmarking is to be avoided

when evaluating derivative portfolio, since this practice tends to stop trading

activities too early with devastating effects as shown in the previous sections.

6 Conclusions

We have simulated the performance over time of a fictitious derivative port-

folio under standard assumptions. The experiment shows that stopping trad-

ing activities when reaching a pre-determined downside benchmark leads to
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severe losses, and those losses are always significantly reduced by allowing

trades to continue until a pre-determined horizon.

Moreover, the experiment shows the extreme sensitiveness of the portfolio

to the correlation across underlyings. Switching to a 0-correlation case to a

mild form of correlation significantly increases the riskiness of the portfolio

and the average first quarter of bankruptcy. However, adding more correla-

tion across underlyings does not significantly affect those figures. Regardless

of the correlation level, losses are significantly reduced by allowing trades to

continue instead of stopping when a downside benchmark is reached.
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Table 2

Monte-Carlo estimations of the failure rates with and without benchmarking

(see attached R code). Figures between brackets are the variances of the

estimators. Estimators are calculated with N=2500 simulations.

Benchmark level

.5 .1 .15 .2 .25 .3

Benchmarking 0.5556 0.346 0.2316 0.1308 0.0792 0.0472

(0.0099) (0.0095) (0.0084) (0.0067) (0.0054) (0.0042)

No benchmarking 0.1356 0.1076 0.0644 0.0444 0.0328 0.0216

(0.0068) (0.0061) (0.0049) (0.0041) (0.0035) (0.0029)
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Table 3

Monte-Carlo estimations of the failure rates with and without benchmarking

for various levels of correlation between underlyings. Case I gives the failure

rates with benchmarking, Case II gives the failures rates without benchmark-

ing. Figures between brackets are the variances of the estimators. Estimators

are calculated with N=2500 simulations.

Benchmark level

.05 .1 .15 .2 .25 .3

Case I ρ = .5 0.764 0.6872 0.6192 0.5136 0.4508 0.3632

(0.0084) (0.0092) (0.0097) (0.0099) (0.0099) (0.0096)

ρ = .7 0.7668 0.6472 0.5824 0.4816 0.3856 0.3448

(0.0084) (0.0095) (0.0098) (0.0099) (0.0097) (0.0095)

Case II ρ = .5 0.3484 0.328 0.296 0.2528 0.2344 0.1824

(0.0095) (0.0093) (0.0091) (0.0086) (0.0084) (0.0077)

ρ = .7 0.3364 0.2952 0.2772 0.2232 0.194 0.164

(0.0094) (0.00912) (0.0089) (0.0083) (0.0079) (0.0074)
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Table 4

Monte-Carlo estimations of the average number quarters before failure with

benchmarking, for various levels of correlation between underlyings. Figures

between brackets are the variances of the estimators. Estimators are calcu-

lated with N=2500 simulations.

Benchmark level

.05 .1 .15 .2 .25 .3

ρ = 0 13.2548 18.2428 20.5252 22.3592 22.3592 23.5388

(0.2054) (0.1727) (0.1386) (0.0944) (0.0679) (0.0470)

ρ = .5 8.9084 11.2352 13.116 15.6196 17.4732 19.1684

(0.1879) (0.1950) (0.1926) (0.1836) (0.1662) ( 0.1493)

ρ = .7 8.7936 12.146 14.0112 16.4144 18.4368 19.504

(0.1863) (0.1967) (0.1906) (0.1777) (0.1590) (0.1434)
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Figure 2: Failure and recovery rates, uncorrelated underlyings.
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Figure 3: Failure with benchmarking and recovery rates, with correlation.
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Figure 4: Average quarter before failure for various levels of correlation.
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