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Abstract

We prove computability and complexity results for an original model of computation
called the continuous space machine. Our model is inspired by the theory of Fourier
optics. We prove our model can simulate analog recurrent neural networks, thus
establishing a lower bound on its computational power. We also define a ©(logyn)
unordered search algorithm with our model.
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1 Introduction

In this paper we prove some computability and complexity results for an orig-
inal continuous space model of computation called the continuous space ma-
chine (CSM). The CSM was developed for the analysis of (analog) Fourier
optical computing architectures and algorithms, specifically pattern recogni-
tion and matrix algebra processors [1-4]. The functionality of the CSM is
inspired by operations routinely performed by optical information processing
scientists and engineers. The CSM operates in discrete timesteps over a fi-
nite number of two-dimensional (2D) complex-valued images of finite size and
infinite spatial resolution. A finite control is used to traverse, copy, and per-
form other optical operations on the images. A useful analogy would be to
describe the CSM as a random access machine, without conditional branching
and with registers that hold continuous complex-valued images. It has recently
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Fig. 1. Schematics of (a) the grid memory structure of the CSM, showing example
locations for the ‘well-known’ addresses a, b, and sta, and (b) loading (and auto-

matically rescaling) a subset of the grid into address a. The program

instructs the machine to load into default address a the portion of the grid addressed
by columns 2 through 3 and rows 1 through 3.

been established [5,6] that the CSM can simulate Turing machines and Type-
2 machines [7]. However, the CSM’s exact computational power has not yet
been characterised.

In Sect. 2, we define our optical model of computation and give the data rep-
resentations that will be used subsequently. In Sect. 3 we demonstrate a lower
bound on computational power by proving that the CSM can simulate a type
of dynamical system called analog recurrent neural networks (ARNNSs) [8,9].
This simulation result proves our analog model can decide the membership
problem for any language (of finite length words over a finite alphabet) in
finite time. In Sect. 4, a ©(log, n) binary search algorithm that can be applied
to certain unordered search problems is presented.

2 CSM

Each instance of the CSM consists of a memory containing a program (an
ordered list of operations) and an input. Informally, the memory structure is
in the form of a 2D grid of rectangular elements, as shown in Fig. 1(a). The
grid has finite size and a scheme to address each element uniquely. Each grid
element holds a 2D image. There is a program start address sta and two well-
known addresses labelled a and b. The model has a number of operations that
effect optical image processing tasks. For example, two operations available to
the programmer, st and ld (parameterised by two column addresses and two
row addresses), copy rectangular subsets of the grid out of and into image a,
respectively. Upon such loading and storing the image contents are rescaled to
the full extent of the target location [as depicted in Fig. 1(b)]. The other oper-
ations are image Fourier transform (FT'), complex conjugation, multiplication,
addition, amplitude thresholding, and some control flow operations.



2.1 CSM definition

Before defining the CSM we define its basic data unit and some of the functions
it implements.

Definition 1 (Complex-valued image) A complez-valued image (or sim-
ply, an image) is a function f :[0,1) x [0,1) — C, where [0, 1) is the half-open
real unit interval and C is the set of complex numbers.

We let Z be the set of all complex-valued images. We now define six functions
that are implemented in six of the CSM’s ten operations. Let each f € Z be
parameterised by orthogonal dimensions x and y; we indicate this by writing
f as f(x,y). The function h : T — 7T gives the one-dimensional (1D) Fourier
transformation (in the z-direction) of its 2D argument image f. The function
h is defined as

h(f(z,y)) =h'(F(ay)) , (1)
where F(a,y) is the FT in the z-direction of f(x,y), defined as [1,2]

Plasy) = [ f(o,y) explizraa]da,

where i = v/—1, and where h'(F(a,y)) = F(fa,y). Here, b’ uses the constant
6 to linearly rescale its argument F so that F'is defined over [0, 1) x [0, 1). The
function v : Z — Z gives the 1D Fourier transformation (in the y-direction) of
its 2D argument image f, and is defined as

v(f(zy) = (F(x,0)) , (2)
where F(x,(3) is the FT in the y-direction of f(x,y), defined as [1,2]

P(@,8)= [ flay)explizniy]dy.

o0

and where v'(F(z, 3)) = F(z,603). The function * : Z — 7 gives the complex
conjugate of its argument image,

#(f(x,9) = f(z,y), (3)

where f* denotes the complex conjugate of f. The complex conjugate of a
scalar z = a + b is defined as z* = a — ib. The function - : Z x Z — 7T gives
the pointwise complex product of its two argument images,

(f(z,y),9(z,y)) = f(z,9)9(x,y) . (4)

The function + : Z x Z — 7 gives the pointwise complex sum of its two
argument images,

+ (f(@,9), 9(x,y) = f(z,y) + g(z,9) - (5)



The function p : Z x T x Z — T performs amplitude thresholding on its first
image argument using its other two real valued (z,z, : [0,1) x [0,1) — R)
image arguments as lower and upper amplitude thresholds, respectively,

21(1',y), if |f(w,y)| < Zl(l‘vy)
p(f(a,y), a(z,y), zul@,y) = | f (@, y)l, i z(zy) < [f(z,y)] < 2z, y)
Zu(x7y>> if !f(:r:,y)] > Zu(xvy) .
(6)
The amplitude of an arbitrary z € C is denoted |z| and is defined as |z| =
z(2*).

We let N be the set of nonnegative integers and for a given CSM we let N be
a finite set of images that encode that CSM’s addresses (see Sect. 2.6 for an
example encoding).

Definition 2 (Continuous space machine) A continuous space machine
is a quintuple M = (D, L, I, P,O), where

D = (m,n), DeNxN are the grid dimensions

L = ((s¢, sy), (ag, ay) , (b, by)) are the addresses sta, a, and b

1= {(ng, Lln) . (Lkg, Lkn)} are the addresses of the k input images

P = {(glaplgapln) 7"'7(Cr7prgaprn)}7 Cj € ({h’7 U, K, Py st, ld; b?“,
hit} U N') C T are the r programming symbols and their addresses
0= {(015, 0177) R, (olé, Ol,,)} are the addresses of the | output images.

AZSO; (357377)7(a'faan)a(bfvbn)v(Lkévbk%)u(préaprﬁl)v(olévol%) € {07"'7m - ]‘} X
{0,...,n =1} for all ki, b, € {1,... k}, rg,ry € {1, kg, 1 € {1,001}

Addresses whose contents are not specified by P in a CSM definition are
assumed to contain the constant image f(z,y) = 0.

We adopt a few notational conveniences. In a given CSM the addresses ¢ and
(v, ) are both elements from the set {0,...,m —1} x {0,...,n — 1}. For the
remainder of the current section, e, u, and w are sequences of elements from
the set Z x {0,...,m —1} x{0,...,n —1}. In a CSM the image at address ¢
is denoted ¢. In the case where ¢ represents an integer from {0, ..., |N| — 1},
that integer is denoted C.

Definition 3 (CSM configuration) A configuration of a CSM M is a pair
(c,e), where c € {0,...,m—1}x{0,...,n—1} is an address called the control.
Also, e = ((i00,0,0), ..., (im-1n_1,m — 1,n — 1)) is a mn-tuple that contains
M’s mn images and each of their addresses, with i,5s € I being the image at
address (vy,09). The elements of tuple e are ordered first by each § then by each

Y-



An initial configuration of M is a configuration Cy, = (Csta, €sta), Where
Csta = (S¢,8y) is the address of sta, and ey, contains all elements of P
and elements (@1, t1,,01,);- -5 (Pks thes tk,) (the Kk input images at the ad-
dresses given by I). A final configuration of M is a configuration of the form
Cﬁlt\: ((7,9), (u, (hit,~,9),w)), where u and w are given above. Notice that

(v,9) = hlt.

In Def. 4 we adopt the following notations. The function ¢((v,0)) = (y+1,9)
advances the control. The notation ¢*(c) is shorthand for function composi-

tion, e.g. ¢%(c) = ¢(¢p(c)). At a given configuration (c,e) we let g, = gb/’“(\c),
i.e. qp represents the integer encoded by the image at address ¢*(c). We let
the scaling relationships for st and Id be ' = (z 4+ —q1)/(¢2 — ¢ + 1) and
vV =(y+d—0q3)/(qa—q3+1). We let a(z,y) be the image stored in address
a. Recall that (ag, a,) is the address of a.

Definition 4 (-);) Let by be a binary relation on configurations of CSM M
containing exactly the following ten elements.

(6, (1 (iagays @g, @), 0)) Far (6(6), (1, (liagay ), 0, 0y),0), i €= (i)
(6, (1, agas e @), ) Fa (D), (s (Viaga, ) s ay), ), i 2= v (i)
<Ca (ua (Zagaw g, a77>7 w)) Y <¢(C>? (u7 (*(Zagan), g, a77>7 w))? if ¢ =x (iii>
(¢, (u, (laga, ag, an), w)) Far ((c), (u, (-(iacay» foch, ), Ges ay), W), if €= (iv)
(¢, (U, (iagay - ag; an), w)) Far (D), (w, (F(iagay s ibeh, ), Gy an)yw)), if €=+ (v)
<Ca (ua (iagaw ag, a77>7 w))

406, (u, (plinga, 5(0), G2(0)), ag, ay), w)), if €= p (v)
<Ca (u’y57 (i’wS(xa y)> Y5 5)7 w’y&))

|_M <¢5(C)7 (U'y(s, (a (mlv y/) » Vs 6)7 w76)>a

Vy,0 sit.qn < v <qo,q3 <0 < qq,V(z,y) €10,1) x [0,1), ifc=st  (vii)
<Ca (ua (CL (xla yl) ) Qg a77>7 ’LU))

Fm <¢5(C)7 (uv (i75(x7 y)? ag, an)v w)>7

Vy,0 sit.qn < v < qo,q3 <0 < qq,V(z,y) €10,1) x [0,1), ifc=1d (viii)
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Elements (i) to (vi) of F-p; define the CSM’s implementation of the functions
defined in Egs. (1) through (6). Notice that in each case the image at the
well-known address a is overwritten by the result of applying one of h, v,
%, -, + or p to its argument (or arguments). The value of the control c is
then simply incremented to the next address, as defined in Def. 3. Element
(vii) of -, defines how the store operation copies the image at well-known



address a to a ‘rectangle’ of images specified by the st parameters q1, g2, q3, 4.
Element (viii) of Fj; defines how the load operation copies a rectangle of
images specified by the Id parameters ¢, ¢2, 3, ¢4 to the image at well-known
address a. Elements (ix) and (x) of Fj; define the control flow operations
branch and halt, respectively. When the image at the address specified by the
control ¢ is br, the value of ¢ is updated to the address encoded by the two
br parameters. Finally, the hlt operation always maps a final configuration to
itself.

Let F3; denote the reflexive and transitive closure of ;. A halting com-
putation by M is a finite sequence of configurations beginning in an initial
configuration and ending in a final configuration: Cy, F3; Ch.

For convenience, we use an informal ‘grid” notation when specifying programs
for the CSM, see for example Fig. 1. In our grid notation the first and second
elements of an address tuple refer to the horizontal and vertical axes of the
grid, respectively, and image (0,0) is at the bottom left-hand corner of the
grid. The images in a grid must have the same orientation as the grid. Hence
in a given image f, the first and second elements of a coordinate tuple refer
to the horizontal and vertical axes of f, respectively, and the coordinate (0, 0)
is located at the bottom left-hand corner of f. Figure 2 informally explains
the elements of ), as they appear in this grid notation. After giving some
data representations in Sect. 2.4 we will then define language membership
deciding by CSM. First we suggest physical interpretations for some of the
CSM’s operations and then we give a number of complexity measures.

2.2 Optical realisation

In this section, we outline how some of the elementary operations of our model
could be carried out physically. We do not intend to specify the definitive
realisation of any of the operations, but simply convince the reader that the
model’s operations have physical interpretations. Furthermore, although we
concentrate on implementations employing visible light (optical frequencies
detectable to the human eye) the CSM definition does not preclude employing
other portion(s) of the electromagnetic spectrum.

A complex-valued image could be represented physically by a spatially coher-
ent optical wavefront. Spatially coherent illumination (light of a single wave-
length and emitted with the same phase angle) can be produced by a laser.
A spatial light modulator (SLM) could be used to encode the image onto the
expanded and collimated laser beam. One could write to a SLM offline (expose
photographic film, or laser print or relief etch a transparency) or online (in the
case of a liquid-crystal display [10-12] or holographic material [13,14]). The



h |: perform a horizontal 1D FT on the 2D image in a.
Store result in a.

v | : perform a vertical 1D FT on the 2D image in a. Store
result in a.

% | : replace image in a with its complex conjugate.

: multiply (point by point) the two images in a and b.
Store result in a.

+ |: perform a complex addition of a and b. Store result
in a.

p | 2 | zu |t 2 2u €T, filter the image in a by amplitude using 2
and z, as lower and upper amplitude threshold images,
respectively.

st | g1 |q| g3 qsl:q1,92,93,q4 € N; copy the image in a into the rectan-
gle of images whose bottom left-hand corner address
is (q1,¢q3) and whose top right-hand corner address is
(92, q4)-

Id|qi|q|qg| q|:q1,92, 6,9 €N; copy into a the rectangle of images
whose bottom left-hand corner address is (q1,¢3) and
whose top right-hand corner address is (g2, q4).

br|qi | ¢ |: ¢1,92 € N; unconditionally branch to the address
(q1,92)-
hlt |: halt.

Fig. 2. The set of CSM operations, given in our informal grid notation. For formal
definitions see Def. 4.

functions h and v could be effected using two convex cylindrical lenses, ori-
ented horizontally and vertically, respectively [1,2,11,15]. A coherent optical
wavefront will naturally evolve into its own Fourier spectrum as it propagates
to infinity. What we do with a convex lens is simply image at a finite dis-
tance this spectrum at infinity. This finite distance is called the focal length
of the lens. The constant 6 used in the definitions of h and v could be ef-
fected using Fourier spectrum size reduction techniques [1,2] such as varying
the focal length of the lens, varying the separation of the lens and SLM, em-
ploying cascaded Fourier transformation, increasing the dimensions/reducing
the spatial resolution of the SLM, or using light with a shorter wavelength.
The function * could be implemented using a phase conjugate mirror [16].
The function - could be realised by placing a SLM encoding an image f in
the path of a wavefront encoding another image g [1-3]. The wavefront im-
mediately behind the SLM would then be -(f,g). The function + describes
the superposition of two optical wavefronts. This could be achieved using a
50:50 beam splitter [1,16,4]. The function p could be implemented using an
electronic camera or a liquid-crystal light valve [12]. The parameters z and
z, would then be physical characteristics of the particular camera/light valve



used. z corresponds to the minimum intensity value that the device responds
to, known as the dark current signal, and z, corresponds to the maximum
intensity (the saturation level).

A note will be made about the possibility of automating of these operations.
If suitable SLMs can be prepared with the appropriate 2D pattern(s), each of
the operations h, v, *, -, and 4+ could be effected autonomously and without
user intervention using appropriately positioned lenses and free space prop-
agation. The time to effect these operations would be the sum of the flight
time of the image (distance divided by velocity of light) and the response
time of the analog 2D detector; both of which are constants independent of
the size or resolution of the images if an appropriate 2D detector is chosen.
Examples of appropriate detectors would be holographic material [13,14] and
a liquid-crystal light valve with a continuous (not pixellated) area [12]. Since
these analog detectors are also optically-addressed SLMs, we can very easily
arrange for the output of one function to act as the input to another, again
in constant time independent of the size or resolution of the image. A set of
angled mirrors will allow the optical image to be fed back to the first SLM in
the sequence, also in constant time. It is not known, however, if p can be car-
ried out completely autonomously for arbitrary parameters. Setting arbitrary
parameters might fundamentally require offline user intervention (adjusting
the gain of the camera, and so on), but at least for a small range of values
this can be simulated online using a pair of liquid-crystal intensity filters.

We have outlined some optics principles that could be employed to implement
the operations of the model. The simplicity of the implementations hides some
imperfections in our suggested realisations. For example, the implementation
of the + operation outlined above results in an output image that has been
unnecessarily multiplied by the constant factor 0.5 due to the operation of the
beam splitter. Also, in our suggested technique, the output of the p function
is squared unnecessarily. However, all of these effects can be compensated for
with a more elaborate optical setup and/or at the algorithm design stage, and
do not affect the proofs presented in this paper.

A more important issue concerns the quantum nature of light. According to
our current understanding, light exists as individual packets called photons.
As such, in order to physically realise the CSM one would have to modify
it such that images would have discrete, instead of continuous, amplitudes.
The atomic operations outlined above, in particular the FT, are not affected
by the restriction to quantised amplitudes, as the many experiments with
electron interference patterns indicate. We would still assume, however, that
in the physical world space is continuous.

A final issue concerns how a theoretically infinite Fourier spectrum could be
represented by an image (or encoded by a SLM) of finite extent. This difficulty



Symbol Name Description

1. T TIME Number of timesteps

2. G GRID Number of grid images

3. Rg SPATIALRES Spatial resolution

4. R, AMPLRES Amplitude resolution

5 Rp PHASERES Phase resolution

6. Rp DYRANGE Dynamic range

7. v FREQ Frequency of illumination
Table 1

Summary of complexity measures for characterising CSMs.

is addressed with the FREQ complexity measure in the next section.

2.3  Complexity measures

Computational complexity measures are used to analyse CSMs. We define
seven complexity measures (summarised in Table 1). The TIME complexity of
a CSM M is the number of configurations in the computation sequence of an
arbitrary instance of M, beginning with the initial configuration and ending
with the first final configuration. The GRID complexity of a CSM M is the
number of image elements in M’s grid. In this paper the GRID complexity of
M is always a constant (independent of its input).

The SPATIALRES complexity of CSM M is the minimum spatial resolution of
M’s images necessary for M to compute correctly on all inputs. This is for-
malised as follows. Let a pizel be a constant function A : [0,1/®)x[0,1/¥) — =
where &, ¥ € {1,2,3,...} and [0,1/®),[0,1/¥) C R and z € C. Let a raster
1mage be an image composed entirely of nonoverlapping pixels, each of the pix-
els are of width 1/®, height 1/W¥, identical orientation, and arranged into ®
rows and W columns. (An image displayed on a monochrome television screen
or liquid crystal display panel would be an example of a raster image, if we let
its height and width equal 1.) Let the spatial resolution of a raster image be
® W, the number of pixels in that image. Let the process of rasterising an image
be the function S : Z x (N x N) — 7, defined as S(f(z,y), (®,¥)) = f'(z,y),
where f'(x,y) is a raster image, with ®W pixels arranged in ® columns and ¥
rows, that somehow approximates f(z,y). The details of S are not important;
it suffices to say that (®, V) can be regarded as defining a sampling grid with
uniform sampling both horizontally and vertically, although the sampling rates
in both directions can differ. Increasing the spatial resolution of the sampling
(increasing ® and/or ¥) results in a better approximation of f(x,y). The SPA-
TIALRES complexity of a CSM M is then defined as the minimum ®W¥ (the



lowest resolution uniform sampling) such that if each image f,s(z,y) in M is
replaced with S(f,s(z,y), (®,V)) then M computes correctly on all inputs. If
no such ®WV exists then M has infinite SPATIALRES complexity. It can be seen
that if the result of M’s computation is determined solely by features within
its images that are located at rational (respectively, irrational) coordinates
then M would require finite (respectively, infinite) SPATIALRES. In optical
image processing terms, and given the fixed size of our images, SPATIALRES
corresponds to the space-bandwidth product of a detector or SLM.

The AMPLRES complexity of a CSM M is the minimum amplitude resolution
necessary for M to compute correctly on all inputs. This is formalised as
follows. Consider the following function A : Z x {1,2,3,...} — Z defined as

A(f(x,y), 1) = LIf (@, y)lp+0.5]p exp(i x angle(f(,9))) . (7)

where | - | returns the amplitudes of its image argument, angle(-) returns the
phase angles (in the range (—m, 7]) of its image argument, and the floor oper-
ation is defined as operating separately on each value in its image argument.
The value p is the cardinality of the set of discrete nonzero amplitude values
that each complex value in A(f, ) can take, per half-open unit interval of
amplitude. (Zero will always be a possible amplitude value irrespective of the
value of p.) To aid in the understanding of Eq. (7), note that the following
equality always holds

f(@,y) = |f(z,y)exp(i x angle(f(z, y))) -

Then, the AMPLRES complexity of a CSM M is defined as the minimum g such
that if each image f,5(z,y) in M is replaced by A(f,s(x,y),p) then M com-
putes correctly on all inputs. If no such p exists then M has infinite AMPLRES
complexity. It can be seen that if the result of M’s computation is determined
solely by amplitude values within its images that are rational (respectively,
irrational), or by a finite (respectively, infinite) set of rational amplitude val-
ues, then M would require finite (respectively, infinite) AMPLRES. The only
two values for AMPLRES complexity of interest in this paper are constant AM-
PLRES and infinite AMPLRES. CSM instances that only make use of unary
and binary images (see Sect. 2.4) have constant AMPLRES of 1. Instances that
use real number and real matrix images (see Sect. 2.4) have infinite AMPLRES
complexity. In optical image processing terms AMPLRES corresponds to the
amplitude quantisation of a signal.

The PHASERES complexity of a CSM M is the minimum phase resolution
necessary for M to compute correctly on all inputs. This is formalised as
follows. Consider the following function P : Z x {1,2,3,...} — Z defined as

PUfte9).0 = i)l (i gt o) g + 03] 27

10



The value p is the cardinality of the set of discrete phase values that each
complex value in P(f, 1) can take. Then, the PHASERES complexity of a CSM
M is defined as the minimum g such that if each image f,s(x,y) in M is
replaced by P(fys(x,y), ) then M computes correctly on all inputs. If no
such p exists then M has infinite PHASERES complexity. It can be seen that
if the result of M’s computation is determined solely by phase values within
its images that are rational (respectively, irrational) modulo 27, or by a finite
(respectively, infinite) set of rational phase values modulo 27, then M would
require finite (respectively, infinite) PHASERES. In optical image processing
terms PHASERES corresponds to the phase quantisation of a signal.

The DYRANGE complexity of a CSM M is defined as the maximum of all
the amplitude values stored in all of M’s images during M’s computation.
In optical processing terms DYRANGE corresponds to the dynamic range of a
signal.

The seventh of our complexity measures is FREQ. The FREQ complexity of
a CSM M is the minimum optical frequency necessary for M to compute
correctly. The concept of minimum optical frequency is now explained. In op-
tical implementations of the h and v operations (such as our suggestions in
Sect. 2.2), one of the factors that determine the dimensions of the Fourier
spectrum of f € 7 is the frequency of the coherent illumination employed. In-
creasing the frequency of the illumination results in a smaller Fourier spectrum
(components are spatially closer to the zero frequency point). In our defini-
tions of h and v, we employ the constant 6 to rescale the Fourier spectrum of
f such that it fits into the dimensions of an image: [0,1) x [0,1). In general,
however, a Fourier spectrum of an image will be infinite in extent. Therefore,
according to the relationship between optical frequency and Fourier spectrum
dimensions [2,1], such a constant 6 only exists when the wavelength of the illu-
mination is zero, corresponding to illumination with infinite frequency. With
a finite optical frequency, the h and v operations will remove all Fourier com-
ponents with a spatial frequency higher than the cut-off imposed by 6. This is
called low-pass filtering in signal processing terminology, and is equivalent to a
blurring of the original signal. Given particular rasterisation and quantisation
functions for the images in M, and a particular 6, the blurring effect might
not influence the computation. Formally, then, we define the FREQ complex-
ity of a CSM M to be the minimum optical frequency that can be employed
such that M computes correctly on all inputs. If approximations of a FT are
sufficient for M, or if M does not execute h or v, then M requires finite FREQ.
If the original (unbounded) definitions of A and v must hold then M requires
infinite FREQ. Note also that using the traditional optical methods outlined
in Sect. 2.2, any lower bound on SPATIALRES complexity will impose a lower
bound on FREQ complexity. In the context of traditional optical methods,
this imposition is referred to as the diffraction limit. (The optical wavelength
should be a constant times smaller than the smallest spatial feature that needs

11



to be resolvable in an image.) In order not to rule out the applicability of novel
sub-wavelength resolution techniques that go beyond the diffraction limit for
our CSM algorithms we give each FREQ complexity as an upper bound [O(-)].

Finally, one might also consider energy a natural complexity measure. In fact,
energy is a function of all of the measures in Table 1, with the exception of
PHASERES. Such an interpretation is consistent with the quantum theory of
light. This is explained in the case of a single image initially. Let f(z,y) be an
image with spatial resolution Rg, amplitude resolution R,, dynamic range Ry,
and encoded with illumination of frequency v. An upper bound on the energy
required to represent (and to measure) f(x,y), denoted Ey, is defined as

E; = hvdRsR,\*Ry* | (8)

where h = 6.626... x 1073 Js is the fundamental physical constant called
Planck’s constant, and d (detector sensitivity) is the minimum number of
photons required to trigger a response in a detector element. (For example,
for an isolated rod element in the human retina, d is 10 or so, and for the
detector element in a photomultiplier tube d can be 1.) An upper bound
on the energy required for a CSM M’s computation can be determined by
considering the worst cost scenario that at every timestep the image f with
maximum amplitude is written to every grid element, giving a total energy
EM of
Ev = E;/TG,

where the 7" and G are M’s TIME and SPACE complexities respectively.
2.4 Representing data as images

Unless otherwise stated let ¥ = {0,1}. As is usual let ¥* = [J2, 3¢, let
YT =2, X% and, unless otherwise stated, let a language L C 7. There are
many ways to represent elements of finite, countable, and uncountable sets as
images. We give a number of techniques that will be used later in the paper.
The symbol 1 is represented by an image having value one at its centre and
value zero everywhere else. An image that has value zero everywhere represents
the symbol 0.
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Definition 5 (binary symbol image) The symbol ¢ € ¥ is represented by
the binary symbol image fy,

1, ifzr,y=05¢=1
0, otherwise .

fo(z,y) = {

We extend this representation scheme to binary words using ‘stack’ and ‘list’
images.

Definition 6 (binary stack image) The word w = wijwy---w, € X7 is
represented by the binary stack image f,,

1, ife=1-525y=05w=1

0, otherwise ,

fw(xay) = {

where w; € 3,1 < i < k. Image f,, is said to have length k and the pair (f,, k)
uniquely represents w.

Definition 7 (binary list image) The word w = wiws---wy, € X is rep-
resented by the binary list image f,,

1, dfe=2Ly=05w=1

wlL, = .
Jul,y) {0, otherwise

where w; € ¥,1 < i < k. Image f,, is said to have length k and the pair (f,, k)
uniquely represents w.

If ¥ = {1} we replace the word “binary” with the word “unary” in Defs. 5, 6,
and 7. In Defs. 6 and 7 each unary/binary symbol in w is represented by a
corresponding value of 0 or 1 in f,. Notice that in the unary/binary stack
image, w’s leftmost symbol wy, is represented by the rightmost value in the
sequence of values representing w in f,,, this means that wjy, is represented by
the topmost stack element. We represent a single real value r by an image
with a single peak of value 7.

Definition 8 (real number image) The real number r € R is represented
by the real number image f,,

r, ifx,y=20.5

0, otherwise .

fr(z,y) = {

To represent a R x C' matrix of real values we define RC' peaks that represent
the matrix values and use both dimensions of a stack-like image.

13
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Fig. 3. Representing data by images through the positioning of peaks. The nonzero
peaks are coloured black and the white areas denote value 0. (a) Pushing a unary
symbol image onto an empty stack image. (b) Pushing a unary symbol image onto a
stack image representing the word 1 to create the representation of 11. (c) Popping
a stack representing the word 1, resulting in a popped unary symbol image (in a)
and an empty stack (in b). (d) Popping an empty stack. (e) Rescaling three adjacent
unary symbol images into a single unary list image (in a) representing 111. (f) 1x C,
R x 1, and R x C matrix images where R = C' = 5.

Definition 9 (R x C matrix image) The R x C matriz A, with real-valued
components a;;,1 < i < R,1 < j < O, is represented by the R x C matriz
mmage fa,

ifo=1— L2k 1421

aij’ 2i+k Y = i+l

fA(xvy) = {

0, otherwise ,

where
1, ifi<R

Lo L ii<e
“lo, ifj=Cc )0, ifi=R

This matrix image representation is illustrated in Fig. 3(f).
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The representations given in Defs. 5 through 9 are conveniently manipulated
in the CSM using a programming technique called ‘rescaling’. Binary symbol
images can be combined using stepwise rescaling (creating a binary stack
image) or with a single rescale operation (creating a binary list image). A stack
representation of the word 11 could be generated as follows. Take the image
fo (having value 0 everywhere), representing an empty stack, and a unary
symbol image f; that we will ‘push’ onto the stack. A push is accomplished
by placing the images side-by-side with f; to the left and rescaling both into a
single image location. The image at this location is a (binary or unary) stack
image representing the word 1. This concept is illustrated in Fig. 3(a); a unary
symbol image is placed at address a and an empty stack image is placed at
address b. The command pushes the symbol onto the empty stack, and
by default the result is stored in address a. Take another unary symbol image
f1, place it to the left of the stack image, and rescale both into the stack image
location once again. The unary stack image contains two peaks at particular
locations that testify that it is a representation of the word 11, as illustrated
in Fig. 3(b). To remove a 1 from the stack image, a ‘pop’ operation is applied.
Rescale the stack image over any two image locations positioned side-by-side.
The image to the left will contain the symbol that had been at the top of the
stack image (f1) and the image to the right will contain the remainder of the
stack image, as illustrated in Fig. 3(c). The stack image can be repeatedly
rescaled over two images popping a single image each time. Popping an empty
stack [Fig. 3(d)] results in the binary symbol image representing 0 and the
stack remaining empty.

We can interpret a unary stack image as a nonnegative integer. Push and
pop can then be interpreted as increment and decrement operations, respec-
tively. As a convenient pseudocode, we use statements such as c¢.push(1) and
c.pop() to increment and decrement the unary word represented by the stack
image at address c. Binary representations of nonnegative integers would be
represented in a similar manner. A unary stack representation of the integer 2
could be regarded as a binary stack representation of the integer 3. Our con-
vention is to represent words with the rightmost symbol at the top of the stack.
Therefore, if the second f; in the preceding example had been instead f, the
resulting push operation would have created a stack image representing the
word 10 (or alternatively, the binary representation of the integer 2). Pushing
(or popping) k binary or unary symbol images to (or from) a binary or unary
stack image requires ©(k) TIME, constant GRID, ©(2%) SPATIALRES, 1 AM-
PLRES, 1 PHASERES, 1 DYRANGE and O(2*) FREQ. For CSM algorithms that
use stack representations, SPATIALRES (and therefore FREQ) are of critical
concern.

In the list image representation of a unary or binary word, each of the rescaled

binary symbol images are equally spaced (unlike the stack image representa-
tion). The binary list image representation of a word w € ¥7, |w| = k, involves
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placing k& symbol images (representing the k£ symbols of w) side-by-side in k
contiguous image locations and rescaling them into a single image in a ld op-
eration. For example in Fig. 3(e) a unary list representation of the unary word
111 is accomplished by the command |1a]3]5]7]7] Rescaling k binary or unary
symbol images to form a binary or unary list image, or rescaling a binary or
unary list image to form k& binary or unary symbol images both require con-
stant TIME, constant GRID, ©(k) SPATIALRES, 1 AMPLRES, 1 PHASERES, 1
DYRANGE and O(k) FREQ.

The R x (' matrix image representation can be manipulated using image
rescaling not only in the horizontal direction (as push and pop given above),
but also in the vertical direction. In the matrix representation an initial empty
image (to push to) is not required. Pushing (or popping) j real number images
to (or from) a j x 1 or 1 X j matrix image requires ©(j) TIME, constant GRID,
©(2771) SPATIALRES, infinite AMPLRES, constant PHASERES, 1 DYRANGE
and O(277!) FREQ. Pushing (or popping) k of j x 1 matrix images or k of 1 x j
matrix images to (or from) a j X k or k X j matrix image requires O (k) TIME,
constant GRID, ©(277%2) SPATIALRES, infinite AMPLRES, 1 PHASERES, 1
DYRANGE and O(277%~2) FREQ.

2.5 CSM deciding language membership

Definition 10 (CSM deciding language membership) CSM M, decides
the membership problem for L C 3 if My, has initial configuration (Csia, €sta)
and final configuration (cpy, eny), and the following hold:

sequence ey, contains the two input elements (fu, t1, t1,) and (fijwl, tog, La,)
en contains the output element (fy1,01,,01,) if w € L

en contains the output element (fo,01,,01,) if w & L

<Csta7 esta> l_*M <Chlt7 ehlt): fOT' allwe X,

Here f,, is the binary stack image representation of w € X, fiw is the unary
stack image representation of the unary word 11”1, Images fy and fi are the
binary symbol image representations of the symbols 0 and 1, respectively.

In this definition addresses (i1, ¢1,), (t2,,t2,) € I and address (01, 01,) € O,
where I and O are as given in Def. 2. We use the stack image representation of
words. The unary input word 1! is necessary for M}, to determine the length
of input word w. (For example the binary stack image representations of the
words 00 and 000 are identical.)
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2.6 Transformation from continuous image to finite address

Our model uses symbols from a finite set in its addressing scheme and employs
an address resolution technique to effect decisions (see Sect. 2.7). Therefore,
during branching and looping, variables encoded by elements of the uncount-
able set of continuous images must be transformed to the finite set of addresses.
In one of the possible addressing schemes available to us, we use symbols from
the set {0, 1}. We choose B = {w : w € {0, 1}™*™") 4 has a single 1} as our
underlying set of address words. Each of the m column and n row addresses
will be a binary word from the finite set B. An ordered pair of such binary
words identifies a particular image in the grid. Each element of B will have a
unique image encoding. A is the set of encoded images, with |N'| = max(m, n).
In order to facilitate an optical implementation of our model we cannot as-
sume to know the particular encoding strategy for the set A/ (such as the
simple binary stack or list representations of Sect. 2.4). We choose a corre-
lation based address resolution technique. The address resolution technique
chosen (the transformation from Z to B) must be general enough to resolve
addresses that use any reasonable encoding (see Sect. 2.6.1).

Given an image xy € Z we wish to determine which address word in B is
encoded by x. In general, comparing a continuous image y with the elements of
N to determine membership is not guaranteed to terminate. However, for each
x that our addressing scheme will be presented with, and given a reasonable
encoding for NV, we can be sure of the following restrictions on N: (i) x € N,
(ii) JNV]| is finite, and (iii) N contains distinct images (no duplicates). Given
these restrictions, we need only search for the single closest match between y
and the elements of /. We choose a transformation based on cross-correlation
(effected through a sequence of FT and image multiplication steps) combined
with a thresholding operation.

The function t : Z x Z — N is defined as

tx,€) = 7(®(e, X)) (9)

where x encodes the unknown addressing image to be transformed, € is a list
image formed by rescaling all the elements of A/ (in some known order) into a
single image using one [d operation, ® denotes the cross-correlation function,
and 7 is a thresholding operation. The cross-correlation function [1,2] produces
an image feorr = ®(€, x) where each point (u,v) in feor is defined

fore(.0) = [ [ e’ (0 + .y +v)dady | (10)
0 0

where x* denotes the complex conjugate of x, where (x, y) specifies coordinates
in € and x, and where (+u, 4+v) denotes an arbitrary relative shift between e
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and y expressed in the coordinate frame of feo.. In Eq. (10), let x have value
0 outside of [0,1) x [0,1). Let image feor be defined only over [0,1) x [0, 1).
In the CSM, feor(u,v) would be produced in image a by the code fragment
[a[ e[n]v]st[p]wa]x[+[n]v] [n]v], where a multiplication in the Fourier domain
is used to effect cross-correlation [1-3]. According to Eq. (10), and given a
reasonable encoding for N (implying the three restrictions outlined above),
feorr Will contain exactly one well resolved maximum amplitude value. This
point of maximum amplitude will be a nonzero value at a position identical
to the relative positioning of the list element in € that most closely matches
x. All other points in fe,, will contain an amplitude less than this value.

We define the thresholding operation of Eq. (9) for each point (u,v) in feor
as

L, if | feorr (w0, v)| = max(] feorr (u, v)|)

T (fcorr(u7v>> - {O, if ’fcorr(u7v)‘ < maX(’fcorr(uav)D :

This produces an image with a single nonzero value at coordinates u =
(20 + 1)/[2 x max(m,n)],v = 0.5 for some positive integer i in the range
[0, max(m,n) — 1]. From the definition of a binary list image (Def. 7), we can
see that these unique identifiers are exactly the images that represent the bi-
nary words corresponding to the integers {2°,2',22, ... 2Mmax(mn)=1]1 There-
fore, t is a function from continuous images to the set of image representations
of the finite set B defined earlier.

2.6.1 Reasonable encodings of N

A note is required on what constitutes a reasonable encoding for A, such
that ¢ will correctly transform s to an image representation of the appropriate
element in B. There are two considerations which one needs to bear in mind
when designing an encoding for N Firstly, Eq. (10) is not a normalised cross-
correlation. Therefore, N has to be chosen such that the autocorrelation of
each element of A has to return a strictly larger maximum value than the
cross-correlation with each of the other elements of N.

Secondly, one may wish to choose fy (the image with zero everywhere) as
an element of N'. We can see from Eq. (10) that this will result in a cross-
correlation of f.,., = fo when we try to match s = f; with e. If one chooses
fo as an element of A, this special case can be resolved (without the need
for an explicit comparison with fy) with the following rule. Given that A is
a reasonable encoding, if no single well resolved maximum amplitude value
is generated from ®, we assume that x = fy. (In all cases other than when
X = fo, feorr Will contain a well resolved point of maximum amplitude, as
explained above.)
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2.7 Conditional branching from unconditional branching

Our model does not have a conditional branching operation as a primitive; it
was felt that giving the model the capability for equality testing of continuous
images would rule out any possible implementation. However, we can effect
indirect addressing through a combination of program self-modification and
direct addressing. We can then implement conditional branching by combining
indirect addressing and unconditional branching. This is based on a technique
by Rojas [17] that relies on the fact that |[A] is finite. Without loss of gener-
ality, we could restrict ourselves to two possible symbols 0 and 1. Then, the
conditional branching instruction “if (k=1) then jump to address X, else jump
to Y7 is written as the unconditional branching instruction “jump to address
k”. We are required only to ensure that the code corresponding to addresses
X and Y is stored at addresses 1 and 0, respectively. In a 2D memory (with an
extra addressing coordinate in the horizontal direction) many such branching
instructions are possible in a single machine.

2.8 A general iteration construct

Our bounded iteration construct is based on the conditional branching in-
struction outlined in Sect. 2.7. Consider a loop of the following general form,
written in some unspecified language,

SX
while (e > 0)
SY
e :=e -1
end while
SZ

where variable e contains a nonnegative integer specifying the number of re-
maining iterations, and SX, SY, and SZ are arbitrary lists of statements. With-
out loss of generality, we assume that statements SY do not write to e and do
not branch to outside of the loop. If e is represented by a unary stack image
(where the number of represented 1s equals the value of e), this code could
be rewritten as

SX

while (e.pop() = f1)
SY

end while

SZ
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99

2 |SX |br|0|w
1 |SY|br| O |w
0 | SZ

0

Fig. 4. CSM description of a while loop. Execution begins at location (0, 2).

and compiled to a CSM as shown in Fig. 4. In this CSM, e specifies the number
of remaining iterations in unary and is represented by a unary stack image.
A second address d, unused by the statements in the body of the loop, holds
the value popped from e and must be positioned immediately to the left of e.
Address a’ is used to store and restore the contents of address a before and
after, respectively, decrementing the loop counter e. The fragment is
shorthand for a piece of indirect addressing code, and means “branch to the
address at the intersection of column 0 and the row specified by the image at

address d”.

The while routine in Fig. 4 has TIME complexity 6 + i(s + 6), constant GRID
complexity, SPATTALRES complexity max(2¢, Rs). Here i € N is the number of
times the body of the while loop is executed, s € N is the number of operations
in the body of the while loop, and finally Ry € N is the minimum SPATIALRES
required during execution of the body of the while loop. The value for each
of AMPLRES, PHASERES and DYRANGE is at least constant, and possibly
greater, depending on the operations performed and images accessed in the
body of the while routine. Finally, the FREQ complexity is O(max (2%, R,)).

3 Computability results

In this section we prove the CSM can simulate ARNNs, which are neural
networks that compute over the set of real numbers. As an immediate corollary
our model can decide the membership problem for any language L C X7, if
we allow aribtrary real values as inputs.
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3.1 Boolean circuits and ARNNs

Informally, a Boolean circuit, or simply a circuit, is a finite directed acyclic
graph where each node is an element of one of the following three sets:
{N,V, =} (called gates, with respective in-degrees of 2,2/1), {z1,...,x,} (x; €
{0, 1}, inputs, in-degree 0), {0,1} (constants, in-degree 0). A circuit family is
a set of circuits C' = {¢, : n € N}. A language L C ¥* is decided by the
circuit family Cp if the characteristic function of the language L N {0,1}"™ is
computed by c¢,, for each n € N. It is possible to encode a circuit as a finite
symbol sequence, and a circuit family by an infinite symbol sequence. When
the circuits are of exponential size (with respect to input word length and
where circuit size is the number gates in a circuit), for each L C ¥* there
exists a circuit family to decide the membership problem for L. For a more
thorough introduction to (nonuniform) circuits we refer the reader to [18].

ARNNS are finite size feedback first-order neural networks with real weights [8,9].
The state of each neuron at time ¢ + 1 is given by an update equation of the
form

j=1

where N is the number of neurons, M is the number of inputs, z;(t) € R are
the states of the neurons at time ¢, u;(t) € X% are the inputs at time ¢, and
a;j,bij,ci € R are the weights. An ARNN update equation is a function of
discrete time t = 1,2,3,... . The network’s weights, states, and inputs are
often written in matrix notation as A, B and ¢, x(t), and u(t), respectively.
The function o is defined as

0, if z<0
olx)=qxz, if0<z<l1
1, fa>1.

A subset P of the N neurons, P = {w,, ..., 2, }, P C {x1,...,on}, are called
the p output neurons. The output from an ARNN computation is defined as
the states {zy, (¢),..., 25, (t)} of these p neurons over time t = 1,2,3,... .

3.2 Formal net deciding language membership

ARNN input/output (I/O) mappings can be defined in many ways [8]. In this
paper we give a CSM that simulates the general form ARNN which has the
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update equation given by Eq. (11). We also present a CSM that simulates
a specific type of ARNN called a formal net [8]. Formal nets are ARNNs
that decide the language membership problem and have the following 1/0
encodings. A formal net has two binary input lines, called the input data line
(D) and the input validation line (V'), respectively. If D is active at a given
time t then D(t) € X, otherwise D(t) = 0. V() = 1 when D is active, and
V(t) = 0 thereafter (when D is deactivated it never again becomes active).
An input to a formal net at time ¢ has the form u(t) = (D(t),V(t)) € 2. The
input word w = w;...w, € X1 where w; € X,1 < ¢ < k, is represented by
Uy (t) = (Dw(t), Vip(t)), t € N, where

Dy(t) = wy ift=1,...,k Vi(t) = 1 ift=1,...,k
Y10 otherwise T 10 otherwise

A formal net has two output neurons Oy, O, € {x1,...,xy}, called the output
data line and output validation line, respectively. Given a formal net F with
an input word w and initial state z;(1) =0, 1 <7 < N, w is classified in time
7 if the output sequences have the form

Og = 0""1,0¢, O, = 07110,

where ¢, € ¥ and w = |N|. If ¢, = 1 then w is accepted, if ¥, = 0 then
w is rejected. We now give a definition of deciding language membership by
ARNN (from [8]). Let T : N — N be a total function.

Definition 11 (Formal net deciding language membership) The mem-
bership problem for the language L C XF is decided in time T by the formal
net F provided that each word w € X7 is classified in time 7 < T(|lw|) and
Ypy=1ifweL and, =0 if w ¢ L.

In [8], Siegelmann and Sontag prove that for each language L C X7 there exists
a formal net F to decide the membership problem for L, hence proving the
ARNN model to be computationally more powerful than the Turing machine
model. Fy, contains one real weight. This weight encodes the (nonuniform)
circuit family ', that decides L. Let S¢, : N — N be the size of C. For a
given input word w € ¥F, F, retrieves the encoding of circuit ¢, from its real
weight and simulates this encoded circuit on input w to decide membership
in L, in time T(Jw|) = O(|w|[Sc, (|w|)]?). Given polynomial time, formal nets
decide the nonuniform language class P/poly. Given exponential time, formal
nets decide the membership problem for all languages.
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3.8 Statement of main result

Theorem 1 There exists a CSM M such that for each ARNN A, M com-
putes A’s 1/0 map, using our ARNN 1/0 representation.

PROOF. The proof is provided by the ARNN simulation program for the
CSM given in Fig. 5. The simulation is written in a convenient shorthand
notation. The expansions into sequences of atomic operations are given in
Fig. 6. The ARNN I/O representation is given is Sect. 3.4. The simulation
program is explained in Sects. 3.5 through 3.7. A computational complexity
analysis of the simulation program is given in Sect. 3.8. O

3.4  ARNN representation

As a convenient notation we let & be the image representation of k. We now
give the I/0O representation used in Theorem 1. The inputs to M fall into three
categories: inputs that represent A, inputs that represent A’s input, and some
constant inputs. Recall that our representation of matrices by images was
defined in Def. 9 and illustrated in Fig. 3(f).

The ARNN weight matrices A, B, and c are represented by N x N, N x M, and
N x 1 matrix images A, B, and ¢, respectively. The state vector z is represented
by a 1 x N matrix image T. The set of output states P are represented by the
image P (described below). The values N — 1 and M — 1 need to be given
as input to the simulator in order to bound the loops. They are represented
by unary stack images N — 1 and M — 1, representing the unary words 1(N=1
and 1M=1_ respectively. These seven input images define the ARNN A. The
constant images f(x,y) = 0 and f(z,y) = 1, denoted 0 and 1, respectively, are
also given as input. Images 0 and 1 are used to parameterise p (see Lemma 2
below).

For an ARNN timestep ¢, the ARNN input vector u(t) is represented by a
1 x M matrix image @. In an initial configuration of our simulation program
we assume an input stack image I represents all input vectors u(t) for all
t=1,2,3,... . At an ARNN timestep ¢, the top element of stack image I is
a 1 x M matrix image representing the input vector u(t).

The p output neurons are represented by a 1 x N matrix image P. We use
P to extract our representation of the p output states from the N neuron
states represented by Z. The image T contains N (possibly nonzero) values
at specific coordinates defined in Def. 9. p of these values represent the p
ARNN output states and have coordinates (z1,¥1),..., (%, yp) in T. In the
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image P, each of the coordinates (x1,¥1), ..., (7, y,) has value 1 and all other
coordinates in P have value 0. We multiply T by P. This image multiplication
results in an output image o that has our representation of the p ARNN
outputs at the coordinates (z1,41),..., (%, yp). Image o has value 0 at all
other coordinates. The simulator then pushes o to an output stack image O.
This output extraction process is carried out at the end of each simulated
state update.

3.5 ARNN simulation overview

From the neuron state update equation Eq. (11), each z,(¢) is a component
of the state vector x(t). From z(t) we define the N x N matrix X (¢) where
each row of X (¢) is the vector z(t). Therefore X (¢) has components z;;(t), and
for each j € {1,... N} it is the case that z;; = xy;, Vi,7 € {1,...N}. From
u(t) we define the N x M matrix U(t) where each row of U(t) is the vector
u(t). Therefore U(t) has components u;;(t), and for each j € {1,... M} it is
the case that u;; = uy;, Vi,7’ € {1,...N}. Using X (t) and U(t) we rewrite
Eq. (11) as

J=1

N M
j=1

In the simulation we generate N x N and N x M matrix images X and U
representing X (t) and U(t), respectively. We then simulate the affine combi-
nation in Eq. (12) using our model’s + and - operators. We use the CSM’s
amplitude filtering operation p to simulate the ARNN ¢ function.

Lemma 2 The CSM operation p simulates o(x) in constant TIME.

PROOF. From the definition of p in Eq. (6), we set zi(x,y) = 0 (denoted 0)
and z,(z,y) = 1 (denoted 1) to give

0, if [f(z,y)| <0
p(f(z,),0,1) = |f(x,y)], if0<|f(z,y) <1
1, if [f(z,y)|>1.

Using our representation of ARNN state values by images, p(Z, 0, 1) simulates
o(x). Also, p is a CSM operation hence simulating o(z) requires constant
TIME. O
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3.6 ARNN simulation algorithm

For brevity and ease of understanding we outline our simulation algorithm in
a high-level pseudocode, followed by an explanation of each algorithm step.

() 7= Ipop()

(ii) X := push T onto itself vertically N — 1 times
(iii) AX = A-X

(iv) YAX = %, (AX pop,())

(v) U := push @ onto itself vertically N — 1 times
(vi) BU = B-U

(vii) YBU = ¥M, (B—U.popi())

(vili) affine-comb := YAX +¥XBU +¢

(ix) 7' := p(affine-comb, 0,1)

) = (@)

(xi) O.push(P - 7)

(xii) goto step (i)

In step (i) we pop an image from input stack I and call the popped image @.
Image @ is a 1 x M matrix image representing the ARNN’s inputs at some
time t. In step (ii) we generate the N x N matrix image X by vertically
pushing N — 1 identical copies of T onto a copy of Z. In step (iii), X is
point by point multiplied by matrix image A. This single multiplication step
efficiently simulates (in constant TIME) the matrix multiplication a;jz; for all
i,7 € {1,..., N} (as described in Sect. 3.5). Step (iv) simulates the ARNN
summation Z;V:l aijr; (in linear TIME). Each of the N columns of AX are
popped and added (using the + operation), one at a time, to the previous
popped image.

In step (v) we are treating u in a similar way to our treatment of T in step
(ii). In step (vi) we effect B - U, efficiently simulating (in constant TIME) the
multiplication b;;u; for alli € {1,..., N}, 5 € {1,..., M}. Step (vii) simulates
the ARNN summation ij\il biju; using the same technique used in step (iv).

In step (viii) we simulate the addition of the three terms in the ARNN affine
combination. In our simulator this addition is effected in two simple image
addition steps. In step (ix) we simulate the ARNN’s ¢ function by amplitude
filtering using the CSM’s p function with the lower and upper threshold images
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(0,1) (as given by Lemma 2). The resulting N x 1 matrix image is transformed
into a 1 x N matrix image (we simply transpose the represented vector) in
step (x). We call the result of this amplitude filtering and transformation 7;
it represents the ARNN state vector z(t + 1). In step (xi) we multiply Z by
the output mask P (as described in Sect. 3.4). The result, which represents
the ARNN output at time ¢ + 1 is then pushed to the output stack O. The
final step in our algorithm sends us back to step (i). Notice that our algorithm
never halts as ARNN computations are defined for time t =1,2,3,... .

3.7  Explanation of Figs. 5 and 6

The ARNN simulation with our model is shown in Fig. 5. The numerals (i)
(xii) are present to assist the reader in understanding the program; they cor-
respond to steps (i)—(xii) in the high-level pseudocode in Sect. 3.6. In our
ARNN simulator program addresses are written in a shorthand notation that
are expanded using Fig. 6. Before the simulator begins executing, a simple
preprocessor or compiler could be used to update the shorthand addresses to
the standard long-form notation.

Addresses t1, to, and t3 are used as temporary storage locations during a run
of the simulator [note: address t3 is located at grid coordinates (11,14)]. In
the simulator our ® notation not only denotes the image representation of x,
but also acts as an address identifier for the image representing . Addresses
T and @ are used to store our representation of the neurons’ states and inputs,
respectively, during a computation. The temporary storage addresses Y AX
and YBU are used to store the results of steps (iv) and (vii), respectively.
Addresses N —1 and M — 1 store our representation of the dimensions of
x and u, respectively (necessary for bounding the while loops). The address
identifiers A, B, and ¢ store the image representation of the corresponding
ARNN matrices, and P stores our mask for extracting the p output states
from the N neuron states, as described in Sect. 3.4. Code fragments of the
form ‘whl‘ i ‘ ‘end‘ are shorthand for code to initialise and implement the
while loop given in Sect. 2.8. The instructions between ¢ and end are executed
i times. The notation 0 is shorthand for the “image at address 0”.

At ARNN timestep t, our representation of the ARNN input u(t) is at the
top of the input stack image I. This input is popped off the stack and placed
in address u. The computation then proceeds as described by the high-level
pseudocode algorithm in Sect. 3.6. The output memory address O stores the
sequence of outputs as described in Sect. 3.4. Program execution begins at
well-known address sta and proceeds according to the rules for our model’s
programming language defined in Def. 4 and explained in Fig. 2.
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Fig. 5. CSM M that simulates any ARNN A. The simulator is written in a conve-
nient shorthand notation, (see Fig. 6 for the expansions into sequences of atomic
operations). The simulation program is explained in Sect. 3.7.
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t1a — 10 | 11 | 15| 15

t1 — 10 | 10 | 15| 15

T — 13113060

ts3 | — |11 | 11 | 14|14

ats — |11 | 11 |14 |15
b — 12|12 | 15|15
A — [ 16|16 | 0|0

ab — 11 | 12 | 15| 15

bts — 12 | 13 | 15| 15

to — 13| 13 | 15| 15

B | — |17l 17T |0]0

YBU | — 8 8 | 15|15
181 18 1 0| 0O
191 19 10| 0

ol
l

ol
!

(¢) | whl | N—=1 | ... | end
whl | M—1 | ... | end

Fig. 6. Time-saving shorthand notation used in the simulator in Fig. 5: (a) shows
shorthand addresses, (b) branch to beginning of row § — 1, where § is the current
row, and (c) expands to initialisation instructions and the while loop code given in
Fig. 4.

3.8 Complexity analysis of simulation algorithm

The following is a worst case analysis of the ARNN simulation algorithm. If
the ARNN being simulated is defined for time t = 1,2,3,... , has M as the
length of the input vector u(t) and has N neurons, and k is the number of
stack image elements used to represent the active input to our simulator, then
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M requires TIME T linear in N, M, and ¢, and independent of k,
T(N,M,t, k) = (49N + 11M +42)t + 1 .
M requires constant GRID, and exponential SPATIALRES
Ry(N, M, t, k) = max(2FTM=1 9@N=2) oWN+M=2) o(t+N-1)y

M requires infinite AMPLRES in order to represent real-valued ARNN weight
matrices. M requires constant PHASERES of 1 and linear DYRANGE equal
to max (1, maxy,,, ), where maxy,, is the maximum amplitude value of all the
input images. Finally, the FREQ complexity is O(Rs(-)), where Rs(-) is the
SPATIALRES complexity of M.

3.9 CSM deciding language membership by formal net simulation

Corollary 3 There exists a CSM D that decides the membership problem for
each L C XT.

PROOF. The proof relies on two facts. Firstly, for each L C X7 there exists
a formal net Fj, that decides the membership problem for L [8]. Secondly
there exists a CSM M that simulates each ARNN (Theorem 1). CSM D is
given in Fig. 7, its I/O format and a brief complexity analysis are given in the
remainder of the current section. O

To decide membership of w € X7 in L, D simulates formal net F, on input w.
D is a language membership deciding CSM, hence D’s I/O format is consistent
with Def. 10 (CSM deciding language membership). In Fig. 7, rows 2 to 13 are
exactly rows 2 to 13 from CSM M in Fig. 5, the remaining extra functionality
is necessary to properly format the I/O. The shorthand notation follows the
format given in Fig. 6. Given the problem instance of deciding membership of
w € YT in L, CSM D has thirteen input images and a single output image.
Input images f,, and f;. are the binary and unary stack image representations
of the words w and 1!, respectively. Images 0 and 1 are the constant images
f(z,y) =0and f(x,y) =1, respectively. Formal net F, is completely defined
by the following seven input images: A, B,¢ P,Z, N — 1, and M — 1. These
images have the format described above in Sect. 3.4. When simulating a formal
net the input images M — 1 and T are constant (as M = 2 and x(1) is a vector
of zeros). Images Oy and O, are unary stack images representing the unary
words 1¢ and 1Y, respectively. Here d and v are the indices of the output
data and output validation neurons, respectively, in the N vector of neurons.
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Fig. 7. CSM D that decides language membership by ARNN simulation. Shorthand
notation follows the format given in Fig. 6. Rows 2 to 13 are exactly rows 2 to 13
from CSM M in Fig. 5.
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Images Oy and O, are used to extract the output ‘decision’ of F;. There is
one output image denoted fy, .

The following is a worst case analysis of CSM D simulating a formal net Fp
that decides membership of language L in time T. On input word w € X7,
Fi, decides if w is in L in ¢ timesteps for some ¢ < T'(Jw|). When deciding a
language from the class P/poly, in the worst case the function T is polynomial
in input word length. When deciding an arbitrary language, in the worst case
T is exponential in input word length [8]. Let N, M, d, and v be as given
above. CSM D requires linear TIME

T(N, M, T(Jwl|),|w|,d,v) = (49N + Tv + 81)T(|w|) + 12|w| + 7d + 24 ,
constant GRID, and exponential SPATIALRES
Ry(N, M, T(|uw]), [w], d, v) = max (2], 26V-2)

to decide membership of w in L. D requires infinite AMPLRES, as one of
F1’s weight matrices contains a real-valued weight that encodes the (possibly
nonuniform) circuit family C';. D requires constant PHASERES of 1 and linear
DYRANGE equal to max (1, maxy,, ) where maxy,, is the maximum amplitude
value of all the input images. Finally, the FREQ complexity is O(Rs(+)), where
Rs(+) is the SPATIALRES complexity of D. By way of formal net simulation the
CSM decides the membership problem for any language L C X+ with these
complexity bounds.

4 Unordered search

Sorting and searching [19] provide standard challenges to computer scientists
in the field of algorithms, computation, and complexity. In this paper we focus
on a binary search algorithm. With our model this algorithm can be applied to
unordered lists. Consider an unordered list of n elements. For a given property
P, the list could be represented by an n-tuple of bits, where the bit key for each
element denotes whether or not that element satisfies P. If, for a particular
P, only one element in the list satisfies P, the problem of finding its index
becomes one of searching an unordered binary list for a single 1. The problem
is defined formally as follows.

Definition 12 (Needle in haystack problem) Let L = {w : w € 0*10*}.
Let w € L be written as w = wowy ... w,_1 where w; € {0,1}. Given such a
w, the needle in haystack (NIH) problem asks what is the index of the symbol
1 in w. The solution to NIH for a given w s the index i, expressed in binary,
where w; = 1.
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(8,99) procedure search(il, i2)
(0,3) e := i2
(4,3) c = fo
0,w) while (e.pop() = f1)
(0,1) rescale il over both image a and image b
(0,2) FT, square, and FT image a
(8,2) if (a = f1)
(8,1) il := LHS of i1l
(14,1) c.push(fy)
(8,2) else /* a = fy */
(8,0) il := RHS of i1l
(16,0) c.push(f)

end if

end while

(0,0) a :=c¢
(2,0) end procedure

Fig. 8. Pseudocode algorithm to search for a single 1 in a list otherwise populated
with Os. Line numbers give addresses of the corresponding piece of code in the CSM
machine in Fig. 9. Images fy and f; were defined in Def. 5.

This problem was posed by Grover in [20]. His quantum computer algorithm
requires O(y/n) comparison operations on average. Bennett et al. [21] have
shown the work of Grover is optimal up to a multiplicative constant, and
that in fact any quantum mechanical system will require Q(y/n) comparisons.
Algorithms for conventional models of computation require ©(n) comparisons
in the worst case to solve the problem. We present an algorithm that requires
O(log, n) comparisons, in the worst case, with a model of computation that
has promising future implementation prospects.

Our search algorithm is quite simple. A single bright point is somewhere in an
otherwise dark image. If we block one half of the image we can tell in a single
step if the other half contains the bright point or not. This forms the basis
of a binary search algorithm to determine the precise location of the bright
point.

Before presenting a CSM instance of the algorithm, we give a pseudocode
version (see Fig. 8). This pseudocode algorithm consists of a single loop. It
is formatted to conform to the iteration construct presented in Sect. 2.8. The
algorithm takes two arguments, one is a list image and the other is a stack
image. (Stack images and list images were defined in Defs. 6 and 7.) The first
argument, il, is a binary list image representing w. We assume that n is a
power of 2. The second argument, i2, is a unary stack image of length log, n,
and is used to bound the iteration of the algorithm’s loop. The algorithm uses
address c as it constructs, one binary symbol image at a time, a binary stack
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image of length log, n. At halt, the binary stack image at address ¢ represents
the index ¢ of the 1 in w. This index is returned through address a when the
algorithm terminates. To aid the reader, each line of the pseudocode algorithm
in Fig. 8 is prepended with a pair of coordinates that relate the pseudocode to
the beginning of the corresponding code in the CSM version of the algorithm.
The CSM version of the algorithm is given in Fig. 9.

Definition 13 (Comparison in CSM) A comparison in a CSM computa-
tion is defined as a conditional branching instruction.

Theorem 4 There exists a CSM that solves NIH in ©O(logyn) comparisons
for a list of length n, where n = 2*, k € N, k > 1.

PROOF. The proof is provided by the algorithm in Fig. 9. Correctness: The
correctness is most easily seen from the pseudocode algorithm in Fig. 8 and the
following inductive argument. (Figure 8 contains a mapping from pseudocode
statements to the CSM statements of Fig. 9.) The two inputs are a binary list
image representation of w (image il1) and a unary stack image of length log, n
(image i2). During the first iteration of the loop, a single image f; is popped
from i2, and i1 is divided equally into two list images (a left-hand image and
a right-hand image). The nonzero peak (representing the 1 in w) will be either
in the left-hand list image or the right-hand list image. In order to determine
which list image contains the peak in a constant number of steps, the left-
hand list image is transformed such that its centre will contain a weighted
sum of all of the values over the whole list image. Effectively, the list image is
transformed to an element of the binary image set { fo, f1} (see Def. 5). If the
left-hand list image is transformed to f; (if the centre of this transformed list
image contains a nonzero amplitude) then the left-hand list image contained
the peak. In this case, the right-hand image is discarded, and fy is pushed
onto stack image c. Otherwise, the right-hand list image contained the peak,
the left-hand list image is discarded, and f; is pushed onto c. After the first
iteration of the loop, the most significant bit of the solution to the problem is
represented by the top of stack image c, and il has been reduced to half its
length. For the second iteration of the loop, a second image f; is popped from
counter i2, the list image is divided in two, and the appropriate half discarded.
The algorithm continues in this binary search fashion until the image popped
from i2 is fy. Image c is copied into a and the algorithm halts. At halt, the
index (in binary) of the 1 in w is represented by the stack image in a of length
log, n.

Complexity: The loop in the algorithm makes exactly log, n iterations, corre-
sponding to log, n+ 1 evaluations of the loop guard. Inside the loop, there is a
single comparison. In total, the CSM algorithm makes 2 log, n+1 comparisons
to transform the binary list image representation of w (of length n) into the
binary stack image representation of index i. O
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Theorem 4 states computational complexity in terms of number of compar-
isons, so that the result can be directly compared with the lower bound anal-
yses from classical algorithm theory and quantum complexity theory. This
simplification hides linear SPATIALRES and FREQ overheads, as the following
corollary shows.

Corollary 5 There exists a CSM that solves NIH in O(log, n) TIME, constant
GRID, ©(n) SPATIALRES, constant DYRANGE, constant AMPLRES, constant
PHASERES, and O(n) FREQ, for a list of length n, where n = 2% k € N k > 1.

PROOF. The proof is provided by the algorithm in Fig. 9. Correctness: The
correctness follows from Theorem 4.

Complexity: Each iteration of the loop requires constant TIME. The total TIME
from problem instance to solution is 23 log, n 4+ 11. From Sect. 2.3, all CSMs
require constant GRID. The maximum length required of any stack image
during the computation is log,n + 1 (for image c). This results in SPATIAL-
RES complexity of 2n. The CSM requires constant AMPLRES, PHASERES and
DYRANGE, because all input values will be binary. Even after the F'T oper-
ation, only the binarised zero frequency component is relevant to the com-
putation so we do not need to preserve the amplitudes or phases of any of
the other spatial frequency components. Finally, the CSM requires an upper
bound of O(n) FREQ to accompany the linear SPATIALRES (assuming tradi-
tional diffraction limited resolution techniques). O

5 Conclusion

We have presented the CSM, an analog model of computation inspired by
the field of optical information processing. We have given some insight into
the computational power of the CSM by proving it can simulate ARNNs
(this simulation includes linear time matrix multiplication), and by giving
a O(log, n) unordered search algorithm that does not make use of arbitrary
real /complex constants. The model does not support arbitrary equality testing
of images, and so in this sense is closer in spirit to models found in [8,22,23]
than (say) the Blum, Shub, and Smale model [24,25]. However allowing arbi-
trary real/complex constants gives the model a lot of computational power.
For future work it would be interesting to classify the computational power of
discrete variants of the CSM.
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