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Abstract

One of the most important optical signal processing operations is the optical Fourier transform (OFT). Of the arrangements for
implementation of the OFT, perhaps the most flexible is that for the scaled optical Fourier transform (SOFT), as it allows control over
the scale of the output Fourier transform distribution. By means of an analysis in cylindrical coordinates, we examine some of the prac-
tical limits introduced by the use of a thin lens of finite aperture in the implementation of the SOFT. Using simple rules of thumb that are
based on an examination of the phase and magnitude deviations from the ideal (infinite-lens) diameter case, we define a volume inside the
geometric shadow, which we refer to as a sub-geometric shadow. We then show that inside this sub-geometric shadow errors introduced
by diffraction can be quantified.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

One of the fundamental operations in optical signal
processing (OSP) is the optical Fourier transform (OFT).
Various methods of implementing the OFT have been dis-
cussed [1–5]. Perhaps the most important, from a practical
perspective, is the scaled OFT (SOFT), which allows the
user to adjust the size of the output transform. An optical
arrangement for the SOFT is illustrated in Fig. 1.

In his analysis, Goodman [1] assumes that the object is
illuminated with a perfect converging spherical wave. How-
ever, the wave nature of light and the finite extent of the
thin lens lead to diffraction effects that cause deviations
from perfect spherical illumination. These diffraction
effects can degrade the output OFT, and it would thus be
beneficial if a sub-volume, or sub-geometric shadow, could
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be identified where these effects remain below some quanti-
fiable level. In Fig. 1 we illustrate what we mean by a sub-

geometric shadow identifying the apex point, zc, on the
principal axis.

In addressing this problem we begin by examining the
deviations in the illumination field that occur inside
the geometric shadow, comparing the case of a perfect
spherical wave (ideal case) with the case of a spherical
wavefront ‘segment’ propagating in the Fresnel-regime
(non-ideal case). As in Part I of this paper [6], we present
our analysis in a normalised coordinate system, thereby
providing a more visually compact representation and
making our results as general as possible. In our analysis
of the deviations in the illumination field between the
ideal (Goodman) and non-ideal (Fresnel) we show that
[6–8]:

(i) The off-axis phase deviation extrema lie along well-
defined analytically derived curves.

(ii) Large phase deviations occur on-axis.
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Fig. 1. 3-D cross-sectional representation of the scaled OFT system.
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(iii) The magnitude deviation extremes appear to lie along
the curves derived from the phase deviation analysis.

(iv) There are significant magnitude deviations on-axis.
The nature of these deviations is different to the on-
axis deviations that occur in Part I [6].

We note that, although the illuminating field phase and
magnitude deviation analysis offers some insight into the
effects of diffraction by the lens aperture, it is the intensity
in the Fourier plane that in most cases is of primary inter-
est. In order to examine the intensity deviations in the out-
put Fourier plane we compare the intensity distributions
predicted by the ideal and non-ideal cases in the Fourier
plane for the case when our object (see Fig. 1) is a simple
circular aperture.

The intensity deviations in the Fourier plane are exam-
ined using the 3-D version of the parameter we introduced
in Part I [6], the Fourier Parameter, which allows us to esti-
mate the deviation in intensity distribution over the entire
plane. Once again this parameter can range in value from
0 to 2, corresponding to an exact match and complete mis-
match, respectively. Our approach to the 3-D analysis thus
far follows Part I [6]. Out of necessity we depart in this
paper from the previous approach in an attempt to clearly
define a 3-D sub-geometric shadow. One of the reasons for
this departure is the observation, that for a given SOFT
system (with fixed lens diameter and focal length), illumi-
nating fields of different wavelengths exhibit the same mag-
nitude and phase distributions when examined at different
(normalised) distances (z) from the diffracting object. In
the case of intensity deviations in the Fourier plane we
show that:

(i) In keeping with the results presented in Part I [6] the
intensity deviation extrema appear to lie on the
curves that were derived from the phase deviation
analysis.

(ii) Using the Fourier parameter error metric, and
exploiting the relationship that exists between illumi-
nating fields of different wavelengths, we can define a
new sub-geometric shadow. If the SOFT is carried out
inside this sub-geometric shadow the maximum error
due to diffraction can be located and quantified.

From a practical point of view the most significant result
in this work is presented in Section 3, where we specifically
address the maximum error in the SOFT due to diffraction.
Here we examine the analytic expression for intensity dis-
tribution in the Fourier plane for the ideal (Goodman) case
when the object in question (see Fig. 1) is a simple circular
aperture located at a normalised distance z from the lens.
The two main variables in this analytic expression are K

(which is defined explicitly in Section 2, and includes the
focal length and radius of the lens, and the wavelength of
the illuminating light) and z. It is found that a relationship
exists such that for two given values of K there exists two
corresponding values for z, which produce identical, albeit
scaled, intensity distributions. This relationship is exam-
ined numerically for the non-ideal (Fresnel) case and a sim-
ilar relationship holds. We conclude: if the location and
size of the maximum diffraction error for a particular
SOFT system is found, this result can be generalised to
any SOFT system.

2. Deviations between ideal (Goodman) and non-ideal

(Fresnel) illumination

This section is broken up into four parts. In the first sub-
section we examine the phase deviations between the ideal
and non-ideal case and identify a set of curves, which pass
through the phase deviation extrema. In the second part we
present some results from the phase analysis. In the third
sub-section we examine the magnitude deviations and show
that the magnitude deviation extrema also lie along the
curves derived in the phase deviation analysis. Finally, in
the last part we examine the on-axis magnitude deviations
and compare them to the analogous deviations for the 2-D
case [6].

2.1. Phase analysis

In this section the phase deviation extrema are located
by employing standard calculus techniques outlined in Sec-
tion 2 of Part I [6]. A thin spherical lens in the plane z = 0,
with aperture of radius L and focal length f, is illuminated
by a normally incident, unit-amplitude monochromatic
plane wave of wavelength k. Our concern is with the com-
plex amplitude U(z1,q1) of the resulting wave incident on
(see Fig. 1) the object transparency in the plane z = z1,
where q1 ¼ ðx2

1 þ y2
1Þ

1=2 is the radial coordinate. Through-
out our analysis we assume that Fresnel approximations
are satisfied and neglect any constant phase factors.

If the aperture radius L is sufficiently large that it can be
ignored, the wave just to the right of the lens is given by

U 0ð0þ; q0Þ ¼ exp �j
k

2f
q2

0

� �
; ð1Þ
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and the corresponding complex amplitude incident on the
object by

USðz1; q1Þ ¼
f

f � z1

� �
exp �j

k
2 f � z1ð Þ q

2
1

� �
; ð2Þ

where k = 2p/k. If the finite lens radius is taken into
account, the complex amplitude incident on the object is
given instead by the Fresnel diffraction integral [1–4]

UF ðz1; x1; y1Þ ¼
1

jz1k

Z 1

�1

Z 1

�1
circ

r
L

� �

� exp
jk

2z1

½ðx1 � x0Þ2 þ ðy1 � y0Þ
2�

� 	
dx0 dy0; ð3Þ

where circ(r/L) = 1 for r 6 L and 0 otherwise. Expressed in
polar coordinates, Eq. (3) assumes the form

UFðz1; q1Þ ¼
2p
jz1k

Z L

0

exp
jk
2

q2
1

z1

þ q2
0

1

z1

� 1

f

� �� �� 	

� J 0

kq1q0

z1

� �
q0 dq0. ð4Þ

We wish to examine how the values given by Eqs. (2)
and (4) differ from one another. Dividing the latter into
the former gives

UFðz1; q1Þ
U Sðz1; q1Þ

¼F ðz1;q1Þ expðjDu0Þ

¼ f � z1

f

� �
2p
jz1k

Z L

0

exp
jk
2

q2
1

z1

þ q2
0

1

z1

� 1

f

� ���

þ q2
1

f � z1

�	
J 0

kq1q0

z1

� �
q0 dq0; ð5Þ

where Du0 ¼ uUF0ðz1;q1Þ � uU sðz1;q1Þ. In order to be as general
as possible the variables are normalised with respect to the
physical parameters of the system giving

2Kð1� zÞ
jz

ejK q2

zð1�zÞ

Z 1

0

exp jK
P 2

N

z

� �
ð1� zÞ

� �

� J 0 K
2P Nq

z

� �� �
P N dP N ; ð6Þ

where z = z1/f, q = q1/L, P N ¼ q0=L and K ¼ kL2

2f .
We note that [4,9–11]

2

Z 1

0

J 0ðvPÞe
�juP2

2 PdP ¼ Cðu; vÞ � jSðu; vÞ; ð7Þ

where Cðu; vÞ ¼ 2
R 1

0
J 0ðvP Þ cosð1

2
uP 2ÞPdP and Sðu; vÞ ¼

2
R 1

0
J 0ðvP Þ sinð1

2
uP 2ÞPdP . It has been shown [4,9,10] that

this form of integral may be solved using Lommel func-
tions, which are convergent [9–11] for all values of u and
v, and are defined as

Unðu; vÞ ¼
X1
s¼0

ð�1Þs u
v

� �2sþn
J 2sþnðvÞ; ð8aÞ

V nðu; vÞ ¼
X1
s¼0

ð�1Þs v
u

� �2sþn
J 2sþnðvÞ. ð8bÞ

Using integration by parts it can be shown that
Cðu; vÞ ¼ cosðu=2Þ
u=2

U 1ðu; vÞ þ
sinðu=2Þ

u=2
U 2ðu; vÞ; ð9aÞ

Sðu; vÞ ¼ sinðu=2Þ
u=2

U 1ðu; vÞ �
cosðu=2Þ

u=2
U 2ðu; vÞ. ð9bÞ

It may also be shown that C(u, v) and S(u, v) can be written
in a slightly different form

Cðu; vÞ ¼ 2

u
sin

v2

2u

� �
þ sinðu=2Þ

u=2
V 0ðu; vÞ

� cosðu=2Þ
u=2

V 1ðu; vÞ; ð10aÞ

Sðu; vÞ ¼ 2

u
cos

v2

2u

� �

� cosðu=2Þ
u=2

V 0ðu; vÞ �
sinðu=2Þ

u=2
V 1ðu; vÞ. ð10bÞ

These forms are equivalent [4,10,11]. However, depend-
ing on whether |u/m| > 1 or |u/m| < 1, it is advantageous to
use Vn(u, v) or Un(u, v), respectively, because of the speed
of numerical convergence of the solution [11]. The problem
of diffraction from a circular aperture, under different illu-
minating conditions has also been discussed elsewhere [12].

We wish to find an analytical solution for Eq. (6). In
order to do so we rearrange the equation so that it is in
the same form as Eq. (7), where

u ¼ �2K
1� z

z

� �
and v ¼ 2K

q
z

� �
. ð11Þ

When analysing our system, we wish to examine the illu-
minated region only, i.e., the volume inside the geometric
shadow. Noting that

u
v




 


 ¼ 1� z
q










; ð12Þ

it is clear that if we wish to stay inside the illuminated area
then q < 1 � z, thus Eq. (12) must be greater than unity. In
this case the optimal solution to our equation, in terms of
speed of convergence, is found using the Lommel V series
functions, i.e., Eq. (10).

Ideally, we would like to able to predict the locations
where the extrema in phase deviation occur. As stated it
is known [4,10,11] that the U and V Lommel functions
are equivalent. Therefore, although the V series solutions
converge more rapidly, it was decided to use the U Lommel
functions to analyse the phase deviation extrema due to the
reduced complexity of the form of the solution. In this case
the form of the solution to Eq. (6) is given by

¼ K
jz
½Icðz; qÞ � jI sðz; qÞ� ð13Þ

with

I sðz;qÞ¼ sin
Kq2

zð1�zÞ

� �
Cðu;vÞ�cos

Kq2

zð1� zÞ

� �
Sðu;vÞ; ð14aÞ

Icðz;qÞ¼ cos
Kq2

zð1�zÞ

� �
Cðu;vÞþsin

Kq2

zð1� zÞ

� �
Sðu;vÞ. ð14bÞ
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Adopting the approach taken in Section 2 of Part I [6],
and simplifying the result in the manner outlined in Ref.
[13], gives that stationary points lie along lines given by

q ¼ ð2N þ 1Þ p
2

z
4K

; ð15Þ

where N 2 N. As mentioned we wish to examine the illumi-
nated area only. Therefore, we rewrite Eq. (15) using nor-
malised and scaled coordinates to give

q0 ¼ ð2N þ 1Þ p
2

z
4Kð1� zÞ

� �
; ð16Þ

where q 0 = q/(1 � z).
2.2. Phase deviation results

Fig. 2(a) is a 3-D plot of the phase deviations between
the ideal and non-ideal cases for K = 5p/8 (see Eqs. (13)
and (14)). The deviations in the plot range between ±p/2
and we note the presence of sharp on-axis phase oscilla-
tions. It is easier to appreciate the nature of these devia-
tions by examining the contour plot in Fig. 2(b). We
have chosen a low value of K so that the rate of change
of the deviations is slow. Physically a small K value corre-
sponds to a small lens with a focal length that is short com-
pared to the wavelength. In order to identify trends we
have performed many numerical searches on such phase
deviation plots to: (i) determine the location of the phase
deviation extrema (marked on this plot as white dots)
and (ii) to determine the absolute phase deviation extremes
for a range of positions in z (marked on the plot as grey
dots).

Following the analysis in Part I [6], a good approxima-
tion to the zc point (cross-over point) is given by finding the
point where the N = 2 curve intersect the geometric sha-
dow (q 0 = 1). Rearranging Eq. (16) then gives

zc ¼
1

1þ 5p
8K

. ð17Þ
-

Arg exp 'F z, j

za

Fig. 2. (a) 3-D plot of phase deviations. (b) Phase deviati
By following this simple rule of thumb Eq. (17) we iden-
tify the tip/apex of a sub-geometric shadow, which we refer
to as SGS I, (Eq. (24) in Part I [6]). However, as is evident
from Fig. 2, some large phase deviations occur on-axis
inside SGS I. The fact that these deviations occur on the
z-axis (principal axis) means that it is impossible to define
a sub-geometric shadow that can exclude them.

2.3. Magnitude analysis

In Fig. 3(a), we present a 3-D plot of the difference in
magnitude between the ideal and non-ideal cases. The larg-
est magnitude variations occur on-axis and range between
0 and 2. The frequency of the oscillations decrease as z
approaches the Fourier plane. In Fig. 3(b) we present a
contour plot of the magnitude deviations between the ideal
and non-ideal case for K = 5p/8. It can be seen that the
even integer curves (Eq. (16)), derived from the phase devi-
ation analysis, also pass through the local extrema.

2.4. Magnitude analysis of on-axis points

Allowing the variable q in Eq. (13) to approach 0 and
simplifying gives

F ðz; 0ÞejDu0 ¼ 1� exp
�jKðz� 1Þ

z

� �
. ð18Þ

This result, Eq. (18), can be derived without recourse to
a Lommel function-based solution. Setting q = 0 in Eq. (6)
causes it to reduce to the following integral

F ðz; 0Þ expðjDu0Þ ¼ 2Kð1� zÞ
jz

�
Z 1

0

exp jK
P 2

N

z

� �
ð1� zÞ

� �
P N dP N .

ð19Þ
This integral is easily performed and the result is identi-

cal to Eq. (18). Fig. 4 is a plot of Eq. (18) for a value of
K = 15.7. As can be seen in the plot, and can be deduced
’

N = 2  N = 1  N = 0 

’

zc
z

b

ons with curves for N = 0! 17 (Eq. (16)), K = 5p/8.
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Fig. 4. Variation of |F(z, 0)| (3-D cylindrical case) with K = 15.7.
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Fig. 3. (a) 3-D plot of magnitude deviations of |F(z,q 0)|. (b) Contour plot of magnitude deviations of |F(z, q0)| with curves for N = 0 ! 7 (Eq. (16)),
K = 5p/8.
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from examination of Eq. (18), the magnitude oscillates
between 0 and 2. Furthermore the size of the magnitude
deviations remains unaffected by K, although as K

increases the frequency of the oscillations increase.
We now return examining the on-axis magnitude devi-

ations that occur in the 2-D case discussed in Part I of
this paper. The on-axis solution for the 2-D case is given
by integrating Eq. (17) in Part I [6] and setting x 0 = 0.
This magnitude, referred to as jF 2Dðz; 0ÞejDu0 j, is plotted
in Fig. 5 for a K value of 15.7. The difference between
the plots in Figs. 4 and 5, is that in the latter,
jF 2Dðz; 0ÞejDu0 j oscillates about a DC value of unity
whereas the deviations in the 3-D case vary between 0
and 2. This has consequences when evaluating the maxi-
mum error limit for SGS-II [6] and is discussed further
in Section 4. While it may seem surprising that the devia-
tions on-axis are so different in nature for the circular and
rectangular apertures, we note that similar on-axis devia-
tions are predicted for diffraction from a simple circular
aperture [3,4,14] and experimentally demonstrated for a
focused paraxial Gaussian beam [15].
3. Intensity analysis in the Fourier plane

In the previous section the magnitude and phase devia-
tions between an ideal converging spherical wave and a
finite spherical wavefront propagated using the Fresnel
transform were examined. Choosing a simple circular aper-
ture as our object (see Fig. 1) we now examine the intensity
deviations that occur in the Fourier plane between the ideal
and non-ideal cases.

The metric we use, the Fourier parameter [6–8,13], is a
measure of the total difference in intensity at every point
in the output plane (Fourier plane) between the ideal and
non-ideal cases. This Fourier parameter has the advantage
[6–8,13] that a single percentage error value is calculated.
It is examined for a range of object (circular aperture) posi-
tions, (assumed to be symmetric about the principal axis),
and a range of aperture sizes.

We ensure that the power that enters the system for both
the ideal and non-ideal cases is identical and throughout
our analysis we have taken care to ensure that Parseval’s
theorem is obeyed (see Ref. [6, Section 4.1] for more
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details). We note that for the ideal case, when our object
(circular aperture) is open to the edge of the geometric sha-
dow, the power in the input (lens) plane and the Fourier
plane is conserved. This is not true of the non-ideal case,
as diffraction due to the lens aperture will cause the light
to diffract outside of the geometric shadow and hence it will
not pass through the fully illuminated object (circular aper-
ture). Thus in the non-ideal case the initial power entering
the system and the power in the Fourier plane cannot be
the same, the ‘‘missing’’ power having been eliminated
by the object (blocked by the aperture). Generally the lar-
ger the value of K the smaller the diffractive effects are, and
the greater the amount of power (non-ideal case) that is
confined within the geometrical shadow. In Fig. 6 the per-
centage of power for a given K that lies within the geomet-
rical shadow is plotted as a function of z. It can be seen that
for K = 15.7 and at z = 0.9, 75% of the initial power has
been diffracted outside the geometrical shadow, whereas
at the same distance, but with K = 157 there is still over
95% of the initial power lying within the ideal illuminated
cone.

We now proceed in Section 3.1 to examine and discuss
the intensity deviations in the Fourier plane using the Fou-
rier parameter. Then in Section 3.2 we identify the sub-

geometric shadow and outline how the maximum error
due to diffraction is located and quantified.

3.1. Intensity deviations in the Fourier plane for a simple

circular window

We now compare the output distributions in the Fourier
plane predicted for the ideal and non-ideal systems when a
circular aperture (object) of radius a, is placed inside the
geometric shadow so that its centre point is on-axis and
perpendicular to the z1 axis. The output distributions are
examined for a range of positions along the axis and for
different aperture sizes. In order to be as general as possible
we use the normalised coordinates: zN = z1/f and a 0 = a/L,
where f is the focal length of the lens and L is the radius of
the lens. We use the variable zN to emphasis that we are
referring to the z location of the object (circular aperture).
In Section 2.1 we previously used scaled coordinates in
% power 
inside GS ’

K=157

K=15.7

Fig. 6. Percentage of initial power inside geometric shadow as a function
of z for K = 15.7 (solid line) and K = 157 (dashed line).
order to ensure that we always stayed within the illumi-
nated region. Similarly, we now choose a scaled aperture
size, aN = a 0/(1 � zN), which has a maximum value of unity
when it is at the geometric shadow edge. For example if
aN = 1, the circular aperture (object) fully fills the geomet-
ric illuminated cone regardless of its position in zN.

The Fourier parameter was developed specifically to
identify deviations in the shape of the output intensity
distribution. We now extend it so that it is suitable for
our 3-D analysis. For both models the intensity in the Fou-
rier plane is normalised with respect to the power that has
passed through the circular aperture (object). The resulting
normalised intensities are then compared at every point in
the Fourier plane and the accumulated error calculated.
Therefore

XFPðaN; zNÞ ¼Z 2p

0

oh
Z 1

�1

IGood aN; zNð Þ
PowerGoodjAperture

� IFresnelðaN; zNÞ
PowerFresneljAperture












qFoqF;

ð20Þ

where the use of the oqFoh notation underlines the fact that
the cylindrical coordinate integral takes place in the Fou-
rier plane.

Due to the complexity of Eq. (20) it is necessary to per-
form the integral numerically. In Fig. 7(a), a 3-D plot of
Eq. (20) for a value of K = 50 is presented. It can be seen
that large deviations occur close to the axis and there is
also a steady increase in the size of the deviations as aN

increases. Figs. 7(b) and 8 are contour plots of the Fourier

parameter for values of K = 50 and 157, respectively. A ser-
ies of curves, given by Eq. (16) for values of 0 6 N 6 7, are
overlayed. As can be seen, the largest intensity deviations
appear to lie close to the N = 2 curve. Furthermore the
deviations increase in size as one approaches the back Fou-
rier plane. Comparing the two figures it can be seen that as
K increases, the intensity deviations appear to move closer
together and move towards the Fourier plane.

Typically, if an aperture is large with respect to the
wavelength of light, diffraction effects are less pronounced.
Thus it is expected that as K = L2p/(kf) increases, the
errors due to diffraction should decrease.

In Fig. 9 we plot XFP (aN,zN) as K increases, with
zN = 0.5 and aN = 1. XFP (0.5, 0.7) decreases rapidly.

3.2. Identification of the sub-geometric shadow

One of the aims in this paper is to identify an optimal
sub-geometric shadow such that errors due to diffraction
can be identified and quantified. In Part-I [6] Section
4.2.2, a second sub-geometric shadow (SGS-II) was defined
and the maximum error, due to diffraction for a given K

value, identified. Furthermore it was shown that the maxi-
mum error associated with SGS-II decreased as K

increased (see [6, Fig. 8, Part I]). To begin this approach
was attempted for the 3-D case, however the maximum
error associated with the new 3-D SGS-II did not decrease
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Fig. 8. Contour plot of variation of XFP (aN, zN) for K = 157 (10 contour
levels between 0 and 0.6).

( )FP 1,0.5Ω

K

Fig. 9. Variation of XFP (1, 0.5) with respect to K.
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Fig. 7. (a) 3-D plot of variation of XFP (aN, zN) for K = 50. (b) Contour plot of variation of XFP (aN, zN) for K = 50.
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appreciable. There are several reasons for this the most
significant being the large on-axis magnitude deviations.
Furthermore numerical difficulties in calculating the Fou-

rier Parameter for large K values made validation difficult.
For these reasons a different approach was developed.

We start by re-examining deviations between the ideal
and non-ideal illumination fields; specifically Eqs. (6)–(14)
and note that if these equations are written using the scaled
parameter q 0 = q/(1 � z), then the variable K and z always
appear together in the form

CðK; zÞ ¼ K
1� z

z
. ð21Þ

Note that once again we are referring to equations
related to the deviations in the illuminating field, and there-
fore for clarity we use the parameter z as opposed to zN.
The scaling properties for diffracted and collimated waves
are discussed in Ref. [16].

If Eq. (6), is rewritten in scaled coordinates, and Eq. (21)
used, then

F ðz;q0Þ expðjDu0Þ ¼ 2CðK; zÞ
j

ejCðK;zÞq02
Z 1

0

exp½jðP 2
NÞCðK; zÞ�

� J 0½CðK; zÞð2P Nq0Þ�P N dP N.

ð22Þ

Thus identical diffraction patterns will be observed for
different K values at different z positions, so long as C(K,
z) remains constant.

Let us take K = 15 and z = 0.7. Substituting these
values into Eq. (21) gives that C (K,z) = 6.428 (to three
decimal places). The equivalent positions in z, so that
identical diffraction patterns, can be observed is plotted
in Fig. 10 as a function of K. It can be seen that as K

increases, z also increases towards unity, its value at the
Fourier plane.

While we have identified different locations in z where
the illuminating field incident on the object (circular aper-
ture) for different values of K is identical, we have not yet
shown that this relationship extends to the deviations in
the Fourier plane. We start by examining the ideal case.
Fortunately an analytic solution exists, and since we are
not concerned with phase in the Fourier plane we drop
any phase factors to give



Fig. 12. Zoomed contour plot of Fig. 8. Variation of for XFP (aN, zN)
K = 157.

 z 

K

Fig. 10. Variation of Eq. (21) with C (K, z) = 6.428.
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U goodðqF;KÞ ¼
aN

jqN

J 1ðaN � qF � K � vÞ; ð23Þ

where v is a constant and J1(Æ) is a Bessel function of first
order. Varying K results in a scaled version (with respect
to the output variable qF) of the same distribution. Power
must be conserved and so there is a corresponding change
in the amplitude of the distribution such that Paresval’s
theorem holds.

Examining the non-ideal (Fresnel) case we refer to the
analogous field in the Fourier plane as Ufres(qF,K). In
Fig. 11(a) and (b) we present a plot of the ideal (Goodman)
and non-ideal (Fresnel) diffraction patterns for K = 157
and 47, respectively. In both cases the circular aperture
(object) is fully open, so aN = 1. For K = 157 and 47 the
object is placed at zN = 0.9606 and 0.88, respectively.

In order to test if scaling has occurred we divide Ufres(qF,
47), the magnitude value at the ‘‘Comparison point’’ (see
black circle in Fig. 11(a)), by Ufres(0, 47), giving a value of
7.84. The same calculation, carried out for Ufres(qF, 157),
gives a value of 7.80 indicating that the two distributions
are almost exactly scaled versions of one another. This
conclusion is given further weight by the fact that the corre-
sponding Fourier parameters, calculated for these two cases,
are 0.2275 and 0.2273, respectively.

We still have not identified how we wish to quantify the
maximum error for the 3-D case. Examining Fig. 7(a) and
(b) (K = 50) we can see that the largest deviation occurs
( )good F , 47U

( )fres F , 47U

Comparison point 

100 Fa

Fig. 11. (a) Variation of |Ugood(qF, 47)| (dashed) and |Ufres(qF, 47)| (solid) in t
(dashed) and |Ufres(qF, 157)| (solid) in the Fourier plane.
when the aperture is placed at zN = 0.88 and aN = 0.16.
In this instance C(K, z) = 6.409 (see Eq. (21)). If we wish
to find the largest deviation when K = 157, then the equiv-
alent z value can be found by solving Eq. (21). This yields a
value of zN = 0.9606. Since aN is scaled with respect to zN it
has the same value. However, examining Fig. 8 the largest
deviation appears to occur at zN = 0.96 for aN = 0.2. With
further careful examination we find that this is only as a
result of the limited resolution of the numerical calculation
of the Fourier parameter for K = 157. In Fig. 12, a higher
resolution search over the range 0.94 < zN < 0.98 and
0.1 < aN < 0.3 reveals that in fact the largest deviation in
this region is found at the location zN = 0.961 and for
0.14 < aN < 0.16.

In conclusion by numerically finding the largest devia-
tions in the Fourier plane for a low K value, it is possi-
ble to predict the magnitude and location of these
deviations for larger and more realistic K values. The
clear advantage of performing the numerical search for
a low value of K is that the deviations are more easily
observed.
4. Conclusion

We have examined the scaled optical Fourier transform
(SOFT) for the 3-D case, assuming an apertured thin
illuminating lens. Goodman [1] in his analysis assumes that
( )fres F ,157U

( )good F ,157U

Comparison point 

Fb

he Fourier plane as a function of 100qF. (b) Variation of |Ugood(qF, 157)|
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the object is fully illuminated by a perfect converging
spherical beam. We include the diffraction effects intro-
duced by the lens aperture using the Fresnel transform with
the aim of quantifying the resulting deterioration in the
quality of the optical Fourier transform (OFT) performed.
Based on our 2-D analysis, presented in Part I [6], we
attempt to define a sub-volume or sub-geometric shadow,
where the errors due to diffraction are quantifiable.

In Section 2 we examined the phase deviations between
the ideal (Goodman) and non-ideal (Fresnel) illumination
beams, and derived a set of analytic curves, which pass
through the phase deviation extrema. While it was found
that these curves pass close to the magnitude deviation
extrema, it was also found that significant deviations (both
magnitude and phase) occur on-axis for the 3-D case. In
particular the nature of the 3-D on-axis magnitude devia-
tions is quite unlike those observed in the 2-D simulations
[6].

In Section 3, choosing a circular window as the object
and applying the SOFT we examined the intensity devia-
tions in the back Fourier plane as a function of object size
and position. As in the 2-D case the intensity deviations
appear along the set of curves derived for the phase case.

At this point we depart from the procedure described in
Part I [6]. The intensity distribution in the Fourier plane, is
a function of the wavelength of illuminating light, the focal
length and diameter of the lens. Lumping these together
using the parameter K, we can relate intensity deviations
in the Fourier plane of different optical systems. Carrying
out calculations for low values of K ensures that the rate
of change of deviations is slow and so the numerical oper-
ation can be performed more easily and accurately. Using
Eq. (21) these results can then be extended to any given
K value.

In the analysis presented we have assumed aberration
and noise free optics so that the fundamental error due
to Fresnel diffraction can be identified. We note however
that the Fresnel transform becomes increasingly inaccurate
as the wavelength of illuminating light approaches the size
of the diffracting aperture and also close to the object. To
analyse more systems under these conditions it will be nec-
essary to employ more accurate models for diffraction [17–
24].
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