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An attempt is made to facilitate interpretation of the results of a spatial statistical method — Geographically Weighted
Regression (GWR) — using a geovisual exploratory approach. The GWR parameter space is treated as a multivariate
dataset and explored in a geovisual exploratory environment with the goal to identify spatial and multivariate patterns
that describe the spatial variability of the parameters and underlying spatial processes.

INTRODUCTION

Traditional regression analysis describes a modelled rela-
tionship between a dependent variable and a set of
independent variables. When applied to spatial data, the
regression analysis often assumes that the modelled
relationship is stationary over space and produces a global
model which is supposed to describe the relationship at
every location in the study area. This would be misleading,
however, if relationships being modelled are intrinsically
different across space. One of the spatial statistical methods
that attempts to solve this problem and explain local
variation in complex relationships is Geographically
Weighted Regression (GWR) (Fotheringham ez al., 2000,
2002).

In a global regression model, the dependent variable is
often modelled as a linear combination of independent
variables, where a parameter belonging to each variable is
assumed to be stationary over the whole area (i.e. the model
returns one value for each parameter). GWR extends this
framework by dropping the stationarity assumption: the
parameters are assumed to be continuous functions of
location. The result of the GWR analysis is a set of
continuous localised parameter estimate surfaces, which
describe  the geography of the parameter space
(Fotheringham et al., 2002). These estimates are usually
mapped or analysed statistically to examine the plausibility
of the stationarity assumption of the traditional regression
and different possible causes of non-stationarity
(Fotheringham ez al., 2002). However, questions which
are not currently addressed in the GWR literature are: ‘Do
there exist areas of stability where all the parameters keep
relatively constant values?” and ‘Are there any predominant
groupings of parameters that behave in a similar way
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everywhere in the area of investigation?’. These and similar
questions relate to the structure and patterns in the GWR
parameter space, which a typical presentation of results of a
statistical analysis cannot answer. In this paper we suggest a
geovisual exploratory post-analysis of the GWR parameter
space using an automatic-visual data exploratory environ-
ment in order to attempt to answer such questions. The
goal is to facilitate interpretation of the GWR results and to
raise and answer new questions about the spatial variability
of the parameters and the underlying spatial processes.

The remainder of the paper is structured as follows: the
next section introduces GWR and presents the geovisual
exploratory environment used in the post-analysis of the
GWR results. Then, a small case study, on which our
suggested approach is tested, is described together with
observations made on the resulting visual representations of
the GWR parameter sets. Finally, some conclusions and
ideas for further development are presented.

METHODOLOGY

This section introduces the statistical method (GWR) and
the geovisual exploratory environment used in this study.

Geographically Weighted Regression

Consider a standard linear regression model in which a
dependent variable y whose value is recorded at location i is
regressed on a set of independent variables xy;, %2, ... Xy

yl:ﬁ()—’_,[))lxli—i_""i_ﬁnxni (1)

where fy ... f, are parameters to be estimated. The model
need not be linear for what follows but this provides a
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useful example and represents the most commonly applied
form of regression model. An assumption implicitly made in
using this model form is that the parameters of the model
are stationary over space — meaning that the same relation-
ships are found everywhere in the study area and, hence,
that the processes producing these relationships are spatially
invariant. Whilst this might be a reasonable assumption to
make in some circumstances, in others it is questionable.
For instance, suppose the above general model were
replaced by a specific example in which the »s represented
the price of a house and the as represented features of the
house or its neighbourhood that were thought to aftect the
price of the house. Suppose further that one of the x
attributes was the presence or absence of a garage. In some
arcas, where garages are relatively rare, the presence of a
garage would be expected to generate a higher increase in
the price than it would in areas where garages were
plentiful. That is, local variations in supply and demand
would induce locally varying relationships. Such local
variations in relationships might be more common than
we imagine and are at least worth exploring. It would seem
strange to continue with the assumption that all processes
are spatially invariant — why not question this assumption
and allow parameter estimates to vary locally if indeed
processes might vary over space?

This is the simple idea behind GWR. The above ‘global’
model is replaced by a ‘local’ version in which parameter
estimates f3 are allowed to vary over space:

%= Poi+ Brixri + -+ Prii (2)

The parameters flo; ... fn; now have a subscript i denoting
that they can vary over space. In the form given here, there
will be one set of parameter estimates generated for every
location at which data are recorded, but this is not a
requirement of the method and parameter estimates can be
generated for any location. Details on the calibration of this
model are given in Fotheringham ez al (2002) but
essentially the data around each regression point are
weighted according to their distance from this regression
point with data at smaller distances being given higher
weights. Each time the regression point is moved around
the study region, all the weights are recalculated and the
estimator re-run. Hence, at each regression point, a set of
local parameter estimates is obtained which represents the
processes operating around that regression point. By
moving the regression point around the whole study area,
a local parameter surface can be constructed showing
visually the spatial variation in the process being described
by the parameter.

The estimator for GWR is shown below (eq. 3). The
notation can be generalised such that u represents any
location in the study area. Parameter estimates can be
obtained at locations at which the data used to fit the model
have not been collected. This may seem eccentric, but these
locations might be the members of a control set where the
data have been divided into training and control sets.

By =XT W) X)X W)y (3)

W(u) is a diagonal matrix of weights. Details of this matrix
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and the associated weighting functions are given in
Fotheringham ez al. (2002).

Not only local versions of parameter estimates are
obtained in the calibration of models by GWR; any
diagnostic from a standard global regression model will
have its local counterpart. Hence, we can generate local
standard errors, local t values, local goodness-of-fit
measures and so forth. Of course, this can produce a large
volume of results which is why the visualisation of GWR
outputs is important. To date, this visualisation has been
confined largely to producing 2D and pseudo-3D uni-
variate surfaces of local parameter estimates and their t
values but we now take this one step further.

Using a geovisual exploratory post-analysis to interpret GWR results

Typically, the results of a regression analysis are presented in
the form of parameter estimates and some univariate
summary statistics such as the r* statistic or the F-test.
These can be thought of as ‘whole map’ statistics — there is
only one r? for the entire model, and the relationship
between the dependent and independent variables is
assumed to be spatially stationary. It is possible, therefore,
that interesting patterns and structures in the data remain
unexplored. Typical visual data presentations on the other
hand generate rich visual, animated, interactive displays in
multiple coordinated views which support user-controlled
exploration. Such visual presentations are powerful in
revealing trends and showing clusters and other trends,
but have their limitations in terms of the objectivity of
observations produced. A combination of statistical and
visual approaches therefore incorporates the advantages of
both and supports faster and more effective analytical
reasoning (Shneiderman, 2001; Theus, 2005).

In the case of GWR, the variability and behaviour of the
parameter estimates are influenced by the underlying spatial
processes. To examine the spatial variability of the
parameters and, thereby, the processes, GWR provides
statistical summaries for each parameter, which indicate if
non-stationarity is present or not. Additionally, Monte
Carlo tests can be performed to determine the existence of
the spatial variability of each parameter (Fotheringham
et al., 2002). Another way to examine the spatial variability
of the parameters is to visualise parameter surfaces — this
is usually done by univariate mapping, such as producing
a choropleth map of cach separate parameter surface.
These visualisations serve as an informal inference tool
(Fotheringham and Brunsdon, 2004) for interpretation of
the GWR results.

The statistical summaries, Monte Carlo tests and
univariate visualisations serve their purpose if the aim is to
investigate each parameter surface separately. However,
since these approaches focus on one parameter surface at a
time, they are not sufficient to discover multivariate spatial
and non-spatial relationships and patterns in the parameter
space. To approach this problem, we suggest treating the
GWR  parameter space as a multivariate dataset and
exploring it using a geovisual exploratory environment,
thereby combining statistical analysis with post-analysis
visual exploration. The goal is to uncover information
related to the spatial variability of the parameter estimates,
such as finding areas of stability where all parameters behave
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in a similar way or identifying groups of parameters that
behave similarly everywhere in the study area.

Visual data exploration of spatial data is a part of
exploratory spatial data analysis (Unwin and Unwin,
1998) and is essential to prompt ideas and generate
hypotheses through the creation, inspection and interpreta-
tion of visual representations of spatial data. The goal is to
transform complex data into visual displays, which allow an
analyst to look for patterns, trends, relationships and
structure that describe the significant aspects and char-
acteristics of the data (Keim and Ward, 2003). Discovered
patterns serve to infer knowledge not only about the data
but also about the geographical processes that generated
the data. The perceptual-cognitive process of alternatively
interpreting and analytically reasoning about georeferenced
visual displays is explored in the discipline of Geovisual
Analytics. Geovisual Analytics, ‘the science of analytical
reasoning and decision-making with geospatial informa-
tion, facilitated by interactive visual interfaces, com-
putational methods, and knowledge construction,
representation, and management strategies’ (MacEachren,
2008), falls under the recent new discipline Visual Analytics
(NVAC, 2005) and has evolved from geovisualisation
(MacEachren et al., 1999; MacEachren and Kraak, 2001).
Geovisual analytical data exploration is typically used to
derive knowledge from large and highly dimensional
geospatial data and to discover the unexpected. Replacing
the traditional univariate visualisation of the GWR result
space with a multivariate geovisual analytical exploration is
therefore a logical step towards better understanding of the
GWR results.

While there exist several visualisation environments that
support development of geovisual exploration systems for
spatial data (such as for example the Common GIS
(Andrienko G. ez al., 2003; Andrienko N. and Andrienko
G., 2006) and GeoDa — Geodata Analysis Software (Anselin
et al., 2004)), we have decided to recycle an existing
geovisual exploratory environment. This environment was
originally developed by one of the authors for exploration
of a multivariate environmental dataset (Demsar, 2007) and
was built using GeoVISTA Studio, a collection of various
geographic and other visualisations as well as computational
data mining methods (Gahegan ez al., 2002; Takatsuka and
Gahegan, 2002).

The system consists of the following visualisations: a Self-
Organising Map (SOM); two parallel coordinates plots
(PCP) — one ordinary and one linked to the SOM; a
multiform bivariate matrix with scatterplots, spaceFill
visualisations and histograms; and a bivariate geoMap. A
brief description of each visualisation and the integrated
computational data mining method, the SOM, follows.

In a PCP, each parallel vertical axis represents one
dimension/variable of the input data space. In the
exploratory environment employed here, there are two
PCPs. One is ordinary, where each data instance is
displayed as a polygonal line intersecting each of the axes
at the point which corresponds to the respective attribute
value for this data instance (Inselberg, 2002). In the second
PCP, each line represents a group of data instances which
were assigned to one SOM cell (Guo, 2003; Guo et al.,
2005), as described below. The reason for including two
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such plots is that the ordinary GeoVISTA PCP has many
more interaction possibilities and shows statistical descrip-
tions of the data, while cluster analysis is casier in the PCP
linked to the SOM because of the grouping of the data
elements according to their respective SOM cells.

A multiform bivariate matrix is a generalisation of a
scatterplot matrix and consists of univariate visualisations —
histograms on the diagonal and bivariate visualisations at
other positions in the matrix. In the matrix in this particular
exploratory environment, scatterplots of each correspond-
ing pair of variables are located above the diagonal and
spaceFills below the diagonal. In spaceFills, each data vector
is represented by a grid square. The first of the two display
variables defines the colour of each square, while the second
defines the order of the squares inside the rectangular
display (Gahegan ez al., 2002).

The geographical visualisation in the exploratory envir-
onment is the geoMap from GeoVISTA Studio, which is a
choropleth map, whose colour scheme is either defined by a
cross-tabulation of the two display attributes (Gahegan
et al., 2002) or can alternatively be inherited from other
visualisations, such as the SOM lattice, as described below.

The SOM is an unsupervised neural network. The
algorithm projects the multidimensional data onto a two-
dimensional lattice of cells while preserving the topology
and the probability density of the input data space. The
result of this is that similar input data vectors will be
mapped to neighbouring cells. This ensures that the
similarity patterns that exist in the higher dimensional
space correspond to patterns in the SOM lattice (Kohonen,
1997; Silipo, 2003) — this characteristic produces a very
visualisable result due to its two-dimensionality (Vesanto,
1999). Because it preserves both the topology and the
distribution of data vectors in the high dimensional input
space, the SOM is considered a useful method for knowl-
edge discovery tool from spatial data, as demonstrated in a
number of recent studies (for example Takatsuka, 2001;
Gahegan et al., 2002; Jiang and Harrie, 2004; Koua and
Kraak, 2004; Guo et al., 2005; Skupin and Hagelman,
2005; Demsar, 2007; Spatenkova et al., 2007; to list a few).

The GeoVISTA version of SOM used in our exploration
environment implements the original Kohonen algorithm
(Takatsuka, 2001; Guo ez al., 2005) and does not take into
account the geographical location as for example a
GeoSOM  (Bagio et al, 2005) does. The reason for
choosing the original non-spatial Kohonen SOM over a
GeoSOM in our case is because one of the potentially
interesting patterns for interpretation of GWR results is
similarity in attribute space. The task in question is to try to
identify groups of data elements with similar behaviour of
several parameter estimates and only when this identifica-
tion has been done explore the spatial distribution of such
groups. This can be achieved by transferring the similarity
pattern discovered in the attribute space by the original
Kohonen SOM to a geographical visualisation, i.e. the
geoMap through colour brushing as described below.

The SOM visualisation in GeoVISTA (Guo et al., 2005)
is a hexagonal U-matrix, consisting of two types of cells:
node cells, which contain circles and represent nodes of the
SOM and distance cells, which are dispersed between node
hexagons and whose grey shade represents multivariate
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dissimilarity between two neighbouring node hexagons. The
grey shade of each node cell is also calculated according to the
cell’s distance to its neighbours. Light areas in the lattice
therefore indicate areas with very similar cells and represent
clusters. Dark areas indicate borders between clusters. In
total, there are 13 6 13 node cells in the GeoVISTA SOM
that we used. The distribution of data vectors in the SOM
lattice is represented by the size of the circles that are
projected over the node cells. The larger the circle the more
data vectors have been mapped to the cell that the circle
belongs to. Circles are linearly scaled so that the largest circle
touches the border of its respective hexagon. The groupings
of data vectors marked with the circles are transferred to one
of the two PCPs where each polygonal line represents one cell
and the width of the line the number of the input data vectors
that have been mapped to the cell. The second visual variable
transferred from the SOM lattice into all other visualisations,
not just one of the two PCPs, is the colour of the circles. This
colour is originally defined by draping a smooth 2D colour
map over the circles in the lattice and then the hue of each
circle is inherited by graphic entities in other visualisations for
visual brushing. More information on how the 2D colour
map is derived and on other characteristics of this particular
SOM visualisation can be found in Guo et al. (2005).

Aside of colour brushing, all visualisations in GeoVISTA-
based systems are also connected by the interactive selection
and brushing through mouse-over operation (Gahegan ez al.,
2002; Takatsuka and Gahegan, 2002; Guo ez al., 2005).

Even though the exploratory environment presented here
was not specifically designed for exploration of the GWR
result space, it can be efficiently used for this purpose. The
similarity groupings produced by the SOM can help discover
groups of areas where several parameters behave in the same
way. Following the trajectories of these groups in the PCP
gives an idea of how the parameters behave. Spatial variability
of the parameters can be examined in the map, not only for
one parameter at a time, but in combination with others, so
that multivariate spatial variability patterns can be discovered.
The map in combination with the SOM also allows com-
parison between spatial similarity and parameter similarity,
while the visualisations in the bivariate matrix indicate if any
of the pairs of parameter estimates are correlated or not.

CASE STUDY AND RESULTS

To examine the utility of viewing the GWR results in a
geovisual exploratory environment, we performed a small
case study on a spatial dataset concerning educational
attainment in the US state of Georgia. The dataset
consisted of records for the 174 counties in the state and
had the following seven variables: percentage of inhabitants
with at least a bachelor degree, total population in 1990,
percentage of rural population, percentage of elderly,
percentage of foreign-born inhabitants, percentage of
inhabitants living below the poverty level and percentage
of African-Americans. GWR was run on this dataset to
model the relationship between the educational variable
(i.e. the percentage of inhabitants with at least a bachelor
degree) and the other six variables and to determine if there
were any geographical variations in the relationships
between educational attainment and these variables.
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The result of the GWR analysis was an output file
consisting of 28 localised variables: seven parameter esti-
mates for the intercept and the six independent variables; the
localised versions of the standard errors of each local
parameter estimate and the associated t-values; the observed
y value; the predicted y value; and several other statistical
measures, such as the residuals, standardised residuals;
various influence statistics and the local  statistic, which
describes the local goodness-of-fit of the model.

This dataset was then transferred into a shape file and
imported into the geovisual exploratory environment.
Figure 1 shows the visualisations of the exploratory
environment immediately after the SOM clustering, but
before any visual exploration has been performed and
before any of the visualisations have been manipulated. The
rainbow colour scheme is inherited from the SOM.

The SOM clustering was based on the seven parameter
estimates (i.e. for the intercept and the six independent
variables), using equal weights for each of the variables.
These seven variables were then further visually explored
together with the local r? statistic in order to uncover spatial
or other patterns. Table 1 gives a list of visual variables and
respective parameter estimates for independent regression
variables. Further exploration of the other 20 output
variables would of course be possible, but was considered
beyond the scope for this paper and is something we plan to
look at in the future.

The pattern appearing in both PCPs in Figure 1 is fairly
jagged, i.e. the bluish and the reddish lines cross many
times. In both these PCPs, the order of the variable axes
corresponds to the order in which they were listed in the
data file, starting from the intercept, through six indepen-
dent variables in both PCPs with an added r” axis as the last
one on the right in the PCP. Such arbitrary ordering usually
produces irregular and jagged patterns that are difficult to
explore visually. If the axes are instead permuted so that
similar variables are positioned adjacently in the graphical
display, it is much easier to discover correlations between
variables and groupings of data elements (Hurley, 2004).
The first step of our exploration was therefore to permute
the axis in the ordinary PCP, which is interactive and allows
this operation (the SOM PCP does not allow it). This
interactivity was one of the reasons why there are two PCPs
in the exploratory environment (which might otherwise
seem redundant). While there is some limited interactivity
implemented in the SOM PCP, such as interactive selection
of lines representing the SOM cells and a union or
intersection combination selection (Guo, 2003), it does

Table 1. A list of visual variables and respective parameter esti-
mates for independent regression variables

Visual variable Parameter estimate for

PARM_1 Intercept

PARM_2 Total population

PARM_3 Percentage of rural population

PARM 4 Percentage of elderly

PARM_5 Percentage of foreign-born inhabitants

PARM_6 Percentage of inhabitants living below
the poverty line

PARM_7 Percentage of African-Americans

LOCRSQ Local r? statistic
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Figure 1. Examining the GWR parameter estimate space in an integrated automatic-visual exploratory environment: a) the geoMap, b) the
SOM, ¢) the bivariate matrix with the seven parameter estimates and the additional r* variable, d) the SOMPCP showing the seven parameter
estimates upon which the SOM clustering was based, ¢) the PCP, showing the seven parameter estimates and the additional r? variable. The
colour in all visualisations, except the spaceFills and the histograms in the matrix, is inherited from the SOM

not allow operations such as add, remove, permute or scale
the axes or change the colour scheme according to a chosen
variable, nor does it provide the ability to display additional
statistical measures, such as boxplots on each axis, for
example, all of which the ordinary PCP does.

Another difference between the two PCPs is the scaling
of the axes. The axes in the ordinary PCP are linearly scaled
from the minimum to the maximum value of ecach
dimension. In the SOM PCP, which is based on the
Hierarchical Density cluster viewer (Guo, 2003) however,
the axes are scaled using nested means scaling. This means
that each axis is recursively being divided into two sub-
intervals where the mean of the data is assigned to the
central point of the axis and splits the data into two subsets.
The procedure is then repeated on each of the two subsets
of data, those data items that are larger than the mean and
those that are smaller, until the entire axis has been divided
into eight sub-intervals. Each of these eight sub-intervals is
then linearly scaled (Guo, 2003). While the primary aim of
the nested scaling is to reduce overprinting (Guo et al,
2005), it distorts the real statistical distribution of data at
cach axis. This can on the other hand be easily visually
analysed in the ordinary PCP through display of boxplots
on cach axis (Gahegan ez a/., 2002).

In highly dimensional PCPs, the permutation of the axes
has to be automated and is usually based on a similarity
clustering of the variables according to some interestingness
measure (Hurley, 2004). In our case, the dimensionality
was low enough to do this manually. The permutation is
shown in Figure 2 and the ordering of the axes is as follows:

PARM_1, PARM_2, PARM 4, PARM_7, PARM_3,
PARM_5, PARM_6 and LOCRSQ, where PARM_1
represents the parameter estimate for the intercept,
PARM_i the parameter estimate for the independent
variable i-1 and LOCRSQ the r? value (Table 1). The
pattern in the permuted PCP in Figure 2 is much less
jagged than the one in the original PCP in Figure le.

After this initial step, the exploration continued through
interactive manipulation of various visualisations. The
remainder of this section presents some of the more
interesting observations.

One fairly obvious pattern that catches the eye is the
distribution of clusters in the SOM visualisation (Figure
1b). There are four lighter areas in the SOM, which
represent four clusters. Each of these areas is located in one
of the corners of the lattice and they roughly correspond to
the following colours: a blue—turquoise cluster, a green
cluster, a red cluster and a violet cluster. There is a large
dark boundary area in the centre of the SOM, which
indicates that the blue and red and the violet and green
clusters are, respectively, very different from each other.
However, data elements in the violet and red clusters are
not that very different from each other, as the boundary
between the two clusters is of a lighter shade of grey than
the boundary areas between other clusters. The map
(Figure la) reveals the spatial distribution of the elements
belonging to the four clusters: the red and the blue clusters
are situated far from each other, in the north and the south
of the study area. The violet and green clusters are located
in close proximity on the map.
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Figure 2. Permuted PCP with seven parameters and the r* variable

Figure 3 shows a selection of the blue and the red cluster.
The fact that these two areas are far from each other in the
SOM as well as in the map produces a not too surprising
observation, namely that areas which are far from each
other spatially may also be very different from each other in
terms of the spatial processes operating within them
(although this is not always the case). The different
characteristics of these two clusters are fairly obvious also
in the SOM PCP (Figure 3b) and the ordinary PCP (Figure
3¢), where the groups of blue and red lines, respectively,

have completely different trajectories through the display.
There are additional boxplots displayed on each axis of the
ordinary PCP in Figure 3c. Interestingly, the selected blue
and red lines mostly fall out of the boxes at both extremes
and different extremes at that, except for the boxplot at the
axis of parameter PARM_4. There, both groups of lines are
located above the mean, the red lines inside the boxplot
(i.e. with values between the mean and the upper quartile)
and the blue lines outside the boxplot (i.e. with values
higher than the upper quartile).

(b)

® oY AR A~F »= =i Y @ e
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Figure 3. The selection of the blue and red areas in the a) geoMap, b) the SOM PCP and c¢) the PCP
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Figure 4. The selection of the green and violet areas in the a) geoMap, b) the SOM PCP and c) the PCP

Ofinterest are PARM_5 and PARM_7 (foreign-born and
Afro-American), both of which exhibit significant para-
meter variation in the Monte Carlo test. Counties in which
the influence of the foreign-born variable is strongly
positive (shown in orange and red) are also associated with
negative values of the Afro-American variable, and least
influence of the rural and poverty variables. By contrast,
arcas where the foreign-born variable is least influential
(shown in blue) are associated with positive influences in
the Afro-American variable. The former set of relationships
is in the north-west of the state, and the latter in the south-
east. Visualisation analysis has drawn attention to two very
different regimes in the state of Georgia in which different
social processes appear to be leading to variation in
educational attainment. The fit of the models is least good
in the south-east suggesting that perhaps other social
phenomena might be included in the analysis.

The green and violet clusters are also located far from
cach other in the SOM and are therefore very dissimilar
from each other — yet they are located in the close proximity
on the map (Figure 4a). Even though the trajectories of
lines representing these two clusters in the PCPs (Figures
4b, 4c) are different (although not as different as the blue
and red ones), the values of parameters mostly fall inside the

boxplots (Figure 4c). Green and violet lines fit into
boxplots at the different sides of the mean, but this
difference is less than with the red and blue trajectories.

As in the red-blue case, the only exception is PARM_4, the
percentage of elderly population, where both trajectories
intersect the axis below the mean (fig 4c). Does this tell us
something about this particular parameter? Why are estimates
behaving differently for this variable than for any of the
others? Perhaps a test of local significance is necessary.

Looking at the two significant variables again, PARM_5
(foreign-born) and PARM_7 (Afro-American), we can see
that in those counties where the influence of the Afro-
American variable is most strongly negative, the influence of
the foreign-born variable is positive.

There is another eye-catching pattern in the original
visualisation in Figure 1, namely the correlations that exist
between several of the parameter estimates — these can be
observed in the bivariate matrix (Figure 1c) as well as in the
permuted ordinary PCP (Figure 2). Both these visualisa-
tions indicate that there are two groups of parameter
estimates where variables seem to be fairly well correlated.
The first group consists of the following variables:
PARM_1, PARM_2, PARM 4 and PARM_7, and the
second one of the other four variables, namely PARM_3,
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Figure 5. Graduate colour maps for all seven parameters and the r* variable: a) PARM_1, b) PARM_2, ¢) PARM_3, d) PARM_4, ¢)
PARM_5, f) PARM_6, g) PARM_7, h) r*

PARM_5, PARM_6 and LOCRSQ. There is an inverse
correlation between these two groups — this can be seen in
the PCP in Figure 2, where the lines cross each other in-
between the two central axes. A more detailed analysis of
the scatterplots in the bivariate matrix (Figure lc) shows
that some parameter estimates are fairly well correlated or
inversely correlated, but points in some scatterplots are
more randomly dispersed and in some scatterplots there are
double trends (for example, in the scatterplots of PARM_1
vs. PARM_3 and PARM_4).

Earlier in this section, the parameter estimate PARM_4
was identified as the one that is behaving differently from all
other parameter estimates. Further investigation of this
parameter estimate in the bivariate matrix (Figure 1¢) shows
that this is the only parameter with a relatively Gaussian
distribution in its histogram. The distributions of all the
other parameters are either skewed or have two peaks.

The next step in the exploration was to produce a
graduated colour map of cach parameter estimate by
assigning the colour according to each variable — the maps
are shown in Figure 5. All maps and figures from here on
employ the quantile classification into seven classes. The
colour runs from green for low values through yellow for
middle values to red for high values of each variable.

Looking at the maps in Figure 5, it is fairly obvious that
while all parameter estimate surfaces have a general
horizontal, vertical or diagonal increasing trend, it is again
PARM 4, i.c. the percentage of elderly population, which
stands out and is different from all other parameters.
Instead of showing a monotonic increasing,/decreasing
trend, PARM_4 has a ‘ditch’ running from southwest to
northeast through the centre of the study area.

Producing such univariate maps as those in Figure 5 is a
traditional way to analyse the GWR results and we do not

actually need the exploratory environment for this.
However, the advantage of using the environment is that
it allows us to make an interactive selection of the arecas
where the anomalous PARM 4 has ecither high or low
values and see what happens to the other parameters in such
arcas. Figure 6 shows such a selection.

Figure 6a shows the map of the lowest values of
PARM_4 (values lower than the lower quartile, selected
in the boxplot of the PARM 4 axis in the ordinary
PCP). After the selection, the colour scheme of the map
was iteratively defined according to each variable and
the map scrutinised for patterns each time a colour change
was made. Nothing special could be seen at any of the
other parameter estimates, but the selected area only has
higher than average values of r?, including some of the
highest ones indicating areas where the local model is
fitting the data particularly well, as the map in Figure 6b
shows. This can also be seen in the last axis in the PCP in
Figure 6¢, where most of the green lines cross the last axis
at the mean (indicated by the red line in the relevant
boxplot) or higher.

A selection of the highest values of PARM_4 (values
higher than the upper quartile in the relevant PCP axis)
produces a more interesting result. The map of these areas
is shown in Figure 7a. The ordinary PCP of these areas,
coloured according to the PARM_4 variable (Figure 7e),
shows two distinct trajectories in the PCP, which are
particularly well separated at PARM 1, PARM 3,
PARM_5, PARM_6 and ?. These separations can also be
seen in the maps of this selection, for PARM 1 (Figure 7b),
PARM_3 (Figure 7¢) and r* (Figure 7d) or in the PCP
coloured according to PARM_3 (Figure 7f). The trends
suggest a separation between predominantly urban counties
and predominantly rural counties.
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Figure 6. Selection of areas with low values of parameter 4: a) the PARM_4 map, b) the r* map, ¢) the PCP

CONCLUSIONS

In this paper, we presented an example of how a geovisual
exploratory post-analysis could be employed to obtain
insights into the result space of a statistical method that
would otherwise remain unnoticed. While it seems that the
approach facilitates interpretation of the GWR results
and supports analytical reasoning about the underlying
spatial processes, this is only a preliminary attempt based
on a existing visual exploration environment. In the
future, we plan to conduct a systematic comparison and
evaluation of possible visualisation methods that could
contribute to improve the understanding of the GWR
results. We also plan to evaluate the performance of the
combined GWR and geovisual exploration on a synthetic
controlled spatio-temporal dataset in order to see if the
method is really performing in the way it is expected to and
investigate what pre-set patterns (spatial, non-spatial,
spatio-temporal, temporal, etc.) can be discovered.
Finally, if the controlled case proves viable, we plan to

conduct a similar exploration of a large spatio-temporal
dataset of housing prices to investigate the dynamics of the
pricing process in the real estate market in London (Crespo
et al., 2007).

The geographical weighting principle of GWR can be
easily adapted for use with multivariate statistical techniques
other than regression, such as for example principal com-
ponents analysis and factor analysis (Fotheringham et al.,
2000) or discriminant analysis (Brunsdon et al., 2007). In
all these methods, the model coefficients are usually treated
as stationary. The trouble with adopting geographical
weighting for these methods is that the interpretation of
the results becomes very difficult. For example, how
does one deal with spatially varying eigenvalues or what
do the spatially varying discriminant functions represent? A
geovisual exploratory investigation of the results could
perhaps provide one way to elucidate more easily the
geometrical and geographical meaning behind the spatially
varying model coefficients.
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Figure 7. Selection of areas with high values of parameter 4: a) the PARM_4 map, b) the PARM_1 map, ¢) the PARM_3 map, d) the r*
map, ¢) the PCP with colours of PARM 4, f) the same PCP with colours of PARM_3
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