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We present a digital signal processing technique that reduces the speckle content in reconstructed digital ho-
lograms. The method is based on sequential sampling of the discrete Fourier transform of the reconstructed
image field. Speckle reduction is achieved at the expense of a reduced intensity and resolution, but this trade-
off is shown to be greatly superior to that imposed by the traditional mean and median filtering techniques. In
particular, we show that the speckle can be reduced by half with no loss of resolution (according to standard
definitions of both metrics). © 2007 Optical Society of America

OCIS codes: 100.2000, 030.4280, 030.6140, 090.2880, 070.2580.

1. INTRODUCTION
Speckle occurs when coherent light is diffused by an opti-
cally rough surface.1–5 It degrades the quality of the ren-
dered images and makes the accurate viewing of small de-
tails very difficult. The speckle problem is always present
in holography since it uses coherent light. There have
been some recent contributions to the reduction of speckle
in digital hologram (DH) reconstructions.6,7 These meth-
ods use diffusers to partially reduce the coherence of the
illumination and thus achieve a reduction in speckle. An-
other approach put forward for the removal of speckle
was based on the maximum-likelihood technique and
used a general model for image reflectivity.8

Dainty and Welford9 optically reduced speckle in image
plane hologram reconstructions by rotating a circular ap-
erture in the Fourier plane of the image. Hariharan and
Hegedus10 extended the method by superimposing the ex-
posures from bandpassed filtered images of a diffuse ob-
ject. By interpreting our DH as the complex wave field at
a particular intermediate plane in the coherent imaging

speckle removal system, we can apply the discrete analog
of this process to DHs. Furthermore, this digital signal
processing (DSP) technique, which we call discrete Fou-
rier filtering (DFF), offers a number of considerable ad-
vantages both to its optical counterpart and to other ex-
isting DSP methods. These advantages are discussed
after the analysis is presented.

The optical setup [in Fig. 1(a)], upon which our tech-
nique is modeled, is that used in Refs. 9 and 10 except
that we include the position of our hologram plane. The
wavefront emanating from the diffuse object propagates
through the 4f system in which an aperture is placed in
the Fourier plane. The aperture is moved between each of
several exposures, and the intensities in the image plane
are integrated over the exposures. This leads to a speckle-
reduced image plane signal. We capture our inline
Fresnel DHs11–13 using phase-shift interferometry.14 The
effect of capturing the DH introduces an extra aperture
between the object and the first lens, namely, the record-
ing CCD sensor. We assume for simplicity that the effect
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of this is only to band limit the object wave field. We then
digitally implement the rest of the setup in the paraxial
regime to a high degree of accuracy.

2. ANALYSIS
The following analysis is based on previous work done by
Lowenthal and Arsenault15 and Hariharan and
Hegedus,10 and for convenience follows their notation. A
plane, f�r�, immediately in front of a diffuse nonuniform
object, which is illuminated by a coherent beam can be ex-
pressed as the product of two terms,

f�ṙ� = t�r�d�r�, �1�

where d�r� is a uniform diffuser, t�r� is a transparency
that modulates the diffuser, and r is a vector �x ,y� in the
plane in front of the object. The image plane amplitude
g�r� is defined as g�r�= f�r�*h�r�, where h�r� is the ampli-
tude impulse response of the imaging system and * de-
notes a convolution. It will be shown that the average
power spectrum of the image intensity is related to the
autocorrelation of the image intensity.16 We will also show
that the power spectrum of the image intensity can be
spilt into two terms. The first being the power spectrum of
the image itself, and the second being the power spectrum
of the speckle, which we want to reduce. The autocorrela-
tion of f�r� can be written15

Rff�r1,r2� = �f�r1�f*�r2�� = �t�r1�d�r1�t*�r2�d*�r2��, �2�

where �f�r1�f*�r2�� is an expectation, which is defined as
�X�=�−�

� xPx�x�dx, where Px�x� is the probability density
function for X having a value of x. Since t is not a random
function, it can be extracted from the expectation, as in

Rff�r1,r2� = t�r1�t*�r2��d�r1�d*�r2�� = t�r1�t*�r2�Rdd�r1,r2�.

�3�

d�r� is considered to be stationary and Gaussian with zero
mean and its autocorrelation may be approximated by a
delta function,

Rdd�r1,r2� = �d�r1�d*�r2�� = ��r1 − r2�. �4�

If j exposures are made with a shift of the aperture be-
tween them, the resultant intensity I�r� at any point in
the image is the sum of the intensities at this point due to
the individual j exposures,

I�r� = �
j

Ij�r�, �5�

where Ij�r�= �gj�r��2, where gj�r�= f�r��hj�r�, and where
hj�r� the impulse response of the system for the jth posi-
tion of the aperture in the Fourier plane. Due to the lin-
earity of convolution, the autocorrelation RII�r1 ,r2� of the
image intensity can be written as

RII�r1,r2� = �
m,n

RImIn
�r1,r2�, = �

m,n
��gm�r1��2�gn�r2��2�,

�6�

where the summation is taken over all values of m and n,
and each term is the result of an expectation.

For two complex, Gaussian variables X1 and X2, with
zero mean, the expectation ��X1�2 �X2�2� is given by a theo-
rem of Reed17 to be

��X1�2�X2�2� = ��X1�2���X2�2� + ��X1X2
*��2. �7�

As we are dealing with expectations, the autocorrelation
of the image intensity can be rewritten as

RII�r1,r2� = �
m,n

��gm�r1��2���gn�r2��2� + �
m,n

��gm
* �r1�gn�r2���2,

= �
m,n

�Im�r1���In�r2�� + �
m,n

�Rgmgn
�r1,r2��2. �8�

The average power spectrum of the image intensity is
��u ,u�, where ��u1 ,u2� is the double Fourier transform
(FT) of the autocorrelation of the image intensity,15

��u1,u2� = F�RII�r1,r2�	,

= F
�
m,n

�Im�r1���In�r2��� + F
�
m,n

�Rgmgn
�r1,r2��2� ,

�9�

where F is the double FT operator, defined by
Lowenthal and Arsenault15 as F�RII�r1 ,r2�	
=�−�

� �−�
� RII�r1 ,r2�e−i2��u1·r1−u2·r�dr1dr2. In the second part

of Eq. (9), the first term, which we denote �1�u1 ,u2� rep-
resents the power spectrum of the image, and the second
term, �2�u1 ,u2�, represents the power spectrum of the
speckle.

It has also been shown by Lowenthal and Arsenault15

that the average intensity �I�r�� in the image of a coher-
ently illuminated diffuse object is given by the relation
�I�r��= �t�r��2� �h�r��2. This result means that �1�u1 ,u2�
can be given by

Fig. 1. (Color online) (a) Coherent optical imaging system with
a moving filter in the Fourier plane. The hologram plane denotes
the location that our DH would occupy in such a system. (b) Sche-
matic of the DFF technique, which is the discrete analog of the
optical technique in (a), starting from the hologram plane. DLCT,
discrete linear canonical transform; IDFT, inverse discrete Fou-
rier transform.
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�1�u1,u2� = �
m,n

�T�u1� � T*�− u1��Hm�u1� � Hm
* �− u1� � �T

��− u2� � T*�u2��Hn�− u2� � Hn
*�u2�, �10�

where T�u� is the FT of t�r�, and H�u� is the FT of h�r�.
We now evaluate the other term �2�u1 ,u2� that gives the
power spectrum of the speckle.10 For two linear systems
with input f�r�, impulse responses hm�r�, hn�r� and out-
puts gm�r�, gn�r�, the cross correlation of the outputs can
be written in terms of the cross-correlation of the inputs.
Using this result and the right-hand side of Eq. (9), we
have15

�2�u1,u2� = �
m,n

F��Rff�r1,r2��r1
hm�r1��r2

hn
*�r2��2	,

�11�

where the subscripts r1 and r2 mean that the convolution
operation is carried out on the variables r1 and r2, respec-
tively, the other variable being treated as a constant, and
Rff�r1 ,r2� is the autocorrelation function of the object am-
plitude f�r�.

Now, �2�u1 ,u2�, which is the power spectrum of the
speckle, can be written as

�2�u1,u2� = �
m,n

���u1,u2�Hm�u1�Hn
*�− u2� � ��*�− u1,− u2�

�Hm
* �− u1�Hn�u2�, �12�

where ��u1 ,u2� is the double FT of Rff�r1 ,r2�.
Finally, if Eq. (12) is rewritten with u replacing u1 and

u2 to obtain the average power spectrum of the speckle,
��u1 ,u2� becomes the average power spectrum of the ob-
ject amplitude, which has been shown to be a constant
and is equal to the total power in the signal.15 The power
spectrum of the speckle is rewritten as

�2�u,u� = �Rtt�0��2�
m,n

�Hm�u�Hn
*�u� � �Hm

* �− u�Hn�− u�.

�13�

From this equation, Lowenthal and Arsenault15 have
shown that the manner in which the speckle spatial fre-
quencies are distributed does not depend on the signal
t�r�, but only on the coherent transfer function of the sys-
tem. Only the total signal power �Rtt�0��2 effects the power
spectrum of the speckle. Using this result and modeling
our system’s aperture as a 2D rect function. Eq. (13) be-
comes

�2�u,u� = �Rtt�0��2 �
mx,my,nx,ny

��rect�ux − mx�ux

wx
,
uy − my�uy

wy
�

�rect�ux − nx�ux

wx
,
uy − ny�uy

wy
�� * �rect

��ux − mx�ux

− wx
,
uy − my�uy

− wy
�

�rect�ux − nx�ux

− wx
,
uy − ny�uy

− wy
�� , �14�

where u=uxx̂+uyŷ, and �ux, �uy is the displacement of
the aperture between two exposures in the x and y direc-
tions, respectively. wx is the width of the rect function in
the x direction and wy is the width of the rect function in
the y direction. This reduces to

�2�u,u� = �Ru�0��2 �
mx,my,nx,ny

�1 −
�ux − �ux�m + n��

wx − �ux�m − n� �
��1 −

�uy − �uy�m + n��

wy − �uy�m − n� � . �15�

If wx−�ux �m−n � �0 or wy−�uy �m−n � �0 then the entire
expression goes to 0. In the limiting case of �ux=0 and
�uy=0, the power spectrum of the speckle is at its maxi-
mum, being the same as the power spectrum of the
speckle given by a single aperture. When �ux	wx and
�uy	wy, so that the two positions of the aperture do not
overlap, the power spectrum of the speckle is reduced to
half the value of the limiting case.10 However, the power
spectrum of the image does not follow this trend. It fol-
lows that for n exposures, the power spectrum of the
speckle is 1/n times that obtained using a single expo-
sure. For maximum efficiency, we have set �ux=wx and
�uy=wy. Since we are limited by the finite extent of the
FT of our DH, we are limited in the number of indepen-
dent exposures. It should be noted that the smaller the
exposure, the greater the loss in resolution in the recon-
structed image. However, using basic Fourier theory, one
may deduce that the bandwidth of the reconstruction in-
tensity is twice the extent of the rect function. For a more
thorough analysis of the optical system, please refer to
Lowenthal and Arsenault15 and Hariharan and
Hegedus.10

Figure 1(b) shows the DFF technique for reducing
speckle. The first step is to numerically compute the
propagation from the discrete hologram plane to the dis-
crete Fourier planed. This can be achieved efficiently in
one step using a single discrete linear canonical trans-
form. A number of methods to efficiently implement this
transform are outlined by Hennelly and Sheridan.18 The
Fourier plane data are filtered and then inverse discrete
Fourier transformed to the image plane where its inten-
sity is stored. This is repeated n times and the resulting n
intensities are summed.

3. METRICS
Speckle index19,20 was chosen as the metric to evaluate
the reduction in speckle achievable using the DFF tech-
nique. It is calculated as the ratio of standard deviation to
the mean in a homogeneous area. In this experiment, the
homogeneous area chosen was a section on the chest of a
stormtrooper object (see Fig. 3 below). The original recon-
struction has a speckle index of 1.02, and by minimizing
this we reduce the speckle content. This speckle reduction
is offset by a loss in resolution, which was calculated us-
ing a resolution chart. The chart [see Fig. 2(a)] used is
modeled on the U.S. Air Force (USAF) 1951 three-bar re-
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solving power test chart. It is 2048�2048 pixels in size
(matching the resolution of the DH). The smallest details
on the chart [see Fig. 2(b)] start at just a single pixel in
width. We define the resolution level as

R = 1/X, �16�

where X is the width of the smallest bars on the resolu-
tion chart that can be resolved. A filtering technique for
given parameters (i.e., aperture size for the DFF tech-
nique and neighborhood size for median and mean filter-
ing) is said to cause no loss in resolution if the smallest
three bars (both vertical and horizontal) can be resolved.
The technique is thus classified as being at resolution
level 1

1 . It follows that if the smallest three bars cannot be
resolved, but the next smallest can, then a technique for
given parameters is classified as being at level 1

2 . Figure
2(c) shows a zoomed in section (115�115 pixels in size) of
the resolution chart after application of the DFF tech-
nique with an aperture size of 512�512, and Fig. 2(d)
shows the same zoomed in section of the resolution chart

after application of the median filtering technique with a
neighborhood size of 3�3. For the parameters given, both
of these techniques are said to result in a resolution level
of 1

2 .

4. RESULTS AND DISCUSSION
Figure 3 shows the results of the DFF technique applied
to a DH of a stormtrooper object. In Fig. 3(a), the original
reconstruction is shown. It is 2048�2048 pixels in size,
and has a speckle index of 1.02. The application of the dis-
crete Fourier filter to a reconstruction of this DH is shown
in Fig. 3(b). The aperture, h�r�, has a width of 256 pixels
in size. This results in a speckle index of 0.2 and a reso-
lution level of 1

4 . It is clear that the technique has suc-
ceeded in reducing the speckle content.

A graph of the results of applying the DFF technique,
median filtering, and mean filtering to a reconstruction of
a DH of the stormtrooper figure is shown in Fig. 4. It
shows that the speckle index can be reduced by nearly
half with no loss in resolution using the DFF technique.
In comparison, using either the median or mean filters to
achieve a similar reduction in speckle index, will result in
a drop to a resolution level of 1

2 . At each resolution level,
the discrete Fourier filter consistently has a lower speckle
index than either the median or the mean filters.

Fig. 2. Nonfiltered version of the USAF 1951, three-bar resolv-
ing power test chart (2048�2048 pixels in size), (b) zoomed in
115�115 pixel region of the chart showing the smallest details
on the chart, (c) zoomed in results of applying on (a) the DFF
technique with aperture width of 512, (d) zoomed in result of ap-
plying on (a) a median filter with a neighborhood size of 3�3,
and (e) zoomed in result of applying on (a) a mean filter with a
neighborhood size of 3�3.

Fig. 3. (a) Shows the original reconstruction and (b) shows the
result of applying the DFF technique.

Fig. 4. Graph showing the results of DFF technique (points are
labeled with the aperture size used), and the median and the
mean filters (points are labeled with the neighborhood sizes
used).
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Simple convolution-based noise reduction techniques,
more appropriate for additive noise sources, are routinely
applied to reconstructions of digital holograms of 3D ob-
jects due to their simplicity, and due to the lack of an ap-
propriate alternative. When the reconstructions are to be
used as the basis for scientific, industrial, or medical de-
cisions (as opposed to simply being visually appealing) it
is often not appropriate to employ a complicated noise re-
duction technique whose manipulation of the data cannot
be analyzed easily. Where noise reduction techniques
have been reported in the literature, those routinely ap-
plied to the reconstructions of digital holograms of 3D ob-
jects are mean filtering,21–27 Gaussian filtering,28 median
filtering,11,26,27,29,30 subsampling,29,31 and superposition of
different reconstructions.6,23

The DFF technique offers a number of significant ad-
vantages over its optical counterpart. First, no additional
optical preprocessing or postprocessing is necessary in the
capture of DHs. Second, the technique has the advantage
of being able to efficiently compute discrete Fourier trans-
formations without the need for a bulk optical system.
The well-known fast FT may be used to implement our
technique within the order of N log2 N steps where N is
the number of pixels in the DH. Third, the technique al-
lows for the use of arbitrary filters that would be difficult
to fabricate or represent on a spatial light modulator. In
future work, we will look at creating more specialized fil-
ters (including complex valued ones) in an effort to im-
prove on the results given here. The DFF technique also
has an advantage over some existing DSP
techniques,6,7,23 in that it only requires a single DH. This
implies that the method can be applied to all existing DHs
captured previously.

5. CONCLUSION
A DSP technique that reduces the speckle content in re-
constructed DHs has been presented. It was shown that
the speckle index can be reduced by half with no loss of
resolution, and further reductions in speckle can be
achieved with some loss in resolution. Furthermore, the
DFF technique was shown to be superior to the mean and
median filters in terms of speckle reduction and loss of
resolution. It is important to note that almost any level of
speckle reduction can be achieved, but this always needs
to be offset against the resulting loss in resolution. We
also showed that the technique offers a number of signifi-
cant advantages over the optical imaging technique upon
which it was modeled, and some existing DSP techniques.
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