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Abstract
The paper examines the potential for combining a spatial statistical method-
ology – Geographically Weighted Regression (GWR) – with geovisual analyt-
ical exploration to help understand complex spatio-temporal processes. This
is done by applying the combined statistical – exploratory methodology
to a simulated data set in which the behaviour of regression parameters
was controlled across space and time. A variety of complex spatio-temporal
processes was captured through space-time (i.e. as spatio-temporal) varying
parameters whose values were known. The task was to see if the proposed
methodology could uncover these complex processes from the data alone.
The results of the experiment confirm that the combined methodology can
successfully identify spatio-temporal patterns in the local GWR parameter esti-
mates that correspond to the controlled behaviour of the original parameters.
Information Visualization (2008) 7, 181--197. doi:10.1057/palgrave.ivs.9500187
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Introduction
In regression analysis a dependent variable is typically modelled as a func-
tion of a set of independent variables. This function is usually (but not
necessarily) a linear combination of the independent variables, where the
coefficients are considered to be stationary over space and produce a global
model that is assumed to be representative of the processes operating at
every location in the study area. Since relationships in spatial data are often
intrinsically different across space, such an assumption can be misleading –
the problem of identifying local variation in spatial processes is the concern
of several spatial statistical methods, such as Geographically Weighted
Regression (GWR).1

GWR extends the regression framework by dropping the stationarity
assumption and considers the parameters of the model to be continuous
functions of location. One outcome from a GWR analysis is a set of contin-
uous localised parameter estimate surfaces that describe the processes that
generated the data.1 These results effectively form a large and highly-
dimensional spatial data set and can be difficult to interpret – a step
that is necessary for proper understanding of the spatial non-stationarity
of the geographical processes. This task is even more complicated if the
focus is on the spatio-temporal dynamics of the processes and not only
on the spatial dimension. GWR run on spatio-temporal data can produce
results with several hundreds of dimensions which need to be interpreted.
In this paper, we suggest using a Geovisual Analytical approach for the
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identification and interpretation of patterns in the spatio-
temporal GWR parameter estimates. Motivation for this
work was a spatio-temporal extension of GWR for hedonic
price modelling on house price data in London.2 To
be able to efficiently and correctly interpret the results
of the spatio-temporal GWR for hedonic modelling,
we decided to perform an experiment in which we use
the combined methodology of GWR and Geovisual
Analytics on a simulated data set where the behaviour
of the model parameters could be controlled over space
and time. This behaviour describes the spatio-temporal
processes generating the data and the aim was to see if
the combined statistical–exploratory methodology could
reproduce patterns that describe this known behaviour.
If the method proves successful in this controlled experi-
ment, we can have confidence in its use on real data for
spatio-temporal modelling.

The paper is structured as follows: the second section
introduces the two methodologies, GWR and Geovisual
Analytics, in more detail. The simulated data set and
the visual exploration environment are described in the
third section. The fourth section presents the exploration
results. The fifth section lists some conclusions and
discusses the implications of the results.

GWR and geovisual analytics
Global regression models a dependent variable Y as a
weighted combination of independent variables:

Yi = �0 + �1Xi1 + �2Xi2 + · · · + �nXin + �i (1)

In this equation Xij are independent variables at a given
location i, �i is the residual and �j are unknown parameters
which are assumed to be constant over space (stationary),
that is, independent of location i. The model in Eq. (1)
is linear, but this is not necessarily always the case. GWR
extends this global model by dropping the stationarity
assumption. A typical GWR model is represented as:

Yi = �0(i)+ �1(i)Xi1 + �2(i)Xi2 + · · · + �n(i)Xin + �i (2)

where the unknown parameters �j(i) are now dependent
on location i. These parameters are estimated from the
sample data using a geographically weighted ordinary
least squares method. Geographical weighting means
that instead of taking into account the entire data
set when parameters �j(i) are estimated, the estimates

�̂j(i) are calculated only from a subset of neighbouring
data points, where closer points are assigned higher
weights during the calculation. More details about the
method and its calibration are given in Fotheringham
et al.1 – here we are interested in the structure of the
result space of the method and potential for its visual
exploration.

The GWR result space is a set of continuous localised
parameter estimate surfaces, each of which describes
the spatial process linking the respective independent
variable with the dependent variable. These surfaces

are typically visualised as a set of separate univariate
choropleth maps that are then used to examine the
plausibility of the stationarity assumption of the tradi-
tional regression and different possible causes of non-
stationarity for each separate parameter.1,3 The downside
of these separate univariate visualisations is that they
cannot be used for identification of multivariate spatial
and non-spatial relationships and patterns in the param-
eter space. In an attempt to counter this inadequacy,
we previously suggested treating the result space of one
single GWR analysis as a multivariate data set and visually
exploring it.4 The goal was to identify spatial and multi-
variate patterns that the separate univariate mapping
cannot recognise. In this paper, we extend this approach
by including the temporal dimension: we combine GWR
analysis with Geovisual Analytics by visually exploring
the results of a temporal series of GWR analyses.

In exploratory spatial data analysis,5 spatial data are
explored visually in order to identify patterns that serve
as a basis for knowledge generation. Complex data
are projected onto the two dimensions of the computer
screen using various multivariate visualisation techniques
(geographical as well as non-spatial). These visualisa-
tions are interactively connected to each other to let the
analyst explore and look for patterns, relationships and
structure in the data. Results are then used to analyti-
cally reason about the data and infer knowledge not only
about the characteristics of the data but also about spatial
processes that generated the data.6 This process is the
focus of Geovisual Analytics, ‘the science of analytical
reasoning and decision-making with geospatial informa-
tion, facilitated by interactive visual interfaces, computa-
tional methods, knowledge construction representations
and management strategies’.7 Geovisual Analytics is a
part of Visual Analytics,8 which is a new discipline in
Information Visualisation that has received much atten-
tion. Geovisual Analytics is based on geovisualisation9,10

and its methods are used to derive knowledge from
large highly-dimensional spatial and spatio-temporal
data sets.

Here we use a combination of GWR and Geovisual
Analytics on an artificially created spatio-temporal data
set. We designed an experiment to investigate whether
known complex spatio-temporal patterns describing the
processes that generate the data can be visually identified
in the GWR parameter estimate surfaces. In the experi-
ment, we use GWR to model the spatial processes with
known controlled behaviour at the same locations but
at different points in time. This is achieved by running
a series of GWR analyses on a data set where the regres-
sion parameters �j(i) are mathematical functions with
known behaviour in space and time. GWR result spaces
are then merged into one single highly-dimensional
spatio-temporal data set, which is visually explored using
a Geovisual Analytical exploratory environment in an
attempt to see if the combined statistical–exploratory
methodology can reproduce the original patterns. The
design of the experiment is presented in the next section.

Information Visualization
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Figure 1 Spatio-temporal behaviour of regression parameters �j(x, y, t), j = 1, . . . ,10 in the controlled data set for time steps
t = 1, . . . ,8. The first six parameters, �1, �2, �3, �4, �5 and �6, are planes with rotational behaviour. The second group of
parameters, �7, �8, �9 and �10, are non-linear functions with increasing/decreasing temporal behaviour.

Analysing spatio-temporal dynamics with GWR
and Geovisual Analytics
The simulated data consist of 2500 points spaced evenly in
the centres of a 50×50 grid inside a two-dimensional unit
square [0,1]×[0,1]. We decided to work with a linear GWR
model with 10 independent variables Xj, where time was
counted in eight discrete steps. The dependent variable Y
was created as follows:

Y(x, y, t)= �1(x, y, t)X1(x, y, t)+ · · · + �10(x, y, t)X10(x, y, t)

(3)

In this equation, x and y are the coordinates of the location
of each point in the unit square, t is a discrete time step
(which runs from 1 to 8) and �j(x, y, t) are known param-
eter functions with controlled behaviour for each loca-
tion (x, y) and time t . Independent variables, Xj(x, y, t),
j = 1, . . . ,10, were constructed as random data sequences
with mean 0 and standard deviation 1 for each variable
and time step – this was done so that the intercept term
in the regression model would be constant and equal to
0. Figure 1 shows the behaviour of all parameter surfaces
�j(x, y, t) through space and time.

The first four parameter functions, �1, �2, �3 and �4,
were designed as identical rotating planes, with a delay in
rotation. �1 is a plane at 45◦ inclination, rotating around

the vertical axis that intersects the two-dimensional unit
square in its centre (x, y) = (0.5,0.5). �2, �3 and �4 have
the same rotating behaviour as �1 but each has a two-
time-steps delay after the previous one. Parameters �5 and
�6 are planes rotating around a horizontal axis and mirror
each other’s behaviour over the eight time steps. �5 starts
at a 45◦ inclination and slowly rotates downwards around
the central axis (x=0.5) to reach the constant plane at 0.5
height in the last time step. �6 has the same rotational
behaviour, but in reverse. Parameters �7, �8, �9 and �10
are non-linear surfaces with specific increasing/decreasing
behaviour in time: �7 and �8 are parabolic cylinders, �9
a hyperbolic paraboloid and �10 an expanding Gaussian
kernel.

Once the dependent variable Y was constructed from
these parameter surfaces according to Eq. (3), we ran one
GWR analysis for each of the eight time steps and used the
results to build a spatio-temporal data set for visual explo-
ration as described below. Mathematical details about the
construction of the parameter surfaces and the perfor-
mance of GWR on this data set are beyond the scope of
this paper and are presented elsewhere.11

Each GWR result space consisted of parameter estimate
surfaces for each of the 10 dependent variables, that is,
functions �̂j(x, y, t), j= 1, . . . ,10, plus the estimate for the
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regression intercept, �̂0(x, y, t). When merged together,
these results form an 88-dimensional spatio-temporal data
set with 2,500 data elements – referring to the point loca-
tions in the centres of the 50 × 50 grid in the unit square.
This data set can also be seen as consisting of 11 sets of
time-dependent parameter estimate surfaces, one for each
of the 10 dependent variables and the intercept. These
data were then spatially joined with an area representa-
tion of grid cells for a clearer geographical visualisation,
that is, central points were replaced with their respective
grid cells as basic data elements.

To explore these data visually we adapted the explo-
ration system that we previously used for investigation of
one single GWR result space.4 We skipped the bivariate
matrix that did not prove to be very informative in the
previous experiment. The system we used consisted of
a Self-Organising Map (SOM), two parallel coordinates
plots (PCP) – one linked to the SOM and another in its
temporal version – and a bivariate geoMap. These visu-
alisations are all briefly described below. The system was
built using GeoVISTA Studio, a collection of geographical
and multivariate visualisations and computational data
mining methods.12,13

A SOM is an unsupervised neural network. It projects
multidimensional data onto a two-dimensional space
which is usually represented as a lattice of hexagonal
cells. This projection preserves the topology and the
probability density of the multidimensional input space
meaning that it also preserves patterns from the input
space.14 These can be identified easily since the result is
two-dimensional and can therefore be nicely visualised
in a number of ways.15 Because of all these properties,
a SOM functions as a popular method for knowledge
discovery from spatial and spatio-temporal data, either
as the original Kohonen SOM operating exclusively on
the attribute space or with incorporated geographical
location as a GeoSOM.16 Some recent applications of
SOM on spatial and spatio-temporal data can be found in
Koua and Kraak,17 Guo et al.18 Skupin and Hagelman,19

Demšar20 and Špatenková et al.21

The SOM visualisation used here is the one imple-
mented in GeoVISTA Studio18 and is a hexagonal U-
matrix. This matrix consists of two types of cells: node
cells that represent the nodes of the SOM and distance
cells, which are located between node cells and show
the level of dissimilarity between their respective neigh-
bouring node cells. This dissimilarity is shown by grey
shade: the darker the cell, the more dissimilar are its
neighbours. Groups of light cells in the lattice therefore
indicate areas with similar cells and as such represent
clusters. Dark areas in the lattice indicate borders between
clusters. The GeoVISTA Studio implementation of the
SOM visualisation shows the distribution of the data in
the SOM through circles that are superimposed on the
node cells. The larger the circle, the more data elements
have been assigned to the respective node cell. The colour
of the circles is defined through a smooth 2D colour map
and is used in visual brushing to connect the SOM to all

other visualisations, that is, the map, the temporal PCP
and the SOM PCP. Another connection to the SOM PCP is
through the size of the circles, which defines the width of
the polygonal lines in the SOM PCP as described below.
More details about this particular SOM visualisation can
be found in Guo et al.18

The map in our exploratory environment is the geoMap
from GeoVISTA Studio. We use it as a thematic map
showing the spatial distribution of the SOM results
through a colour ramp that has been transferred to the
map from the SOM via visual brushing.12,18

There are two PCPs in this environment. One is directly
linked to the SOM. In this SOM PCP, each vertical axis
represents one dimension of the input space and each
polygonal line represents a node cell from the SOM,22,18

– a property that is valuable for cluster analysis. In the
second PCP, each polygonal line represents one data
element and intersects each of the axes at the value that
corresponds to the data element value in that particular
dimension.23 The two PCPs differ also in the way their
axes are scaled. In the SOM PCP, the axes are scaled
using nested means scaling,22 the purpose of which is
to reduce overprinting. While this scaling distorts the
statistical distribution of data at each axis, it is useful for
anomaly detection. We used a temporal version of the
second PCP to investigate the time series of parameter
estimates for each regression variable. In a temporal PCP
all the axes are scaled linearly over the same range – the
minimum and maximum values across all time intervals.
This scaling variation is required in a PCP to successfully
visualise temporal trends.24

We divided the exploration of the spatio-temporal
dynamics of the simulated data set into three approaches.
Approach I was to look at separate regression variable-
defined subspaces (i.e. time series of GWR parameter
estimates for each variable) and examine the behaviour
of each parameter estimate separately. Approach II was
to look at subspaces consisting of time series of several
parameter estimates, grouped according to similarity.
Similarity grouping was based on the behaviour of the
original parameter surfaces. We looked at two separate
groups, the first one containing parameter estimates �̂1,
�̂2, �̂3, �̂4, �̂5 and �̂6 where the original parameters are
linear surfaces (planes) and the second one consisting
of the estimates �̂7, �̂8, �̂9 and �̂10 where the original
parameters are non-linear surfaces. Approach III was to
explore the entire data set at once.

The exploration process consisted of looking for three
types of patterns that would help the interpretation of
GWR results:

Type 1 – patterns that identify areas of temporal stability
for each separate parameter estimate (approach I). We
do not consider temporal stability as mathematically
constant because of the noise present in GWR modelling.
For our purpose it is enough to identify areas where
parameter estimates maintain approximately similar
values throughout the entire time series.
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Type 2 – patterns that identify areas that behave simi-
larly in time:

(a) for each separate parameter estimate (approach I)
(b) for a group of parameters (approaches II and III)

Type 3 – patterns that identify parameters with similar
temporal behaviour. (approaches II and III)

These particular types of patterns were chosen based
on the application of spatio-temporal GWR on hedonic
modelling of house prices.2 The behaviour of the orig-
inal parameter surfaces �j(x, y, t) in the simulated spatio-
temporal data set was designed with these patterns in
mind. Table 1 explains how the three types of patterns
appear in the behaviour of each of the 10 original para-
meter surfaces.

The next section presents the results of our experiment
in an attempt to answer the question posed in this paper:
is the combination of GWR and visual exploration able
to identify the patterns that we know exist in the original
parameter surfaces �j(x, y, t)?

Results
We have been able to visually identify all of the expected
pattern types (1, 2 and 3) in all relevant exploratory
approaches (I, II and III). Table 2 summarises the results
for approach I (i.e. exploration of separate parameter
estimate-based subspaces) and Table 3 summarises the
results for approaches II and III (i.e. for groups of similar
parameter estimates and for the entire data set). The tables
also describe how we looked for particular patterns and
whether we were able to identify them for each particular
exploration approach.

In the rest of this section we present a selection of the
results.

Approach I -- Exploring separate parameter-defined
subspaces
Parameter �1 is an inclined plane that rotates around a
vertical axis. Figure 2 shows the visualisation of the time
series of its GWR estimate �̂1 in the exploratory environ-
ment. The SOM in Figure 2B was obtained by clustering
the time series of �̂1, that is, its eight time steps as the vari-
ables of the SOM input space. As in all GeoVISTA Studio-
based exploration systems, all visualisations are linked to
each other through visual brushing with colour, meaning
in this case (and in the rest of the examples presented) that
all visualisations inherit their colours from the SOM. Visu-
alisations are also connected through interactive brushing
and selection, which is important for a successful explo-
ration process.

This result is an example of how pattern type 2a – areas
with similar temporal behaviour for one particular param-
eter estimate – can be observed. In the case of �̂1, because
of the variation in the parameter surface over time, we
expected to see areas with similar behaviour in terms of

the variation in local estimates through time distributed
in concentric circles around the central point of the
region. Additionally, diagonally opposed areas would be
expected to have delayed (and therefore opposite) rota-
tional behaviour by four time steps. All this can be seen
in the visualisations of �̂1 in Figure 2. The map (Figure
2A) shows a circular spatial structure. The colour of the
grid cells in the map is inherited from the SOM (Figure
2B), where it was defined by the clustering performed
in the attribute space. Spatial position was not a part of
the SOM clustering and yet these attribute-defined (non-
spatial) SOM clusters are located in spatially adjacent
areas in the map and form a circular pattern. That areas
located diagonally opposite on the map are very different
from each other, can be deduced from the SOM: the SOM
shows a green–yellow cluster on the top border, a pink
cluster on the right border and a turquoise-blue cluster in
the bottom left area of the lattice. These clusters are very
different from each other as evidenced by their separation
with areas of dark-coloured cells and by their locations on
opposite sides of the SOM. What we expected to see was
that diagonally opposed areas in the map should have a
sinusoidal track through both PCPs and that one of these
tracks is delayed for four time steps. The SOM clustering
picks up this behaviour, which is even easier to see in
Figures 2E, 2F and 2G, where we selected the two opposite
clusters in the SOM, the green–yellow one on the top and
the blue one on the bottom. The Temporal PCP (Figure
2G) shows the expected two sinusoidal tracks, delayed by
four time steps. A comparison with the map (Figure 2E)
also shows that data elements that belong to these two
clusters/tracks are located at the opposite corners of the
unit square as expected.

Figure 3 shows visualisations of the time series of the
parameter estimate �̂5. The SOM in Figure 3B shows two
clusters located opposite to each other, a green–turquoise
cluster in the upper left area of the SOM and a violet–pink
cluster in the lower right area. These clusters are very
different in the attribute space because they are sepa-
rated by large groups of dark-coloured cells as well as
being located far from each other in the SOM. When
these clusters are checked on the map (Figure 3A), the
green–turquoise one defines the band on the right border
of the unit square and the pink–violet one the band on the
left border. The behaviour of these two clusters can then
be further investigated in both PCPs, where the respective
green–turquoise and pink–violet tracks increase/decrease
steadily through the temporal PCP (Figure 3D) and are
nearly horizontal in the SOM PCP (Figure 3C). This
example also shows the difference between the nested-
means scaling of the SOM PCP and the min-max-over-
the-entire-temporal-range linear scaling of the temporal
PCP. The identified pattern corresponds very well to the

areas of similarity in the original parameter �5 (Tables 1
and 2).

Additionally, we can see the area of temporal stability

(pattern type 1) in this visualisation: according to Table 1,
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Table 1 Patterns in original parameter functions, related to GWR interpretation

Parameter function Pattern 1: areas of temporal
stability and the constant value in
these areas

Pattern 2: areas with similar
temporal behaviour

Pattern 3: parameter functions with
similar behaviour

�1(x, y, t) A small circular area around the
central point (x, y)= (0.5,0.5).
Value = 0.5.

Concentric circles around the
central point, where diagonally
opposed areas have delayed
rotational behaviour by four
time steps.

�2, �3 and �4 have identical
temporal behaviour, with a
difference of two time steps,
respectively.

�2(x, y, t) A small circular area around the
central point (x, y)= (0.5,0.5).
Value = 0.5.

Concentric circles around the
central point, where diagonally
opposed areas have delayed
rotational behaviour by four time
steps.

�1, �3 and �4 have identical
temporal behaviour, with a
difference of two time steps,
respectively.

�3(x, y, t) A small circular area around the
central point (x, y)= (0.5,0.5).
Value = 0.5.

Concentric circles around the
central point, where diagonally
opposed areas have delayed
rotational behaviour by four
time steps.

�1, �2 and �4 have identical
temporal behaviour, with a
difference of two time steps,
respectively.

�4(x, y, t) A small circular area around the
central point (x, y)= (0.5,0.5).
Value = 0.5.

Concentric circles around the
central point, where diagonally
opposed areas have delayed
rotational behaviour by four
time steps.

�1, �2 and �3 have identical
temporal behaviour, with a
difference of two time steps,
respectively.

�5(x, y, t) A narrow band around the axis of
rotation, x= 0.5. Value = 0.5.

Bands parallel to the axis of
rotation, x=0.5. Bands on the left
side of the axis move upwards
through time, bands on the right
side move downwards.

�6 has matching temporal
behaviour – in reverse.

�6(x, y, t) A narrow band around the axis of
rotation, x= 0.5. Value = 0.5.

Bands parallel to the axis of
rotation, x=0.5. Bands on the left
side of the axis move downwards
through time, bands on the right
side move upwards.

�5 has matching temporal
behaviour – in reverse.

�7(x, y, t) A narrow band around the central
axis where the minimum of the
parabola is located, x= 0.5.
Value = 0.

Bands parallel to the central axis
x= 0.5. Bands at the same
distance from the axis on both
sides of the axis move upwards
with the same speed.

�8 has similar but upside-down
temporal behaviour, �9 has similar
temporal behaviour.

�8(x, y, t) Bands on both sides of the unit
square, x= 0, x= 1. Value = 0.

Bands parallel to the central axis
x= 0.5. Bands at the same
distance from the axis on both
sides of the axis move upwards
with the same speed.

�7 and �9 have similar
but upside-down temporal
behaviour.

�9(x, y, t) A narrow band around the central
axis where the minimum of the
parabola is located, x = 0.5.
Value = 0.

Hyperbolic bands 'parallel' to the
central axis x= 0.5. Bands at
the same distance from the axis
on both sides of the axis move
upwards with the same speed.

�7 has similar temporal behaviour.
�8 has similar but upside-down
temporal behaviour.

�10(x, y, t) A small circular area around the
central point of the Gaussian
kernel (x, y)=(0.5,0.5). Value=1.

Concentric circles around the
central point move upwards with
the same speed.

Behaviour of no other parameter
behaviour is similar to this one.

The table explains how each original parameter function �j(x, y, t) is linked to the three types of patterns we were looking for.

what we expected to see is that the values in a narrow band
around the central axis are relatively stable. This band
can be identified on the map as the area with light-blue
and light-orange/beige colours. The lines of these colours
follow a relatively flat track through both PCPs and they
cross all of the axes more or less around the centre. The

effect can be seen even more clearly in an appropriate
interactive selection of only these areas.

An interesting question is what would we expect
to see if there were no spatial or temporal patterns
in the time series of a GWR parameter estimate? This
does not occur for any of the original parameters that

Information Visualization

 by guest on February 19, 2013ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


Sp
atio

-tem
p
o
ral

d
ata

an
alysis

w
ith

G
W

R
an

d
G
A

U
rška

D
em

šar
et

al
18

7

Table 2 Exploration framework for Approach I -- in separate parameter-defined subspaces of the GWR results

Pattern type Parameter estimates Expected pattern Identified? How?

1 – areas of temporal
stability

�̂1, �̂2, �̂3,�̂4
(each separately)

A small circular area
in the centre of the
square. Value = 0.5.

Yes, to some extent. In all cases the exploration was done in three separate steps:
1. A combination of SOM, SOM PCP and map was first used to select clusters in
relevant spatial location. Selection checked in temporal PCP to see if the values

�̂5, �̂6
(each separately)

A narrow band around
the axis of rotation.
Value = 0.5.

Yes, clearly. in this selection were relatively constant and close to expected value.
2. A new selection was then made in the first axis of the temporal PCP around
the expected value. The track in the temp PCP checked for relatively constant

�̂7, �̂9 (each
separately)

A narrow band around
the central axis.
Value = 0.

Yes, clearly. values. Map checked for correct spatial position of the selection.
3. Other values (apart from expected value) were iteratively selected in the first
axis of the temporal PCP and tracks checked if they were relatively constant or

�̂8 Bands on both sides of
the square. Value = 0.

Yes, clearly. not. None of them were.

�̂10 A small circular area
in the centre of the
square. Value = 1.

Yes, clearly.

�̂0 No such pattern exists. Yes, clearly.

2a – areas of similar
temporal behaviour for
one parameter estimate

�̂1, �̂2, �̂3, �̂4
(each separately)

Concentric circles
around the centre.
Diagonally opposed
areas have delayed
behaviour.

Yes, clearly. In all cases, the exploration procedure was as follows:
The most similar/most different clusters were identified in the SOM and selected
in the SOM PCP.
The spatial distribution of elements belonging to these clusters was checked by
looking at the selection in the map. The tracks belonging to this same selection

�̂5, �̂6
(each
separately)

Bands parallel to the
central axis.
Upward/downward
rotation at the sides.

Yes, clearly. were checked in the temporal PCP to see if the expected temporal behaviour
was present or not.

�̂7, �̂8
(each
separately)

Bands parallel to the
central axis move
upwards.

Yes, clearly.

�̂9 Hyperbolic bands
parallel to the central
axis move upwards.

Yes, clearly.

�̂10 Concentric circular
bands around the
centre move upwards.

Yes, clearly.

�̂0 No such pattern exists. Yes, clearly.

The table lists the pattern types that we looked for in each of the parameter-defined subspaces, the expected pattern, if it was identified visually (‘yes, clearly’, ‘yes,
to some extent’, ‘no’) and how it was identified, that is, which visualisations/functionalities were used for this purpose.
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Table 3 Exploration framework for Approaches II and III -- for groups of similar parameter estimates and for the entire data set

Approach Pattern type Parameter
estimates

Expected pattern Identified? How?

II –
groups
of similar
parame-
ters

2b – areas
of similar
temporal
behaviour
for a group
of parameter
estimates

�̂1, �̂2, �̂3,

�̂4, �̂5, �̂6

A combination of
concentric circles around
the centre and parallel
bands. Diagonally
opposed areas have
delayed behaviour.

Circular and diagonally
opposed pattern yes, clearly.
Left-to-right parallel bands,
yes to some extent, but less
clearly than the circles.

The exploration procedure was as follows:
SOM was used for identification of most similar/most
different clusters and SOM PCP for the selection of these.
Spatial distribution of elements belonging to these clus-
ters was checked by looking at the selection in the map.
Tracks belonging to this same selection were checked in the
temporal PCP to see if the expected temporal behaviour as
in the original surfaces was present or not.

�̂7, �̂8, �̂9,

�̂10

A combination of
concentric circles around
the centre and two types
of parallel bands, straight
and hyperbolical.

Yes, clearly.

3 – para-
meters with
similar
temporal
behaviour

�̂1, �̂2, �̂3,

�̂4, �̂5, �̂6

1–4 have identical delayed
rotational temporal
behaviour. Five and six
have mirrored temporal
behaviour.

Yes, clearly. Temporal behaviour of all parameters was checked first in
the SOM PCP and then in separate temporal PCPs for each
parameter, where colours were inherited from the SOM.
Parameters with similar original behaviour produced similar
patterns in their temporal PCPs and in their respective subin-
tervals of the SOM PCP (which shows all parameters in the
group at once).�̂7, �̂8, �̂9,

�̂10

Seven and nine have
similar behaviour, eight
mirrors that. Ten is
different from all other
parameters

Yes, clearly.

III – entire
data set

2b – areas
of similar
temporal
behaviour
for the entire
data set

�̂1, . . . , �̂10 A combination of
concentric circles around
the centre and two types
of parallel bands, straight
and hyperbolical.

Yes, to some extent. As before, the exploration procedure was as follows:
SOM was used for identification of most similar/most
different clusters and SOM PCP for the selection of these.
Spatial distribution of the clusters was checked in the map.
Tracks belonging to this same selection were checked in the
temporal PCP to see if the expected temporal behaviour as
in the original surfaces was present or not.

3 – para-
meters with
similar
temporal
behaviour

�̂1, . . . , �̂10 As above, see the
corresponding two fields
in Approach II.

Yes, clearly. Temporal behaviour of all parameters was checked first in
the SOM PCP and then in separate temporal PCPs for each
parameter, where colours were inherited from the SOM.
Parameters with similar original behaviour produced similar
patterns in their temporal PCPs and in their respective subin-
tervals of the SOM PCP (which shows all parameters at once).

The table lists the approach, the pattern types that we looked for, the expected pattern, if it was identified visually (‘yes, clearly’, ‘yes, to some extent’, ‘no’) and how it was
identified, that is, which visualisations/functionalities were used and how.
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Figure 2 Visualisations of the time series of parameter estimate �̂1. Results are presented in (A) the geoMap, (B) the SOM, (C) the
SOM PCP and (D) the temporal PCP. A selection of two areas with different temporal behaviour is shown in (E) the geoMap, (F)
the SOM and (G) the temporal PCP. The selection shows two different sinusoidal tracks in the temporal SOM with a delay of four
time steps and identifies two areas with opposite temporal behaviour. Colours in all visualisations are inherited from the SOM.
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Figure 3 Visualisations of the time series of GWR parameter estimate �̂5. Results are presented in (A) the geoMap, (B) the SOM,
(C) the SOM PCP and (D) the temporal PCP. Colours in all visualisations are again inherited from the SOM.

belong to the independent regression variables in our
model. However, this situation does arise for the esti-
mated intercept. Regression variables X1, . . . , X10 were
chosen in such a way that the intercept in the GWR
model is constant and equal to 0. Because of this,
the intercept estimate �̂0 should only show random
noise with no particular spatial or temporal pattern.
To confirm or reject this expectation, we visualised
the time series of the intercept estimate �̂0 (Figure 4).
While there seems to be a small amount of attribute clus-
tering present in the SOM (Figure 4B), there is clearly
no spatial clustering present in the map (Figure 4A). The
values of the intercept estimate are very low (the temporal
PCP is scaled from −0.06 to 0.08 which is low compared
to all other parameter estimates that range from 0 to 1).
Neither of the two PCPs contains any clearly recognisable
temporal tracks (Figures 4C and D). As expected, we only
see random noise.

Approach II -- Exploring subspaces defined by groups of
parameters
In approach II we explored two separate subspaces, the
first defined by the set of the parameter estimates �̂1, �̂2,
�̂3, �̂4, �̂5 and �̂6 and the second by the set of the esti-
mates �̂7, �̂8, �̂9 and �̂10. Here we present the exploration
results for the second group. Figure 5 shows the relevant
visualisations. The SOM in Figure 5B was produced by
clustering �̂7, �̂8, �̂9 and �̂10 together. The colours from
the SOM are again transferred to the map in Figure 5A
and all the PCPs. The SOM PCP (Figure 5C) has 32 axes,
which are four time series with eight steps for each of
the four parameter estimates in this group. Each param-
eter estimate also has its own temporal PCP (Figures 5D,

E, F, and G for estimates �̂7, �̂8, �̂9 and �̂10, respectively).

Each temporal PCP is scaled from min–max across all of its
eight axes.
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Figure 4 Visualisations of the time series of the intercept estimate �̂0. Results are presented in (A) the geoMap, (B) the SOM,
(C) the SOM PCP and (D) the temporal PCP. Colours in all visualisations are again inherited from the SOM. There is no spatial or
temporal clustering present in this estimate.

To identify the areas that behave similarly in time across
all four parameter estimates (pattern type 2b), we need
to look at how areas with similar behaviour were defined
in the original parameters �7, �8, �9 and �10 (Table 1).
Parameters �7, �8 and �9 have similar behaviour in bands
parallel to both sides of the unit square with the addi-
tional property that the �7 and �8 bands are straight, while
the �9 bands are hyperbolical. The behaviour of �10 is
similar in concentric circles around the central point. The
geometrical pattern we expected to see in the visualisa-
tions of the group of estimates �̂7, �̂8, �̂9 and �̂10 should
therefore show a combination of parallel bands (straight
and hyperbolical) and concentric circles (Table 3). This is
exactly what the map in Figure 5A shows.

For the parameters �7, �8 and �9 the side bands and
the band around the central axis behave in an opposite

manner. This expected pattern can be clearly seen if a
selection of these areas is made in the map (Figure 6A).
The opposite behaviour is very clear in the SOM PCP
(Figure 6B, notice how the two tracks, red-pink and blue,
are very separate in the first three time series for �̂7, �̂8
and �̂9 while there is no separation in the time series
for the estimate �̂10) and in the relevant temporal PCPs
(Figure 6C shows the temporal PCP for �̂9). A different
selection of the central and peripheral circular areas in
the map in Figure 6D confirms that the behaviour of the
estimate �̂10 is different from the behaviour of the other
three estimates. This is what we expected to see based

on the behaviour of the original parameter �10 (Tables 1

and 3). The separation between the red and blue tracks
is now clear in the last (fourth) time series in the SOM
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Figure 5 Visualising parameter estimates �̂7, �̂8, �̂9 and �̂10. (A) shows the map, (B) the SOM and (C) the SOM PCP. The rest of

the figure shows temporal PCPs for (D) �̂7, (E) �̂8, (F) �̂9 and (G) �̂10. Colours in all visualisations are inherited from the SOM.

PCP (Figure 6E) and in the temporal PCP for �̂10 (Figure
6G). There is no separation in the first three time series in
the SOM PCP (Figure 6E), nor in the temporal PCP for �̂9
(Figure 6F, and there is also no separation in the temporal
PCPs for �̂7 and �̂8 which are not shown here). These two
selections therefore help to uncover which spatial areas
behave similarly/differently across the entire set of four
parameter estimates.

The last type of pattern we were looking for concerned
the identification of attributes with similar behaviour
over time (pattern type 3). What we expected to see from
the original parameters was the following (compare with
Tables 1 and 3 and Figure 1): �7, �8 and �9 all exhibit a
similar increase across time but �8 is spatially mirrored
from the other two (i.e. �7, and �9 have the largest
increase on the sides, while �8 has the largest increase
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Figure 6 Two different spatial selections in the visualisations of the �̂7, �̂8, �̂9 and �̂10 subset. The first selection shows the central

band and the sides of the unit square in (A) the map, (B) the SOM PCP and (C) the temporal PCP for �̂9. In the second selection,

the central and peripheral circular areas (D) exhibit different temporal behaviour in (E) the SOM PCP, (G) the temporal PCP for �̂10,

but not in (F) the temporal PCP for �̂9.

in the central band). The pattern of increase in �10 is
different from the rest, as it is circular.

The anticipated similarity in the temporal patterns of
the parameter estimates �̂7, �̂8 and �̂9 is clearly noticeable

if we compare their respective temporal PCPs (Figure 5D,
5E and 5F), in spite of a large amount of overprinting. The
PCPs of �̂7 and �̂9 show a similar blue to pink pattern,
while the pattern in �̂8 is mirrored (pink to blue). The
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Figure 7 Visualising the entire data set. With (A) the map, (B) the SOM and (C) the SOM PCP with 80 dimensions. Dimensions

are shown in the temporal order for each parameter estimate, �̂1.�̂10.

pattern for the estimate �̂10 (Figure 5G) is also clearly
different from the other three.

Approach III -- Exploring the entire data set
In the final step of the experiment, we looked at the entire
data set simultaneously, that is, for the time series of all
10 parameter estimates �̂j, j = 1, . . . ,10, but excluding
the intercept estimate as that did not exhibit any spatial
or temporal pattern (as described above). Figure 7 shows
three of the visualisations produced in this step. The SOM
clustering in Figure 7B was based on 80 variables (i.e.
eight time steps in 10 time series) and its colour scheme
is transferred to the map (Figure 7A) and the SOM PCP
(Figure 7C). We were looking for two types of patterns in
these visualisations: areas with similar temporal behaviour
(pattern type 2b) and parameter estimates with similar
behaviour (pattern type 3).

According to the areas of similar temporal behaviour of
all 10 original parameters (Table 1), we expected to see a
combination of the following geometrical patterns in the
map (pattern type 2b): concentric circular areas and bands
(straight and hyperbolical) parallel to both sides of the
unit square (Table 3). The pattern in the map in Figure 7A
does show these characteristics, although the impression
is not as clear as in the previous approach. The side bands
on the map in Figure 7A are quite clear but the circular
pattern is not very obvious. The difference between the
behaviour of the side bands and the central areas is large
– this can be deduced by looking at the respective colour
clusters in the SOM and their distribution in the SOM.

Differences and similarities of the behaviour of various
spatial areas can be further confirmed when the areas
in question are interactively selected in the map and/or
the SOM PCP and the temporal trends in various PCPs
compared to each other.

The SOM PCP of the entire data set (Figure 7C) helps
with the identification of similar parameter estimates
(pattern type 3). Based on the temporal behaviour of the
original parameters we expected to find delayed rotation
of �̂1 to �̂4; a mirrored behaviour of �̂5 and �̂6; similar
increases in �̂7, �̂8, �̂9 where �̂8 mirrors the other two;
and �̂10 exhibiting different temporal behaviour from
the rest (compare with Tables 1 and 3 and Figure 1). Most
of this can be seen in the SOM PCP (Figure 7C) and the
temporal PCPs for each respective parameter estimate
(these are not shown here due to limitations in paper
length).

Conclusions and discussion
This paper presents an experiment designed to examine
the viability of a visual exploration of the results of
a spatial statistical method, GWR, for easier interpre-
tation of spatio-temporal processes. This was done by
constructing a simulated spatio-temporal data set where
we controlled the behaviour of regression parameters
across space and time. The goal was to see if patterns
confirming this behaviour could be visually identified
when we explored the results of GWR run with this data
set. The model employed was a linear regression model
although the methodology is readily transferable to other
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Figure 8 Using the combined statistical–exploratory method on a real data set of hedonic models of house prices in Greater
London Area. Visualisations show the spatio-temporal GWR estimates for one regression parameter, the presence of the garage. (A)
shows the map of the 1 km2 grid covering the Greater London area and (B) the SOM clustering. Colours in the map and other
visualisations are inherited from the SOM. A selection of two areas in central and eastern London is shown (C) on the map, (D) in
the SOM PCP and (E) in the temporal PCP.

forms of modelling. Indeed, the concept of geograph-
ical weighting can be applied to any form of statistical
methodology employed to analyse spatial data.

Here we looked for three types of patterns related to
the interpretation of the results of spatio-temporal GWR
modelling of hedonic pricing of houses in London.2

These three types of patterns (areas of temporal stability
in each separate regression parameter, areas of similar
temporal behaviour in one or more parameters and groups
of similar parameters) were successfully identified. The
results answer the main question of the paper affirma-
tively: the combination of GWR and visual exploration is
successful in identifying patterns in the spatio-temporal
data set of parameter estimate surfaces �̂j(x, y, t) that exist
in the original parameter surfaces �j(x, y, t).

Since the experiment was performed on a simulated
data set, these interpretations do not have any real
meaning. When working with real data however, the
patterns of local parameter estimates describe geograph-
ical processes that generate the data. Successful identi-
fication of these patterns in the GWR results through
visual exploration should therefore facilitate interpreta-
tion of the spatio-temporal trends and the influence of
background geographical processes on the phenomenon
reflected in the data.

One of the issues of the combined statistical–exploratory
methodology is to find a combination of visualisations
and computational data mining methods that is most
appropriate for the interpretation of spatio-temporal
GWR or other geostatistical methods. Our experiment
recycled an existing visual exploration methodology,4

but further work is required to determine if a different
visualisation framework would be more suited to facili-
tate the interpretation of the results of spatio-temporal
GWR. This is related not only to the chosen geostatistical
methodology but also to the required exploration tasks,
which in turn depend on the spatio-temporal geograph-
ical phenomenon that the combined methodology is
intended to investigate and explain. It is therefore neces-
sary to consult a typology of tasks for spatio-temporal
exploration (such as for example Andrienko et al.25 or
Andrienko and Andrienko)26 to select and/or develop the
most appropriate visualisation methodology.

The study reported here uses simulated data that has
the advantage that we can examine the accuracy of the
patterns of the parameter estimates uncovered through
the combination of GWR and Geovisual Analytics because
we know the real values. Such validation would be
impossible in the real world where we can only guess
at the real processes. While simulated data are therefore
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essential to this experiment, a question mark on their use
exists in that how well will the methodology work in the
real world where the data and processes are ‘noisy’? To
examine this issue briefly, we return to the motivation
for our experiment which was a spatio-temporal analysis
of house prices in London. GWR was recently used to
investigate spatial variations in house price determinants
across London separately for the years between 1980 and
1998.2 We constructed a spatio-temporal data set from
these GWR analyses in the same way as the simulated
spatio-temporal data set for the experiment presented
in this paper and performed a short preliminary visual
exploration.27 The spatial base for the analysis of London
housing price market was a 1 km grid, covering the
area of Greater London. As with the simulated data set
presented in this paper, we interpolated the results of 19
separate GWR analyses into this grid – one analysis for
each of the years 1980–1998 – and merged the results
into one large spatio-temporal data set. Each GWR was
run on a sample of property transactions, where the
house price was regressed on the following variables:2

floor area, time of construction of the property, property
type, presence of garage, central heating, two or more
bathrooms, and two area-related variables: percentage
of professionals and percentage of unemployment in
the census area where each property was located. Based
on the outcome of the experiment presented in this
paper, we now know how to look for visual evidence for
phenomena that have influenced the housing market in
London.

As an illustration, Figure 8 shows an attempt to iden-
tify patterns in the time series of GWR estimates for one
particular regression parameter – the presence of a garage.
This corresponds to approach I from the experiment on
simulated data, presented above. We first produced a
SOM clustering (Figure 8B), which shows several clusters
(light areas) separated with dark areas. There are two
clusters in the SOM that are very different from each
other: the blue group in the lower left corner and the red
group in the upper right corner. The spatial positions of
these two clusters can be investigated in the map (Figure
8A) where we can see that the elements forming these
clusters are also spatially adjacent. This pattern is even
more noticeable in Figure 8C, which shows the map
with a selection of only these two clusters. The observed
pattern corresponds to the type 2a from our simulated
experiment, that is, each of these two clusters is an
area where the parameter estimate under investigation
behaves similarly through time. Figures 8D and 8E show
the same selection in the SOM PCP and the temporal PCP,
respectively. As with the simulated data above, these two
PCPs show that the behaviours of these two clusters are
also very different from each other, that is, there are
two completely different temporal trends at work in
these two areas. Combining this observation with the
actual locations of these two clusters in London gives
an indication of the influence of this particular param-
eter on house prices in two different socio-economic

environments – the affluent area of central London and
a more deprived area in eastern London.

This brief example shows how the combined statistical–
exploratory methodology tested here can be used to
identify relatively homogeneous housing sub-markets in
London where processes are generally similar and change
in a similar manner over time. We plan to perform a full
analysis of the spatio-temporal GWR hedonic model for
London housing market according to the exploration
framework presented in this paper. The idea is to look
for evidence for specific known events in the housing
market such as for example the collapse of the market
in 1990. We also expect to be able to identify areas with
specific social processes such as gentrification or studen-
tification. However, it is only through a fairly rigorous
test of the methodology in a controlled experiment, as
demonstrated here, that we can have confidence in the
interpretation of our results when we apply the method-
ology to real-world data. Hence, the paper represents an
important step in future geovisual analytical interpreta-
tions of GWR results.
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