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Abstract Outlier detection is often a key task in a statistical analysis and helps guard
against poor decision-making based on results that have been influenced by anoma-
lous observations. For multivariate data sets, large Mahalanobis distances in raw data
space or large Mahalanobis distances in principal components analysis, transformed
data space, are routinely used to detect outliers. Detection in principal components
analysis space can also utilise goodness of fit distances. For spatial applications, how-
ever, these global forms can only detect outliers in a non-spatial manner. This can re-
sult in false positive detections, such as when an observation’s spatial neighbours are
similar, or false negative detections such as when its spatial neighbours are dissim-
ilar. To avoid mis-classifications, we demonstrate that a local adaptation of various
global methods can be used to detect multivariate spatial outliers. In particular, we ac-
count for local spatial effects via the use of geographically weighted data with either
Mahalanobis distances or principal components analysis. Detection performance is
assessed using simulated data as well as freshwater chemistry data collected over all
of Great Britain. Results clearly show value in both geographically weighted methods
to outlier detection.
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1 Introduction

Outlier identification is often a key task in a statistical analysis and helps guard
against poor decision-making based on results that have been adversely or benefi-
cially influenced by anomalous observations. Anomalous or exceptional data values
may represent: (a) data recording or measurement errors or (b) true data values that
are atypical. In the former case, outlier detection serves as a useful data cleaning or
screening exercise, whilst in the latter case, outlier detection can uncover interesting
or unusual properties in the data that may have gone un-noticed. Further, when nu-
merous (true data) outliers are detected, this may provide evidence of more than one
under-lying population. Populations may operate locally or on different observational
scales.

In geographical settings, outliers can have any combination of non-spatial, rela-
tionship, spatial, or temporal characteristics, as depicted in Fig. 1. Non-spatial (uni-
variate) outliers simply reflect the occurrence of an observation lying in one of the
tails of its sample distribution. A simple boxplot analysis can be used to detect these
outliers (e.g. Hubert and Vandervieren 2008). In the bivariate case, a relationship
outlier occurs when a data pair at a given observation point is unusual in relation to
the behaviour of all other data pairs and bagplots can be used as a method of de-
tection (Rousseeuw et al. 1999). Extension to the multivariate case is analogous and
relates to when a vector of data at a given observation point is unusual with respect to
all other observation data vectors. Here, Mahalanobis distances (MDs) to the centre
of the multivariate data set can be calculated, where large MDs are associated with
outliers (e.g. Filzmoser et al. 2005). Spatial (univariate) outliers arise when an ob-
servation is unusual with respect to its close spatial neighbours. Here, the intuitively
anticipated positive local spatial autocorrelation is absent and a local spatial autocor-
relation measure such as local Moran’s I (Anselin 1995) can be used as a method of
detection. Temporal (univariate) outliers are analogous to spatial outliers, but in one-
not two-dimensions. Similarly, it follows that a temporal dependence measure can be
used to detect these outliers (e.g. Ljung 1993). More recently, Sun and Genton (2011)
used adjusted functional boxplots to detect outliers in space-time.

For each outlier-type, there are competing methods of detection. For multivariate
outliers, various methods can be used, often depending on the dimensionality of the
data (e.g. Rousseeuw et al. 2006; Daszykowski et al. 2007; Filzmoser and Todorov
2013). Similarly, for (univariate-only) spatial outliers, various methods are available
(Krige and Magri 1982; Liu et al. 2001; Glatzer and Müller 2004; Kou et al. 2006;
Chen et al. 2008). However, methods that combine both characteristics, accounting
for the multivariate and spatial nature of the data are rare. The only known body of
research in this area can be found in Lu et al. (2004); Chen et al. (2008), where robust
local MDs are used to detect multivariate spatial outliers.

We similarly use robust local MDs for this purpose, but our study additionally in-
vestigates the use of robust local principal components analyses (PCA) as a method of
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Fig. 1 Four types of outliers in geographical settings

detection. For our local methods, the data is geographically weighted (GW), as found
in the GW methods of Fotheringham et al. (2002); resulting in novel robust GWMD
and robust GWPCA detection methods. Observe that we specify robust methods. De-
tecting outliers using a basic (non-robust) method is not recommended as the outliers
themselves can compromise a basic method’s fit prior to its use as a method of de-
tection; and as a result, the outliers are not detected. To avoid these effects, a robust
method attempts to fit a model to the majority of the data; data that is least likely to
include outliers, and in doing so, outliers are detected as those observations that de-
viate strongly from this robust fit. Thus, in the context of our study, a robust method
is designed to work reliably with data contaminated by outliers, which in turn should
ensure that key statistical assumptions (e.g. normality) are not violated (Rousseeuw
et al. 2006; Filzmoser and Todorov 2013).

We evaluate our detection methods using: (i) simulated data and (ii) freshwater
chemistry data for Great Britain (CLAG CLAG Freshwaters 1995). The design of
the data simulation study is also considered an advance, where a geostatistical co-
simulation algorithm is used to generate spatially co-dependent data prior to a con-
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tamination with outliers. The use of simulated data allows us to compare the detection
performance of our robust GW methods with two benchmark methods: (A) a non-
spatial MD method and (B) co-kriging (CoK) cross-validation that is spatial by de-
sign. Our study is structured as follows: (1) methodology, for details of our detection
methods; (2) the design and results from the data simulation study; (3) results from
the empirical study; and (4) conclusions. All GWMD and GWPCA functions were
implemented in R (http://www.r-project.org) and will be made available in the GW-
model R package in due course.

2 Methodology

For spatial applications, the use of a standard (global) MD- or PCA-based method to
detect multivariate outliers can result in a false positive, when an observation’s spatial
neighbours are similar in value (i.e. the observation is not locally-outlying), or a false
negative when its spatial neighbours are dissimilar in value (i.e. the observation is
locally-outlying). To address these particular forms of misclassification, we describe
local adaptations of global methods that can be used to detect multivariate spatial
outliers. We do not envisage that a local method should replace its global counterpart,
but instead, they should complement each other. The global method provides a broad,
general sweep for outliers, whereas the local method provides a deep, more focused
identification.

2.1 Robust Methods and Outlier Detection

Outliers are commonly identified by large residuals or deviations from some robust
method’s fit. Outliers cannot be so easily identified using a basic (non-robust) method,
as the fit is so poor that the outliers are masked. Furthermore, on applying a basic
method to data with outliers, data may be assigned as outlying when they are not, an
effect known as swamping. Robust methods are possible for estimating location and
scale/scatter in both univariate and multivariate cases (e.g. Daszykowski et al. 2007).
For the multivariate case, robust estimates for the mean vector and the covariance
matrix can be found concurrently, using for example, the minimum covariance de-
terminant (MCD) estimator or the minimum volume ellipsoid estimator (Rousseeuw
1985; Filzmoser and Todorov 2013). For this study, we need to locally-specify such
a robust estimator for our GWMD and GWPCA detection methods.

2.2 Geographically Weighted Methods

In this section, we present a brief overview of GW methods with respect to their main
use in the exploration of spatial heterogeneity. These non-stationary methods suit sit-
uations when the data is poorly described by some universal or global model fit and
where for some regions, a localised fit provides a better description. The approach
uses a moving window weighting technique, where local models are calibrated at
(sampled or un-sampled) target locations (i.e. the window’s centre). For an individ-
ual model at some target location, we weight all neighbouring observations accord-
ing to the properties of some distance-decay kernel function and then locally fit the

http://www.r-project.org
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model to this weighted data. Thus, the geographical weighting solely applies to the
sample data in all GW methods, where each local model is fitted to its own GW
data (sub)set. The size of the window over which this localised model might apply is
controlled by the kernel function’s bandwidth. Small bandwidths lead to more rapid
spatial variation in the results, while large bandwidths yield results increasingly close
to the universal model solution. When there exists some objective function (i.e. the
model can be used as a spatial predictor), an optimal bandwidth can be found using
cross-validation. Commonly, the local outputs or parameters of a given GW method
are mapped to provide a useful exploratory tool, that can precede a more traditional
(global) or sophisticated (local) statistical analysis.

Almost any statistical method can be extended to a GW form. The most pop-
ular is GW regression (Brunsdon et al. 1996; Fotheringham et al. 2002; Wheeler
2007), where local regressions are found at target locations. The resultant regres-
sion coefficients are then mapped to assess for spatial change in the relationships
between the dependent and independent variables. Other GW methods include: GW
summary statistics (Brunsdon et al. 2002; Fotheringham et al. 2002); GW distri-
bution analysis (Dykes and Brunsdon 2007); GWPCA (Fotheringham et al. 2002;
Harris et al. 2011a); GW generalised linear models (Fotheringham et al. 2002;
Nakaya et al. 2005); GW discriminant analysis (Brunsdon et al. 2007; Foley and
Demšar 2013); and various GW-Geostatistical hybrids (Harris et al. 2010a; 2010b;
2011b; Harris and Juggins 2011; Machuca-Mory and Deutsch 2012). Robust versions
can be found in Brunsdon et al. (2002) for GW summary statistics; in Fotheringham
et al. (2002), Harris et al. (2010c), Zhang and Mei (2011) for GW regression; and in
Harris et al. (2011c) for GWPCA. The latter of which, we expand upon in this study.

2.3 Multivariate Outlier Detection (Global Detection)

2.3.1 Detection with Robust Mahalanobis Distances

A key concept in multivariate data analysis is to measure the similarity of objects
(or observations) via some distance measure, where small distances between objects
indicate that they are strongly similar (and vice-versa). Here, Mahalanobis distances
(MDs) can be found that account for the size and shape of multivariate data via its
covariance matrix. In the context of multivariate outlier detection, MDs can be com-
puted from each observation vector to the data centre using

MDi = [
(xi − μμμ)T�−1(xi − μμμ)

]0.5 for i = 1, . . . , n, (1)

where xi is the ith observation vector of dimension p;μμμ is the data centre (or mul-
tivariate location), usually estimated by the arithmetic mean vector; and � is the
covariance matrix. Observation vectors that are the furthest away from the data cen-
tre receive the largest MDs and are therefore most likely to be classified as outlying.
Observe that a multivariate outlier is an anomalous observation vector and not one
particular element in this vector. As basic estimates for μμμ and � are sensitive to out-
liers, for our study they need to be estimated robustly. Here, we choose the MCD
estimator, whose objective is to find a subset of h observations whose basic sample
covariance matrix has the lowest determinant. Crucial to the robustness and efficiency
of this estimator is h, and we specify a value of h = 0.75n, following the recommen-
dation of Varmuza and Filzmoser (2009, p. 43).
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2.3.2 Detection with Robust PCA

For low-dimensional data, the MD approach usually suffices as a method of mul-
tivariate outlier detection, whereas for high-dimensional data (e.g. where p > n),
problems arise in that robust estimators such as MCD cannot be used (since it needs
p < n). One way to address this problem is to first reduce the dimensionality of
the data with a PCA and then work within the PCA space to detect outliers instead.
Working with reduced dimensions also saves on computational time (Filzmoser et al.
2008). PCA transforms a set of p correlated variables in to a new set of p uncorre-
lated variables called principal components, where dimension reduction is viable if
the first few components account for most of the variation in the original data. The
components are linear combinations of the original variables that follow directions
of maximum variance subject to the condition of orthogonality. This transform can
allow for a better understanding of differing sources of variation and key trends in the
data. As outliers are a key source of variation, intuitively they should be more readily
observable within the transformed PCA space than in the original data space.

For PCA, a standard result in linear algebra states that

LVLT = R, (2)

where V is a diagonal matrix of eigenvalues, L is a matrix of eigenvectors and the ma-
trix R is symmetric and positive definite. If R is the covariance matrix � for the n×p

data matrix X, then the eigenvalues in V represent the variances of the corresponding
p principal components. The eigenvectors in L are column vectors representing the
loadings of each variable on the corresponding component. It is usual to report the
results for the components in decreasing order of eigenvalue (i.e. variance). If we di-
vide each eigenvalue by tr(V), then we can report the proportion of the total variance
(PTV) in the original data accounted for by each component. To use PCA as a means
to detect multivariate outliers, requires � to be estimated robustly, where we again
use the MCD estimator (with h = 0.75n).

Different types of outliers can be detected with PCA, resulting from the calculation
of a score distance (SD) and an orthogonal distance (OD) at each sample location i

(Hubert et al. 2005). The SD for object i is defined as

SDi =
√√
√√

q∑

k=1

t2
ik

vk

, (3)

where k = 1,2, . . . , q is the number of retained components; tik are the elements
of the component score matrix T, with T = XLq ; and vk is the eigenvalue of the
kth component. Observe that SDs are actually MDs found within the PCA space
(Varmuza and Filzmoser 2009, pp. 80–81). The OD for object i is defined as

ODi = ∥∥xi − μμμ − Lq · tT
i

∥∥, (4)

where the matrix Lq is a matrix of the first q eigenvectors; and ti is the score vector
of object i for q components. Observe that ODs reflect residuals from the PCA model
and thus measure a lack of fit. Using SDs and ODs, four types of observation (vectors)
can be classified, as follows:
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(a) Observations that have a small SD and a small OD are not outlying and are known
as regular observations.

(b) Observations that have a large SD but a small OD are outlying and are known
as good leverage points. These observations are outlying when projected on the
PCA space, but their residuals from the PCA model are small (i.e. they have
good leverage or a strong influence on their own prediction). This outlier-type
can actually stabilise a PCA fit.

(c) Observations that have a small SD but a large OD are outlying and are known as
orthogonal outliers. These observations are not outlying if projected on the PCA
space, but their residuals from the PCA model are large. This outlier-type can be
detrimental to a basic PCA fit.

(d) Observations that have a large SD and large OD are outlying and are known as
bad leverage points. This outlier-type can strongly influence a basic PCA fit, as
the eigenvectors will tend to tilt toward them.

It is also possible to detect outliers from a PCA, where all p components are re-
tained. Here, the component scores (CS) data (i.e. tik) are investigated for the first
few, and the last few, components. An outlying score value for a given component at
a sample location i is taken to indicate an outlying observation at that location. The
rationale for this approach is that: (i) outlying observations tend to inflate variances
and covariances in the first few components and (ii) for the last few components, out-
lying observations tend to have unusual relationships with respect to the covariance
structure of data; each of which give rise to unusual CS values.

2.3.3 Determination of Cut-offs

The final step in determining whether observations are outlying or not is to specify
cut-offs for the MD, SD, OD, and CS distributions. Here, an observation is deemed
outlying if it has an MD, SD, OD, or CS value that is above its respective cut-off (or
below, if a negative cut-off is also defined). After some experimentation, we present
our study results using two different cut-off procedures for each distance measure.
These can be categorised in to groups A and B, as follows:

(A) Assuming the sample data follow a multivariate normal distribution, then the
squared MD data and the squared SD data, each approximately follow a chi-
squared distribution with p and q degrees of freedom, respectively. Thus, for the
MD and SD data, their respective cut-offs are taken as the 97.5 % quantile of

the
√

χ2
p,0.975 and

√
χ2

q,0.975 distributions. For the OD data, OD2/3 is assumed

approximately normal, yielding (median(OD2/3) + MAD(OD2/3) · z0.975)
3/2 as

a cut-off, where z0.975 is the 97.5 % quantile of the standard normal distribution
and MAD is the median absolute deviation. These cut-offs are those that are
routinely defined (e.g. Varmuza and Filzmoser 2009).

(B) For the MD, SD, and OD data, their respective robust z-score data are found
and the cut-offs are set at 2.5. A similar cut-off procedure is also adopted for
the CS data, but where the cut-offs are set at ±2.5 to reflect outliers that cor-
respond to large positive and large negative CS values. Here, the MD, SD, OD,
and CS data are robustly standardised by subtracting their median and dividing
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by their Qn scale estimator (Rousseeuw and Croux 1993). This cut-off procedure
is suggested in Daszykowski et al. (2007), but for SD and OD data, only.

Observe that both cut-off procedures employ the use of robust (univariate) esti-
mates of location and scale. Here, the mean and standard deviation have been re-
placed with the median and the MAD or Qn estimator, respectively. These robust
estimators will down-weight the influence of outlying MD, SD, OD, and CS data.

2.4 Multivariate Spatial Outlier Detection (Local Detection)

We now describe our multivariate spatial outlier detection techniques. These tech-
niques follow the GW methodology introduced in Sect. 2.2, resulting in robust
GWMD and robust GWPCA detection methods. Unlike the calculation of MD data or
a PCA, the calculation of GWMD data or a GWPCA involves regarding any observa-
tion vector xi as having a certain dependence on its spatial location i with coordinates
(u, v). Here, μμμ(u, v) is the local mean vector and the local covariance matrix is

�(u, v) = XTW(u, v)X, (5)

where W(u, v) is a diagonal matrix of geographic weights. For outlier detection, both
μμμ(u, v) and �(u, v) need to be estimated robustly; again using the MCD estimator,
but now locally. We generate the weights W(u, v) using box-car or bi-square kernel
functions, which are respectively

wij = 1 if dij ≤ r, wij = 0 otherwise, (6)

wij = (
1 − (dij /r)2)2 if dij ≤ r, wij = 0 otherwise, (7)

where the bandwidth is the geographic distance r ; and dij is the geographic distance
between spatial locations of the ith and j th rows in the data matrix. For these par-
ticular kernel functions, the bandwidth is essentially the radius of a circular search
window. It can be specified as: (1) a fixed distance (where the number of local obser-
vations vary within the search window) or (2) an adaptive (varying) distance (where
the number of local observations are fixed within the search window). For this study,
we always specify the bandwidth as an adaptive distance, where the fixed number of
local observations is reported as a percentage of the full data set.

To find the local principal components for GWPCA, the decomposition of the local
covariance matrix provides the local eigenvalues and local eigenvectors. The product
of the ith row of the data matrix with the local eigenvectors for the ith location
provides the ith row of local component scores. The local principal components at a
location (ui, vi) can be written as

L(ui, vi)V(ui, vi)L(ui, vi)
T = �(ui, vi), (8)

where L(ui, vi) is a matrix of local eigenvectors, V(ui, vi) is a diagonal matrix of
local eigenvalues, and �(ui, vi) is the local covariance matrix. Thus, for a GWPCA
with p variables, there are p components, p eigenvalues, p sets of component load-
ings, and p sets of component scores at each data location.

Accordingly, the local MD, SD, OD, and CS data can be found, i.e. the data vectors
MDj (ui, vi), SDj (ui, vi), ODj (ui, vi), and CSjk(ui, vi) at locations i = 1, . . . , n;
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with elements j = 1, . . . ,N , where N is the fixed number of observations used in
each local calibration (i.e. the adaptive bandwidth size); and where the components
k = 1,2 and p − 1,p, say. This localised data is found in a fashion analogous to that
defined in the global case in Sect. 2.3, where the full un-weighted data set is replaced
by n GW data subsets. This implies that n sets of local MD/SD/OD/CS values are
found, where each set is of size N . A multivariate spatial outlier is determined ac-
cording to the size (relative to its cut-off) of those local MD/SD/OD/CS values that
directly correspond to the local MD/PCA calibration (sample) point; i.e. when j = i

in each local MD/SD/OD/CS data set. Cut-offs for the local MD/SD/OD/CS data are
the same as that described in Sect. 2.3.3, where aside from the externally-defined cut-
offs of group A for MD/SD data, all other cut-offs depend on the distribution of each
local MD/SD/OD/CS data set.

2.5 Key Specifications

Firstly, it is worth emphasising that the (global or local) SD and OD data and their
associated cut-offs are dependent on the number of q components retained in the
PCA or GWPCA model. As there is no objective choice for q , it is recommended to
try with different values of q . Observe that we globally-define q , but for GWPCA, it
could have been locally-defined where it would vary across space.

Secondly, for GWMD and GWPCA detection methods, the local MD, SD, OD,
and CS data and their associated cut-offs depend on the bandwidth and to a lesser
degree, the kernel function. Again, it is recommended to try with different band-
widths and kernels, which we demonstrate in subsequent sections. Outlier detection
can be considered more locally-focused when the bi-square kernel is used, as even
with a 100 % bandwidth (i.e. an adaptive bandwidth whose radii extend to all of
the sample data), it still provides local detection (as weights decay with distance).
If a detection method is calibrated using a box-car kernel with a 100 % bandwidth,
then the corresponding global results are found (as weights are all equal to one). For
box-car kernels, multivariate spatial outliers can only be detected using the smaller
bandwidths.

Thirdly, the determination of cut-offs that separate background data from anoma-
lies is not straightforward (Daszykowski et al. 2007; Filzmoser and Todorov 2013).
We present our results using the cut-off procedures of Sect. 2.3.3. However, for the
cut-offs of group B, we also tried basic (non-robust) z-score data. In our data sim-
ulation study of Sect. 3, we found this use of basic z-scores to sometimes improve
detection performance. Thus, in a few instances, these results are reported instead of
those using robust z-scores. In practise, it is recommended that both z-score options
should be assessed.

3 Data Simulation Study

3.1 Simulation Algorithm

In order to objectively evaluate the GWMD and GWPCA detection methods, they
are applied within a data simulation study, described by the following 21 steps and
observations:
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Table 1 Parameter values for the Matérn model, together with the Simple CoK means, for each of the five
different variables of the simulation study

Variable
number

Nugget
variance

Structural
variance

Correlation
range (km)

Smoothing
parameter

Simple
CoK mean

1 0 70 27.5 2.5 25

2 0 90 27.5 2.5 50

3 0 95 27.5 2.5 45

4 0 75 27.5 2.5 30

5 0 85 27.5 2.5 40

3.1.1 Data Generation: Steps 1 to 8

1. Simulate values for five variables using an un-conditional sequential Gaussian
co-simulation (e.g. Chilès and Delfiner 1999; Wackernagel 2003) using functions
provided in the R gstat package (Pebesma 2004); where un-conditional means that the
realisations are not conditioned to data. This procedure (simultaneously) generates
variables that are spatially dependent and spatially co-dependent with each other.
Specify a linear model of co-regionalisation (LMC) with Matérn models; themselves
specified with high levels of smoothness and spatial dependence/co-dependence. The
gstat functions ensure that all co-regionalisation matrices are positive semi-definite,
which ensures that the matrix covariance function is positive definite. Values for the
five variables are simulated at the 533 data locations used in the study of Sect. 4.
Parameter values for the Matérn model, together with the Simple CoK means (as the
co-simulation is based on this kriging form), for each of the five different variables is
given in Table 1 (the cross-covariance parameter values are not given).

2. Since values are simulated for only five variables, this is low-dimensional data.
Thus, following the discussions of Sect. 2.3.2, our GWPCA-based detection method
that generates SD and OD data (termed GWPCA-DIST), need only show promise in
detecting multivariate spatial outliers (termed local outliers) in this instance.

3. As data from any realisation are likely to be strongly spatially dependent/co-
dependent from the LMC specification in step 1, it is reasonable to assume that the
data are entirely free of local outliers. That is by design, all neighbouring data vectors
at all 533 locations should be strongly similar in value to the data vectors at those 533
locations.

4. Multivariate (non-spatial) outliers (termed global outliers) are still possible how-
ever, so detect and mark these outliers using a non-spatial benchmark method. In
this case, use a GWMD calibration with a box-car kernel, a 100 % bandwidth and a
cut-off from group A; as this specification directly corresponds to the non-spatial MD
approach of Filzmoser et al. (2005). An example realisation of this (un-contaminated)
data with the global outliers marked is given in Fig. 2a. Observe that the outliers are
highly clustered in two areas; one in an area corresponding to north–west Scotland
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Fig. 2 (a) Global PC-1 scores for un-contaminated data with (global) multivariate outliers marked;
(b) global PC-1 scores for data that are contaminated with (local) multivariate spatial outliers (marked).
Both maps are from the same realisation

and the other in an area corresponding to south–west England. This clustering of out-
liers is common to many realisations, highlighting a particular type of misclassifica-
tion when a non-spatial detection method is naively applied (i.e. a false positive detec-
tion when an observation’s spatial neighbours are similar in value, see Sect. 3.3). The
number of global outliers detected for the multiple realisations of Sect. 3.2, ranged
from 9 to 42 (2 % to 8 % of the data).

5. To provide a means to contaminate a realisation with local outliers, first calculate
the (global) PCA scores for the first component (PC-1) of the data. Assume that the
single-variable, PC-1 scores data accounts for the majority of the structure in the
five-variable, realisation (see Fig. 2a).

6. Contaminate (approximately) 5 % of the realisation by swapping data at locations
with high PC-1 scores with data at locations with low PC-1 scores. Thus, high and
low PC-1 scores are used as an indicator for high and low levels of variation. This
procedure should place individual data vectors in areas where their neighbouring data
vectors are strongly dissimilar in value (i.e. locally-outlying).

7. For step 6, do not swap data at the global outlier locations identified in step 4.
This ensures there are no outliers that are both global and local. This is unlikely in
practise, but important for objectively evaluating the results (see steps 18 and 21).
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8. For step 6, try to ensure that data clusters are not swapped with each other, as
this will not produce the full complement of local outliers. For example, a worst-
case scenario would involve swapping one single cluster of data with another single
cluster of data elsewhere, producing data that are still locally-alike. To minimise the
swapping of data clusters, the highest (97.5–100 %) and lowest (0–2.5 %) intervals
of the PC-1 scores data are not used to determine the swapping locations, but instead
a slightly lower (92.5–95 %) and higher (5–7.5 %) interval, respectively. An example
of a contaminated realisation, where the local outliers are marked is given in Fig. 2b.
Observe that there is still an element of clustering in the swapping procedure, but
this is considered tolerable. Specifying lower and higher intervals for the PC-1 scores
data would be counter-productive. On using this procedure, 24 or 26 local outliers are
introduced.

3.1.2 Application of the GWMD/GWPCA Detection Methods: Steps 9 to 11

9. Apply the GWMD/GWPCA detection methods to a contaminated realisation as-
suming that the locations of all global and all local outliers are known. Observe,
however, that step 8 does not ensure knowledge of the status of every data vector.

10. When applying the GWMD/GWPCA detection methods, specify them with
both kernel forms and with eleven bandwidths set at 6.9 %, 10 %, 20 %, 30 %, . . . ,

100 % (initially, the lowest bandwidth was set at 5 %, but at a few locations a sin-
gularity occurred with the MCD estimator). This requires 2 × 2 × 11 = 44 core cal-
ibrations in total, for just one realisation (2 detection methods; 2 kernels; 11 band-
widths). Further evaluations stem from the 44 calibrations, according to different
cut-off procedures and the dual use of GWPCA for the GWPCA-DIST method and
the GWPCA-based method that investigates the CS data (termed GWPCA-SCOR).

11. Specify GWPCA-DIST with q = 2 retained components. In general, experi-
mentation with a smaller value of q improved detection performance with the OD
data combined with poorer detection with the SD data. For larger values of q , the
reverse was generally true. Specifying q = 2 is viewed a pragmatic compromise. For
GWPCA-SCOR, only investigate this data from the first and last components.

3.1.3 Application of a CoK Cross-Validation Detection Method: Steps 12 to 17

12. As data are generated using un-conditional Gaussian co-simulation, it is a sim-
ple task to use its under-lying kriging model (i.e. Simple CoK) as a basis to detect out-
liers. In and of itself, CoK is not a method to detect outliers, but CoK cross-validation
can be used. Furthermore, we calibrate CoK cross-validation with exactly the same
model specifications as that used to generate the data. This enables a pseudo-robust
CoK cross-validation as its matrix covariance function is not compromised by (local)
outliers (i.e. it corresponds to a pre-contaminated realisation). Observe that for each
realisation, spatial dependence/co-dependence is not the same as the model specified
for the simulation. Only if one generated a large number of realisations and averaged
the sample matrix covariance functions then that average would tend to the models
specified.
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13. Applying CoK cross-validation to data from a contaminated realisation, results
in five leave-one-out (simultaneous) predictions, one for each variable of the data
vector at a given location. Here, an outlier is identified as that which corresponds to a
large residual (i.e. the actual value minus its prediction) for at least: (a) one, (b) two,
(c) three, (d) four, or (e) all five variables (i.e. five variants of the detection method
are investigated). For cut-offs, use the z-score procedure of group B from Sect. 2.3.3.

14. For this method, it is necessary decide on: (i) the search neighbourhood (which
is commonly specified with a maximum radius, together with upper and lower bounds
on the number of data locations to be used within it, e.g. Deutsch and Journel 1998)
and (ii) whether raw or normalised residuals (i.e. raw residuals divided by their CoK
standard errors) should be used. These decisions are inter-dependent, where the fol-
lowing considerations should be noted. Firstly, an outlying data vector is one that
results in the matrix covariance function being a poor fit to the data. Thus, it is
the parameters of the covariance functions that are key and not those of the search
neighbourhood. In this respect, changing the bandwidth distance in a GW method
is analogous to changing the range parameter of the covariance function (and not
the radius of the search neighbourhood). Secondly, if using raw residuals, some
may appear unduly large because there are few data locations within their search
neighbourhoods. Normalised residuals can compensate for this, as (both kriging
and) CoK standard errors reflect the number of data locations within the neighbour-
hood and their geometric pattern. A drawback to the use of normalised residuals is
that the standard errors are poor measures of local uncertainty (e.g. Journel 1986;
Goovaerts 2001), as they depend on a globally-defined matrix covariance function.
Thirdly, as the CoK weights also depend on the matrix covariance function, their
size will similarly reflect on the number of data locations within the neighbourhood
and their geometric pattern. Except when pure nugget effect covariance functions
are used, data locations that are nearest (and inside the search neighbourhood) to the
prediction location receive the largest CoK weights (and thus provide the greatest
influence on the prediction and in turn, the residual).

15. Considering the points of step 14, the detection performance of this method will
depend on: (A) the matrix covariance function; (B) the use of raw or normalised resid-
uals; and (C) the (three) neighbourhood specifications. As the comparison of GW
methods is this article’s focus, it is felt that CoK cross-validation should be specified
fairly pragmatically with respect to the search neighbourhood and the residual-type.
Thus a search strategy of the nearest N = 27 data locations within a circular neigh-
bourhood is used (i.e. a maximum radius set to the size of sampled area with lower
and upper data bounds both set to 27 or 5 % of the data), together with raw residuals.
This neighbourhood is the same as that specified in the co-simulation. Future work
could investigate these decisions more deeply.

16. It is, however, prudent to assess the choice of N . Here, neighbourhoods with
N > 27, did little to alter prediction (and outlier detection) accuracy, but consid-
erably increased computational burden. For neighbourhoods with N < 27, predic-
tion and detection performance simply declined, as local information was reduced.
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The use of fixed N neighbourhoods entails that CoK cross-validation with raw resid-
uals does not suffer from varying local information within the neighbourhood; and
here a preliminary investigation found this specification to consistently out-perform
a specification using normalised residuals, across multiple realisations.

17. CoK cross-validation provides benchmark results from a multivariate model
that is spatial by design, where intuitively, it is expected to have some success
in detecting local outliers. It should provide a stringent comparative test for the
GWMD/GWPCA detection methods, as its construction directly relates to the simu-
lation study itself. Observe that the under-lying assumptions and objectives for CoK
are fundamentally different from those for GWMD/GWPCA. CoK caters for sta-
tionary data relationships/structures, where spatial dependencies/co-dependencies in
the data are accounted for. GWMD/GWPCA caters for non-stationary data relation-
ships/structures, where spatial dependencies/co-dependencies are not accounted for.
The objective for CoK is multivariate spatial prediction, whilst for GWMD/GWPCA,
the objective is the spatial exploration of multivariate data.

3.1.4 Measuring and Displaying Detection Performance: Steps 18 to 21

18. Measure each method’s detection performance by a kappa statistic that rewards
for correctly identifying all local outliers and all regular observations (that are not
outlying), but penalises for identifying a global outlier as outlying. The maximum
value of kappa is one, which reflects a method with an ideal local outlier detection
rate. The minimum kappa value is zero. In order to compare results from one reali-
sation to another, kappa is found in a scaled form to account for a changing number
of global outliers (step 4) and a changing number of local outliers (steps 5–8). For a
review of related kappa statistics, see Banerjee et al. (1999).

19. For GWPCA-DIST, find kappa values that measure detection performance via:
(i) a high SD value only, (ii) a high OD value only and (iii) a high SD or a high
OD value. Similarly, for GWPCA-SCOR, find kappa values that measure detection
performance via: (a) an outlying CS value for the first component, (b) an outlying
CS value for the last component and (c) an outlying CS value for the first or last
components.

20. For the GWMD/GWPCA methods, plot kappa against the range of bandwidths
specified in step 10. For example, see Figs. 3, 4, 5 and 6, where boxplots of kappa
values are plotted from multiple realisations; and see Figs. 7–8, where single kappa
values are plotted from a single realisation. For the latter plots, kappa for the chosen
CoK cross-validation variant of step 13 is presented as a dashed, dark red line.

21. Essentially, our kappa statistic is constructed so that GWMD/GWPCA methods
should result in kappa values tending to one at small bandwidths and zero at large
bandwidths. A GWMD/GWPCA method that performs well will detect most of the
local outliers, few of the global outliers, and most of the regular observations—all
at small bandwidths. At large bandwidths, a GWMD/GWPCA method should detect
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Fig. 3 Detection performance from 25 realisations: kappa boxplots versus bandwidth for GWMD, with
CoK cross-validation and zero detection (ZD) results. GWMD specifications are: (i) bi-square kernel and
group A cut-off (GWMD.BS.A); (ii) bi-square kernel and group B cut-off (GWMD.BS.B); (iii) box-car
kernel and group A cut-off (GWMD.BX.A); and (iv) box-car kernel and group B cut-off (GWMD.BX.B).
Kappa reflects local detection combined with global non-detection

Fig. 4 Detection performance from 25 realisations: kappa boxplots versus bandwidth for GWPCA-SCOR,
with CoK cross-validation and zero detection (ZD) results. GWPCA-SCOR specifications are: (i) bi-square
kernel and first component (GWPCA.SCOR.1.FI.BS); (ii) box-car kernel and first component (GW-
PCA.SCOR.1.FI.BX); (iii) bi-square kernel and last component (GWPCA.SCOR.2.LA.BS); (iv) box-car
kernel and last component (GWPCA.SCOR.2.LA.BX); (v) bi-square kernel and first/last component (GW-
PCA.SCOR.3.FI.LA.BS); and (vi) box-car kernel and first/last component (GWPCA.SCOR.3.FI.LA.BX)
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Fig. 5 Detection performance from 25 realisations: kappa boxplots versus bandwidth for GWPCA-DIST
(cut-offs group A), with CoK cross-validation and zero detection (ZD) results. GWPCA-DIST spec-
ifications are: (i) bi-square kernel and high SD (GWPCA.DIST.1.SD.BS.A); (ii) box-car kernel and
high SD (GWPCA.DIST.1.SD.BX.A); (iii) bi-square kernel and high OD (GWPCA.DIST.2.OD.BS.A);
(iv) box-car kernel and high OD (GWPCA.DIST.2.OD.BX.A); (v) bi-square kernel and high SD/OD (GW-
PCA.DIST.3.SD.OD.BS.A); and (vi) box-car kernel and high SD/OD (GWPCA.DIST.3.SD.OD.BX.A)

few of the local outliers, most of the global outliers and (again) most of the regular
observations. However, for each realisation, a benchmark value of kappa is needed,
where a promising GWMD/GWPCA calibration is one whose kappa value is larger
than this benchmark value. In this respect, a kappa value is found for a hypothetical
method that results in a zero detection rate for local outliers, a 100 % non-detection
(or zero detection) rate for global outliers and a 100 % detection rate for regular
observations. This kappa value is referred to as zero detection, and for Figs. 7–8 is
shown as dashed black line.

3.2 Detection Results from Multiple Realisations

The simulation algorithm is used to generate 25 realisations and the GWMD/GWPCA
findings are summarised with kappa boxplots, yielding kappa against bandwidth trel-
lis plots in Figs. 3–6. Kappa boxplots for zero detection (median kappa = 0.66) and
the best performing CoK cross-validation variant (the one with the highest median
kappa value) are also shown. For the CoK cross-validation variants, median kappa
values ranged from 0.66 (for large residuals from all five variables) to 0.72 (for
large residuals from at least three variables). Thus, four of the five variants provide
an improvement over zero detection. Following the discussion of Sect. 2.5, basic
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Fig. 6 Detection performance from 25 realisations: kappa boxplots versus bandwidth for GWPCA-DIST
(cut-offs group B), with CoK cross-validation and zero detection (ZD) results. GWPCA-DIST spec-
ifications are: (i) bi-square kernel and high SD (GWPCA.DIST.1.SD.BS.B); (ii) box-car kernel and
high SD (GWPCA.DIST.1.SD.BX.B); (iii) bi-square kernel and high OD (GWPCA.DIST.2.OD.BS.B);
(iv) box-car kernel and high OD (GWPCA.DIST.2.OD.BX.B); (v) bi-square kernel and high SD/OD (GW-
PCA.DIST.3.SD.OD.BS.B); and (vi) box-car kernel and high SD/OD (GWPCA.DIST.3.SD.OD.BX.B)

z-scores replaced robust z-scores in the (group B) cut-off procedure for all CoK
cross-validation variants and for GWMD with a bi-square kernel.

From Figs. 3–6, the following GWMD/GWPCA calibrations tend to provide bet-
ter local outlier detection rates than both benchmark methods (zero detection and
CoK cross-validation): (i) GWMD with a box-car kernel, using a group A or B
cut-off; and (ii) all calibrations of GWPCA-SCOR, except that specified with a
bi-square kernel and investigating CS data for the last component. The following
GWMD/GWPCA calibrations tend to provide better local outlier detection rates than
the zero detection method, but not the CoK cross-validation method: (a) GWMD
with a bi-square kernel; (b) GWPCA-DIST using the SD data, specified with a box-
car kernel; (c) GWPCA-DIST using the OD data, specified with a box-car kernel; and
(d) GWPCA-DIST using the SD/OD data (i.e. option (iii) in step 19, above), specified
with a box-car kernel (all listed methods use a group B cut-off).

The remaining GWMD/GWPCA calibrations hold no value as a method of detec-
tion, where the poorest performances are found using bi-square kernels and group A
cut-offs for: (1) GWMD, (2) GWPCA-DIST using the SD data, and (3) GWPCA-
DIST using the SD/OD data. Clearly, the distributional assumptions associated with
group A cut-offs do not appear to hold when a bi-square kernel is specified. Fur-
thermore, the simulation algorithm is not ideally suited to an evaluation of GWPCA-
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Fig. 7 Detection performance from one realisation: kappa versus bandwidth for: (a) GWMD and (b)
GWPCA-SCOR

DIST. Realisations are low-dimensional with high spatial correlation. On fitting a
PCA to this data, the first component commonly accounts for around 80 % of the vari-
ation and the first two components, around 90 %. The simulation of high-dimensional
data sets is left for future research, as this was difficult to implement, whilst ensuring
positive definiteness for the matrix covariance function. The simulation algorithms of
Desbarats and Dimitrakopoulos (2000), Boucher and Dimitrakopoulos (2012) may
warrant investigation, in this respect. Alternative ways to contaminate the data may
also need investigation.

For the GWMD/GWPCA methods that show promise (above the zero detection
line), good local outlier detection rates occur at the two smallest bandwidths of
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Fig. 8 Detection performance from one realisation: kappa versus bandwidth for GWPCA-DIST:
(a) group A cut-offs and (b) group B cut-offs

6.9 % and 10 %. For these methods, the expected increase in kappa from large to
small bandwidths is most evident in the GWMD calibrations (Fig. 3), but often only
slightly so in the GWPCA-based calibrations (Figs. 4–6). Promising GWPCA-based
calibrations tend to perform poorly at large bandwidths, where kappa values are rel-
atively high, indicating poor global outlier detection rates. This in turn suggests a
weak correspondence with the MD detection results of step 4, above. It is likely that
a GWPCA-based method would perform more favourably in this respect, if a PCA-
based detection method were used in step 4, instead. The highest median kappa value
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is 0.83 for GWPCA-SCOR using either the first CS data with a bi-square kernel or the
first/last CS data with a box-car kernel (i.e. options (a) and (c) in step 19, above), each
with a bandwidth of 6.9 % (Fig. 4). For all GWMD/GWPCA methods, the dispersion
of kappa tends to reduce at the smaller bandwidths, precisely where this outcome is
needed most. However, these dispersion levels tend to be larger than that found with
zero detection and CoK cross-validation. The performance of CoK cross-validation is
promising, although in any empirical study, such a pseudo-robust calibration would
not be possible (from step 12, above). Here, a true robust calibration would need to
account for an (initially) unknown set of outliers when: (A) fitting its covariance func-
tions (see Lark 2002) and (B) predicting, say using Winsorised data (see Hawkins and
Cressie 1984). A further refinement could replace the globally-defined matrix covari-
ance function with a local version (see Haas 1996).

3.3 Detection Results from a Single Realisation

It is next useful to focus on the results from one realisation. Here, we choose a real-
isation (from the 25) that produced the highest kappa value. Plots of kappa against
bandwidth, for this single realisation are given in Figs. 7–8. In general, the results
observed for the multiple realisations also hold true for this single realisation, where
GWMD and GWPCA-SCOR provide the best local outlier detection rates. Again,
GWMD tends to combine good local outlier detection at small bandwidths with good
global outlier detection at large bandwidths (Fig. 7a). The highest kappa value is a
perfect 1 for GWPCA-SCOR, specified with a bi-square kernel and investigating CS
data for the first component (Fig. 7b). This kappa occurs at a 10 % bandwidth.

Detection performance maps are given in Figs. 9b–d and 10. All maps need to
be viewed in conjunction with the map in Fig. 9a, where the true locations of all lo-
cal and global outliers are shown. We present the best-performing GWPCA-SCOR,
GWMD, GWPCA-DIST, and CoK cross-validation calibrations, with kappa values
of 1, 0.85, 0.60, and 0.64, respectively. For the GWPCA-SCOR calibration (Fig. 9b),
26 out of the 26 true local outliers are detected and there are no false positive de-
tections. The GWMD calibration (Fig. 9c) performs well in that 24 of the 26 local
outliers are detected (i.e. only two false negatives). There are, however, 12 false pos-
itives. Many false positives lie toward the edges of the realisation, where bandwidth
distances will tend to be at their largest and as a result, outlier detection will not be
as locally-focused as that found at other sites. The overall mis-classification rate is
low, at only 14 of the 533 sites. The GWMD calibration uses a cut-off from group
B, and here it is interesting to see how the same calibration performs using a cut-off
from group A (Fig. 9d). Now 25 local outliers are detected, but with 20 false posi-
tives (that again tend to lie toward the edges of the realisation). The GWPCA-DIST
calibration (Fig. 10a) performs poorly with only 4 local outliers detected, coupled
with 6 false positive detections, resulting in an overall mis-classification rate of 28
of the 533 sites. CoK cross-validation detects 13 local outliers, but this promise is
tempered by 19 false positives, one of which is a true global outlier in an area corre-
sponding to south England (Fig. 10b). Interestingly, the false positives tend to cluster
around the locations of true local outliers. This is a direct consequence of how lo-
cal outliers can affect nearby CoK cross-validation predictions (which are weighted
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Fig. 9 (a) Map of the true local and global outliers (for the two sites highlighted, see Fig. 11). Detec-
tion performance map for: (b) GWPCA-SCOR; (c) GWMD (group B cut-off); and (d) GWMD (group A
cut-off). All results from a single realisation

means of neighbouring data), giving rise to large residuals at locations that are not
themselves outlying. It appears that CoK cross-validation is able to locate the region
of a local outlier, but not necessarily, its exact location. In general, the observations
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Fig. 10 Detection performance maps for: (a) GWPCA-DIST; and (b) CoK cross-validation. All results
from a single realisation

made from the performance maps for our chosen single realisation were found to be
representative of all 25 realisations.

Via parallel coordinate plots (PCPlots), it is possible to visualise false positive
and false negative detections with respect to the sole use of a non-spatial method, at
true global and local outlier locations, respectively. Examples are given in Fig. 11.
Here, at site 483 (marked in Fig. 9a), a global outlier exists. Its multivariate structure,
depicted by a red line in a standard PCPlot (Fig. 11a), appears dissimilar to that
found at most other sites. A different picture emerges however, when we construct
a geographically weighted PCPlot (GWPCPlot) of the same data (Fig. 11b). Here,
the multivariate structures at each site (except site 483) are shown as black lines
with varying levels of transparency, reflecting a bi-square distance-decay weighting
from site 483 (i.e. lines for the furthest away sites are essentially invisible). From the
GWPCPlot, we can observe that the multivariate structure at site 483 (still depicted
by a red line) is actually similar to that found at neighbouring sites. Thus, this global
outlier is not a local outlier and is an example of a false positive detection in this
respect. Conversely at site 146 (marked in Fig. 9a), we have a regular observation.
Here, its multivariate structure can be viewed as similar to that found at a significant
proportion of other sites, as depicted in the PCPlot of Fig. 11c (although it may appear
outlying, it was not detected as so). However, when we construct a GWPCPlot of the
same data (Fig. 11d), the multivariate structure at site 146 is highly dissimilar to that
found at neighbouring sites. Thus, this regular observation is a local outlier and is an
example of a false negative detection in this respect. This local outlier was detected
by all five calibrations of this section (see Figs. 9–10), whereas the global outlier at
site 483 was not (i.e. all detection methods performed as they should in this instance).
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Fig. 11 PCPlots and GWPCPlots depicting examples of: a false positive (a)–(b) and a false negative
(c)–(d) detections (with respect to the sole use of a non-spatial method) at global and local outlier locations,
respectively. Red line is the multivariate structure at the example sites, 483 and 146 (see Fig. 9a). All plots
from a single realisation

4 Empirical Case Study

4.1 Freshwater Chemistry Data for Great Britain

The data chosen for our empirical study is composed of eight water chemistry vari-
ables at 533 freshwater sites widely located across Great Britain. The data is a sub-set
of a water chemistry sampling programme for Great Britain as part of the UK De-
partment of Transport and Regions freshwater acidification critical loads mapping
programme (Kreiser et al. 1993). Research teams within the Critical Loads Advi-
sory Group (CLAG) then used the water chemistry data to calculate and map crit-
ical loads (CLAG CLAG Freshwaters 1995). The variables selected for this study
are: pH; alkalinity (units μeq L−1, termed Alk); conductivity (μS cm−1, Cond); ni-
trate or NO−

3 (μeq L−1, NO3); sulphate or SO2+
4 (μeq L−1, SO4); phosphate or PO4
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(μeq L−1, PO4); total monomeric aluminium (μg L−1, AL.TM); and total organic
carbon (mg L−1, TOC).

4.2 Exploration with Basic and Robust GWPCA

As an example of exploring this data with a GW method, we investigate for non-
stationarities in the multivariate structure of the data with basic and robust GWPCAs.
As all variables aside from pH are strongly positively skewed, the GWPCAs were
conducted using transformed data as well as the raw data; and in both cases, the data
were then standardised. Thus seven of the eight variables were jointly transformed to
approximate multivariate normality using a multivariate Box-Cox power transform
(Howarth and Earle 1979; Yeo and Johnson 2000; Ruppert 2006). Cube-root, fourth-
root, and log transforms were used as convenient approximations to the actual Box-
Cox parameters that were found. Transformed variables are thus re-named as: Alk.T,
Cond.T, NO3.T, SO4.T, PO4.T, AL.TM.T, and TOC.T.

Analysis in the transformed data space provided the clearest and most interpretable
outputs; thus only these are reported. It is likely that the analysis with the raw data
is compromised by the data non-normality, which is in part due to outlying obser-
vations. The use of transformed data, together with the use of an (outlier-resistant)
robust GWPCA, should help mitigate against such effects. As with any GW method,
the corresponding global fit is also assessed where the basic PCA results indicated
PTVs for the first and the first two components combined, as 47.3 % and 66.3 %,
respectively. Results for the robust PCA were similar, with PTVs for the first and the
first two components combined, as 47.2 % and 67.7 %, respectively.

For basic GWPCA, an optimal bandwidth of 48.8 % is found using cross-
validation, which is associated with the retention of four components. Robust GW-
PCA suggested a larger optimum at 92.9 %, but for comparison, we specify our robust
GWPCA with the same bandwidth as that used in basic GWPCA. Bandwidth selec-
tion procedures follow that described in Harris et al. (2011a). Observe that we are
now applying GWPCA in its usual guise, to explore data structure, and not to de-
tect outliers. In this respect, the specification of an optimal (and single) bandwidth is
appropriate.

For basic GWPCA, the spatial distribution of PTV for the first two components
combined is given in Fig. 12a. There is clear spatial variation in the results, where
both smaller and larger PTVs occur in the local case when compared to the global
(PCA) case. The largest PTVs are located in south-west England and Wales, whilst
the smallest PTVs are located in north-west Scotland. Observe there is a data void in
central England, an area of many missing values, but also an area where freshwater
acidification was not expected to be a problem. For robust GWPCA, the correspond-
ing PTV map is given in Fig. 12b. Here, a different spatial pattern emerges to that
found with basic GWPCA. Now larger PTVs always occur in the local case than in
the global case. Furthermore, the largest PTVs are now also located in the eastern and
northern areas of England, whilst the smallest PTVs are now more centrally located
in northern Scotland. Regardless of the GWPCA specification, Scotland appears to
have the most spatially-diverse water chemistry data structures. The observed differ-
ences between the basic and robust PCA/GWPCA outputs can be taken to indicate
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Fig. 12 (a) basic and (b) robust GWPCA PTV data for the first two components (both using transformed
data); location of local outliers using three GW methods with (c) raw and (d) transformed data (where M1
is GWMD; M2 is GWPCA-DIST; M3 is GWPCA-SCOR). For (d), sites 121, 285, and 455 are highlighted
for further scrutiny (see Fig. 13). All maps for the empirical study (see also Table 2)

the existence of many (global) multivariate outliers, some of which are likely to be
locally-outlying.

Patterns in the PTV data generally relate to land cover, soil-type, or the under-lying
geology; all of which are intuitively expected. For example, see the land cover, soils,
and geology maps for Scotland provided by the Macaulay Land Use Research Insti-
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tute (http://www.macaulay.ac.uk/ last accessed 02/9/13). Further work would need to
investigate the differences between the basic and robust PTV maps more deeply, as
care should be taken to ensure that robust GWPCA has not filtered out some of the
key under-lying data structures. PTV data from robust GWPCA with its actual opti-
mum bandwidth would also need exploring. Other outputs could also be investigated,
such as local component loadings and local component scores.

4.3 Cautionary Notes on the Use of Data Transforms

Observe that some care must be taken when conducting a PCA with raw or trans-
formed data, which are then used in an un-standardised or standardised form; as
these data handling decisions can strongly affect analytic outputs (Baxter 1995;
Cao et al. 1999). These decisions are further complicated in that the existence of
outliers is often the major cause of any observed difference (Baxter 1995). Here,
a data transform can both reduce and increase the number of outliers. For example,
in the univariate case, with positively skewed non-zero data and a log transform, out-
liers in tail of the distribution are not usually outlying after the transform, whereas
regular observations close to zero can be highly negative (and outlying) after the
transform (Ruppert 2006). In addition, the estimated parameters of the data trans-
form can themselves be compromised by the existence of outliers (Ruppert 2006). It
follows that GWPCA will be similarly affected, but now locally, as transforms will
change the spatial structure and spatial correlations in the data. In doing so, this can
affect the choice of bandwidth for GWPCA, and thus alter the perception of spatial
heterogeneity in the data’s multivariate structure. These cautionary notes are similarly
applicable to the use of GWMD and CoK with data transforms.

4.4 Global and Local Outlier Detection

Given the cautionary notes above, it is prudent to detect outliers using the raw
and transformed water chemistry data. Here, we investigate the best performing
GWMD, GWPCA-DIST and GWPCA-SCOR calibrations from the simulation study
of Sect. 3.2, which are respectively: (i) GWMD with a box-car kernel, using a group A
cut-off; (ii) GWPCA-DIST using the OD data with a box-car kernel, using a group B
cut-off; and (iii) GWPCA-SCOR using the first/last CS data, also with a box-car ker-
nel. In the simulation study, these calibrations yielded median kappa values of 0.79,
0.69, and 0.83, respectively. The determination and nature of an outlier will depend
on the spatial scale at which it is viewed and in this empirical case, we choose a band-
width of 7.5 % as our scale of investigation (i.e. the nearest 40 neighbours to each
observation point). We also specify GWPCA-DIST with four retained components.

For respectively, the raw and transformed data, Figs. 12c–d map the location of
potential local outliers according to our three GW methods. We also present the re-
sults from a global detection method, where we again use an MD calibration as de-
scribed in step 4 of the simulation study (Sect. 3.1.1). The mapped results are also
summarised in Table 2. As expected, more outliers are detected using the raw data
than using the transformed data, for all four detection methods. For example, with
the GWMD calibration, 91 and 77 local outliers are detected with the raw and trans-
formed data, respectively. Of the 91 detected with the raw data, 27 remain as local

http://www.macaulay.ac.uk/
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Table 2 Outlier detection results in raw and transformed data space

Method of detection Number of raw data outliers

Number of transformed data outliers

Only outlying
with raw data

Outlying with raw
and transformed data

Only outlying with
transformed data

GWMD 64 27 50

GWPCA-DIST 47 5 25

GWPCA-SCOR 65 23 36

All 3 GW methods in agreement 31 3 12

MD (global) 152 39 10

outliers with the transformed data. For the transformed data, 50 local outliers are de-
tected that were not outlying with the raw data. Observe that the globally-defined
transforms have the most effect on the MD calibration, where 191 and 49 global out-
liers are detected with the raw and transformed data, respectively. Overall, there is no
strong spatial pattern or trend in the location of both global and local outliers.

If we focus on sites where all three GW methods are in agreement, then 34 and
15 local outliers are detected with the raw and transformed data, respectively (sites
coloured purple in Figs. 12c–d). Of the 34 detected with the raw data, three remain
as local outliers with the transformed data. For the transformed data, 12 local outliers
are detected that were not outlying with the raw data. For the raw data, all 34 local
outliers are also classified as global outliers. For the transformed data, three of the
15 local outliers are also classified as global outliers. For the three sites (with ID
numbers of 121, 174, and 285) that are local outliers with the raw and transformed
data, sites 121 and 174 are not classified as global outliers with the transformed data.
Three of the 15 local outliers detected using the transformed data are highlighted in
Fig. 12d. Two sites are local outliers only; one on the coast of north-east Scotland
with an ID number of 121, and the other in southern England with an ID number
of 455. Both sites are examples of false negative detections if only some non-spatial
method of detection was applied. This can be seen in Figs. 13a–d, where both sites
are not outlying with their PCPlots, whilst they are outlying with their GWPCPlots.
The third highlighted site, in northern England with an ID number of 285, is a global
and local outlier. The PCPlot and GWPCPlot for this site are shown in Figs. 13e–f,
where the site is clearly outlying from both viewpoints.

4.5 Further Points of Interest

For our empirical study, two analytical points are worth noting: (i) the use of a data
sub-set; and (ii) outlier detection with non-normal variables. With respect to the first
point, the full water chemistry data set consisted of 1335 UK freshwater sites with
fourteen variables. Sites for Northern Ireland and for many UK islands were removed
from the analysis since the use of Euclidean distances in our GW methods may not
be appropriate with these sites retained. Sites with missing values were also removed.
The eight variables selected were (expertly) considered the most valuable for under-
standing the nature of freshwater acidification; which is our research focus. Future
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Fig. 13 PCPlots for: (a) a local outlier (only) at site 121; (c) a local outlier (only) at site 455; (e) a local
and global outlier at site 285. GWPCPlots for: (b) a local outlier (only) at site 121; (d) a local outlier (only)
at site 455; (f) a local and global outlier at site 285. All plots for the empirical study with transformed data
(see also Fig. 12d)
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work could apply the GW methods to the full UK data set, where various adaptations
are likely (i.e. for use with different distance metrics and/or for use with missing
data). Multivariate data with missing values is routinely encountered and will cause
problems for both MDs/PCA and GWMDs/GWPCA. Here, the use of a data imputa-
tion method would be needed, such as that provided by Templ et al. (2012).

With respect to the second point, outlier detection with positively skewed data
clearly poses many analytical challenges, with no simple solutions. Detection with
the raw data first, then with the transformed data second, seems a pragmatic route to
follow. Here, it may be worthwhile to remove or truncate the most extreme outliers
that are found in the raw data investigation, prior to detections with the transformed
data. In both data spaces, potential (global and/or local) outliers can be scrutinised
using PCPlots and GWPCPlots. Knowledge of both raw and transformed data outliers
is important, where values for the former have a direct physical interpretation. This
vital property is lost in transformed data space, but if subsequent models need to be
fitted using transformed data (to promote good fits) then knowledge of any potential
outliers in this data space is also of value.

5 Conclusions

In this study, we have demonstrated the value of three robust geographically weighted
(GW) methods for the detection of multivariate spatial outliers. One method uses
local Mahalanobis distances (MDs), whilst the other two, use outputs from a local
principal components analysis (PCA). All three methods perform well, both in a sim-
ulation and empirical study. Detection performance is measured both numerically and
visually, using maps and (global and local) parallel coordinate plots.

Differences in detection performance primarily arise as a result of: (a) the choice
of the cut-off that separates regular data from outliers and (b) the choice of kernel
weighting function when calibrating a given GW method. For the methods that use
local PCA, the method that investigates local component scores data (for the first few
and last few components) performs better than the alternative, that investigates local
MDs (within PCA space) and associated local goodness of fit distances. The latter
method performs the poorest of all three GW methods.

Overall our findings are considered reasonable and worthy, where three novel out-
lier detection methods have been introduced and assessed. These findings are, how-
ever, dependent on the design of the simulation algorithm and the particular properties
of the empirical data. Further simulation and empirical work could both endorse and
enhance these findings. For example, the simulation of high-dimensional spatial data
sets would complement the data simulation of this study, where only low-dimensional
realisations were generated.
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