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Differentiation

Philipp H. W. Hoffmann

Abstract

This article provides a short overview of the theory of First Order Auto-
matic Differentiation (AD) for readers unfamiliar with this topic. In par-
ticular, we summarize different characterisations of Forward AD, like the
vector-matrix based approach, the idea of lifting functions to the algebra
of dual numbers, the method of Taylor series expansion on dual numbers
and the application of the push-forward operator. We give short, but pre-
cise mathematical descriptions of these methods and show why they all
reduce to the same actual chain of computations (and are, hence, equiv-
alent). Finally, we give a short summary of Reverse AD and again point
out the underlying computational steps.

Keywords: Automatic Differentiation, Forward AD, Reverse AD,
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AMS Subject Classification (2010): 65-02, 65K99

1 Introduction

1.1 Content and Motivation

The evaluation of (often complicated) derivatives is a task that appears often in
the work of many researchers in applied mathematics, physics, engineering or, in
fact, any natural science. Typically, these computation will be performed with
the help of a computer and there are two main distinct methods to determine a
derivative of a function: On the one hand, there are numerical methods, usually
based on finite differences, which only approximate the sought result and are
inherently prone to rounding errors (which already occur due to floating point
arithmetic). Computer Algebra systems (like Maple, Mathematica or the older
system Maxima), on the other hand, evaluate the derivative symbolically, which
may, in certain cases, lead to significantly long computation times.

Automatic Differentiation, also called Algorithmic Differentiation, (short
AD) is now a third way to evaluate derivatives, which differs significantly from
the two classical methods. The very first article on this method is probably due
to Wengert [12]. Two further major publications regarding AD were published
by Rall in the 1980s [9], [10] and, since then, there has been a growing commu-
nity of researcher interested in this topic (see for example [2], [5], [6] or [7]). Of
course, the majority of publications on Automatic Differentiation are concerned
with certain improvements, extensions or implementations of AD, but usually
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provide also short introductions to the topic for the unfamiliar reader. Further-
more, there are also excellent and comprehensive publications which describe
the area as a whole (see for example Griewank [3] and Griewank and Walther
[4]).

An interested reader new to the theory may find it nevertheless difficult to
grasp the essence of Automatic Differentiation. The problem lies in the diversity
in which the (actual simple) ideas can be described. While in [3] and [8, section
2] a vector-matrix approach is used, in [5] and [10] AD is defined via a certain
multiplication on pairs (namely the multiplication which defines the algebra of
dual numbers). Similarly, in [11] the lifting of a function to named dual numbers
is presented as the main idea of AD, where in [7] this lifted functions is defined as
a Taylor Series (on dual numbers). Finally, Manzyuk [6] bases his description
on the push-forward operator known from differential geometry and gives a
connection to category theory. While some of these descriptions are, in their
core, quite similar, at the very least the vector-matrix based approach appears
to differ from the remaining approaches quite a lot. For somebody unfamiliar
with the theory, this may lead to the (wrong) impression that different authors
essentially describe different methods which are only unified under the label of
Automatic Differentiation. This is effectively not the case and this article hopes
to clarify the situation.

We will in the following give short, but precise, overviews of the distinct
descriptions of AD1 mentioned above and show, why they all are just different
expressions of the same principle. It is clear that the purpose of this article is
completely educational and there is nothing intrinsically new in our elaborations.
Indeed, in particular with regards to [3], we only give a extremely shorted and
simplified version of the work in the original publication. Furthermore, there are
actually at least two distinct versions, or modes, of AD. The so-called Forward
Mode and the Reverse Mode (along with variants such as Checkpoint Reverse
Mode [2]). The different descriptions mentioned above all refer to the Forward
Mode only. We are, therefore, mainly concerned with Forward AD and will only
briefly discuss the standard Reverse Mode at the end of this paper.

In addition, we will restrict ourselves to AD in its simplest form. Namely,
First Order AD, that is Automatic Differentiation to compute first order deriva-
tives, of a differentiable, multivariate function f : X → Rm, on an open set
X ⊂ Rn. Although, there are, of course, version which are able to evaluate
higher order derivatives (see for example [7]), we view these as extensions or
modifications of the original system and will, therefore, not consider them in
this article. The same holds for Nested Forward Automatic Differentiation,
which involves a kind of recursive calling of Forward AD (see, for example,
[11]). Again, we will not be concerned with this extension in this paper.

1.2 Notation

Unfortunately, when one wants to describe the techniques of AD precisely, things
get easily quite messy. In particular, a significant number of indices is necessary,
which may make the reading of some parts of this article difficult. The reader
should not feel discouraged by this, since the principle are really quite sim-
ple. We give, wherever possible, easy examples to bring the basic ideas across.

1To be more precise, of the Forward Mode of AD.
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Further, we summarize the main results at the end of most section.
As mentioned above, the function we want to differentiate will be denoted

by f : X → Rm and defined on an open set X ⊂ Rn. In particular, in this
paper n always denotes the number of variables of f , while m denotes the
dimension of its co-domain. If the image of f is multi-dimensional, we will use
f [j] (instead of the commonly used fj) for its one-dimensional sub-functions.
(This is to avoid having too many sub-indices.) Open domains of functions
other than f , will be denoted by U (usually with indices). In Sections 3 and 7,
the notation xi is reserved for variables of the function f , while other variables
are denoted by vi. The symbol c always denotes a fixed value (a constant).
For real vectors, we use boldface letters like x or c (where the latter will be

a constant vector). In particular,
⇀
x and

↼
y will be (usually fixed) directional

vectors or their transposed, respectively. Entries of
⇀
x or

↼
y will be denoted by

x′
i or y

′
i, respectively

2.

1.3 The basic idea of Automatic Differentiation

Before we start with the theory, let us demonstrate the ideas of of AD in a
very easy case: Let f, ϕ1, ϕ2, ϕ3 : R → R be differentiable functions with f =
ϕ3 ◦ ϕ2 ◦ ϕ1. Let further c, x′, y′ ∈ R be real numbers. Assume we want to
compute f ′(c) · x′ or y′ · f ′(c), respectively.

By the chain rule,

f ′(c) · x′ = ϕ′
3 (ϕ2 (ϕ1(c))) · ϕ

′
2 (ϕ1(c)) · ϕ

′
1(c) · x

′

As one easily sees, the evaluation of f ′(c) · x′ can be achieved by computing
successively the following pairs:

(c, x′)
(ϕ1(c), ϕ

′
1(c) · x

′)
(ϕ2 (ϕ1(c)) , ϕ′

2 (ϕ1(c)) · ϕ
′
1(c)x

′)
(ϕ3 (ϕ2 (ϕ1(c))) , ϕ′

3 (ϕ2 (ϕ1(c))) · ϕ
′
2 (ϕ1(c))ϕ

′
1(c)x

′)

and taking the second entry of the final pair. As we see, the first element of
each pair appears as an argument of the functions ϕi, ϕ

′
i in the following pair,

while the second element appears as a factor (from the right).
Regarding the computation of y′ · f ′(c), we have obviously

y′ · f ′(c) = y′ · ϕ′
3 (ϕ2 (ϕ1(c))) · ϕ

′
2 (ϕ1(c)) · ϕ

′
1(c).

The computation of this derivative can now be achieved by the computing the
following two lists of real numbers:

c

ϕ1(c)
ϕ2(ϕ1(c))

y′

y′ · ϕ′
3 (ϕ2 (ϕ1(c)))

y′ϕ′
3 (ϕ2 (ϕ1(c))) · ϕ

′
2 (ϕ1(c))

y′ϕ′
3 (ϕ2 (ϕ1(c)))ϕ

′
2 (ϕ1(c)) · ϕ

′
1(c)

2The notation x′

i for entries of
⇀
x is somewhat historical and based on the idea that, very

often, x′

i may be considered as a derivative of either the identity function, or a constant
function. For us, however, each x′

i ∈ R is simply a chosen real number. The same holds for
the notation y′i.
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and taking the last entry of the second list. Here, each entry (apart from y′) in
the second list consists of values of ϕ′

i evaluated at an element of the first list
(note that the order is reversed) and the previous entry as a factor (from the
left).

If now values of the functions ϕ1, ϕ2, ϕ3 and their derivatives ϕ′
1, ϕ

′
2, ϕ

′
3 are

already implemented in the system, then the evaluation of the ϕi(c), ϕ
′
i(c) means

simply calling these functions/derivatives, which can be achieved with limited
computational time. Thus, the computation of f ′(c) ·x′ and y′ · f ′(c) is nothing
else than obtaining these values, performing some arithmetic operations on real
numbers and passing the results on. That is, no actual differentiation takes
place to compute the sought numbers. This is the main idea3 of Automatic
Differentiation.

In the following, we describe the setting in general.

2 Preliminaries

As mentioned above, (First Order) Automatic Differentiation, in its simplest
form, is concerned with the computation of derivatives of a differentiable func-
tion f : X → Rm, on an open set X ⊂ Rn. The assumption made is that each
fj = f [j] : X → R in

f(x1, ..., xn) =




f1(x1, ..., xn)
...

fm(x1, ..., xn)


 =




f [1](x1, ..., xn)
...

f [m](x1, ..., xn)




consists (to be defined more precisely later) of several sufficiently smooth so-

called elementary functions ϕ
[j]
i : U

[j]
i → R, defined on open sets U

[j]
i ⊂ Rn

[j]
i ,

such as addition and multiplications, constant, trigonometric, exponential or
logarithmic functions etc. (Here, i ∈ I [j] for some index set I [j].) In particular,

the ϕ
[j]
i have to have the property that they and their partial derivatives

∂ϕ
[j]
i

∂vk

(and, therefore, their gradients ∇ϕ
[j]
i ) are already implemented (as functions)

in the system.
Further, AD does not compute the actual mapping x 7→ Jf (x), which maps

a vector x ∈ X to the Jacobian Jf (x) of f at x. Instead, directional derivatives
of f or left-hand products of row-vectors with its Jacobian at a fixed vector
c ∈ X are determined.

That is, given c ∈ X and
⇀
x ∈ Rn or

↼
y ∈ R1×m, we determine either

Jf (c) ·
⇀
x or

↼
y · Jf (c).

(This appears to be a subtle difference, however, while x 7→ Jf (x) is a matrix-

valued function, Jf (c) ·
⇀
x and

↼
y ·Jf (c) are vectors or one-row matrices, respec-

tively, in euclidean space.)
The computation of directional derivatives of Jf (c) is referred to as the

Forward Mode of AD, or Forward AD (short FAD), while the computation of
↼
y · Jf (c) is referred to as the Reverse Mode of AD, or Reverse AD (RAD).4

3In our opinion, of course.
4 As mentioned in the introduction, we will consider mainly the easier Forward Mode in

this article.
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The first and foremost principle of AD is now that the computation of named
derivatives should essentially only involve computations (which means calling)

of the elementary functions ϕ
[j]
i and their partial derivatives plus some real

number arithmetic. Indeed, we may give the following, informal descriptions:

• Forward Automatic Differentiation is the computation of Jf (c)·
⇀
x for fixed

c ∈ X and
⇀
x ∈ Rn through the successive computation of the pairs of real

numbers (
ϕ
[j]
i (c[i,j]), ∇ϕ

[j]
i (c[i,j]) ·

⇀
x
[i,j]
)
∈ R2

in suitable order, for suitable vectors c[i,j],
⇀
x
[i,j]
∈ Rn

[j]
i .

• Reverse Automatic Differentiation is the computation of
↼
y ·Jf(c) for fixed

c ∈ X and
↼
y ∈ R1×m through the computation of the real numbers

ϕ
[j]
i (c[i,j]) ∈ R and vi,j,k +

∂ϕ
[j]
i

∂vk
(c[i,j]) · vi,j ∈ R, k = 1, ..., n

[j]
i ,

in suitable order, for suitable vectors c[i,j] ∈ Rn
[j]
i and suitable numbers

vi,j,k, vi,j ∈ R.

(Of course, the vectors and numbers c[i,j],
⇀
x

[i,j]
, vi,j,k, vi,j will be determined

in a certain way; as will be the order in which the computations are performed.)
The advantage of Forward AD in the case of a function of one variable f :

R→ Rm is clear: If we choose in that case
⇀
x = 1, we obtain the whole Jacobian

of f . Conversely, if f : Rn → R is real valued, Reverse AD is advantageous: If

we choose
↼
y = 1 in that case, we obtain the whole gradient of f .

As mentioned above, addition and multiplication are considered to be ele-
mentary functions. That is, the mappings

sum : R2 → R with sum(x1, x2) = x1 + x2

and
prod : R2 → R with prod(x1, x2) = x1 · x2

are part of the ϕ
[j]
i , whose partial derivatives are already implemented in the

system. (It is clear that sums and products of more than two summands or
factors can be expressed by iterating the mappings sum and prod.)

For reasons of convenience, we will not use the notations sum, prod but
instead express sums and products using + or · as usual.

Now each f [j] will in general consist of several levels of elementary functions.
To express this fact accurately, we will have to use a subtler way of indexing

the elementary functions ϕ
[j]
i . We first give an example, before we describe the

(actually trivial) situation formally.

Example 2.1. Consider the function f : R2 → R2 given by

f(x1, x2) =

(
sin(x2) + cos(x2

1 + 3) · 5x2

exp(sin(x1)) + 4x3
2

)
.
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In this case, f [1] depends on the following elementary functions:

ϕ
[1]
1,1(x2) = sin(x2), ϕ

[1]
1,2(x1) = x2

1, ϕ
[1]
1,3(x2) = 5x2,

ϕ
[1]
2,1(x

2
1) = x2

1 + 3,

ϕ
[1]
3,1(x

2
1 + 3) = cos(x2

1 + 3),

ϕ
[1]
4,1(cos(x

2
1 + 3), 5x2) = cos(x2

1 + 3) · 5x2,

ϕ
[1]
5 (sin(x2), cos(x

2
1 + 3) · 5x2) = sin(x2) + cos(x2

1 + 3) · 5x2 = f [1](x1, x2).

Analogously, for f [2]:

ϕ
[2]
1,1(x1) = sin(x1), ϕ

[2]
1,2(x2) = x2

2,

ϕ
[2]
2,1(sin(x1)) = exp(sin(x1)), ϕ

[2]
2,3(x2, x

2
2) = x2

2 · x2 = x3
2,

ϕ
[2]
3,1(x

3
2) = 4x3

2,

ϕ
[2]
4 (exp(sin(x1)), 4x

3
2) = exp(sin(x1)) + 4x3

2 = f [2](x1, x2).

The general situation is now that each f [j] may depend on elementary func-
tions

ϕ
[j]
1,1, ..., ϕ

[j]
1,kj,1

, ϕ
[j]
2,1, ..., ϕ

[j]
2,kj,2

, ... , ϕ
[j]
ℓj−1,1, ..., ϕ

[j]
ℓj−1,kj,ℓj−1

, ϕ
[j]
ℓj
,

defined on open sets U
[j]
ν,i ⊂ R

n
[j]
ν,i , ν = 1, ..., ℓj−1, i = 1, ..., kj,ν , and U

[j]
ℓj
⊂ R

n
[j]
ℓj ,

with the properties that

f [j](x1, ..., xn) = ϕ
[j]
ℓj
(u

[j]
ℓj,1

, ..., u
[j]
ℓj ,lℓj

) with

u
[j]
ℓj,1

, ..., u
[j]
ℓj ,lℓj

∈
{
x1, ..., xn, ϕ

[j]
1,1(· · · ), ..., ϕ

[j]
1,kj,1

(· · · ), ... , ϕ
[j]
ℓj−1,1(· · · ), ..., ϕ

[j]
ℓj−1,kj,ℓj−1

(· · · )
}
,

where

ϕ
[j]
ℓj−1,i(· · · ) = ϕ

[j]
ℓj−1,i(u

[j]
ℓj−1,i,1, ..., u

[j]
ℓj−1,i,lℓj−1,i

) with

u
[j]
ℓj−1,i,1, ..., u

[j]
ℓj−1,i,lℓj−1,i

∈
{
x1, ..., xn, ϕ

[j]
1,1(· · · ), ..., ϕ

[j]
1,kj,1

(· · · ), ... , ϕ
[j]
ℓj−2,1(· · · ), ...., ϕ

[j]
ℓj−2,kj,ℓj−2

(· · · )
}
,

where

ϕ
[j]
ℓj−2,i(· · · ) = ϕ

[j]
ℓj−2,i(u

[j]
ℓj−2,i,1, ..., u

[j]
ℓj−2,i,lℓj−2,i

) with

u
[j]
ℓj−2,i,1, ..., u

[j]
ℓj−2,i,lℓj−2,i

∈
{
x1, ..., xn, ϕ

[j]
1,1(· · · ), ..., ϕ

[j]
1,kj,1

(· · · ), ... , ϕ
[j]
ℓj−3,1(· · · ), ...., ϕ

[j]
ℓj−3,kj,ℓj−3

(· · · )
}
,

...
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where

ϕ
[j]
2,i(...) = ϕ

[j]
2,i(u

[j]
2,i,1, ..., u

[j]
2,i,l2,i

) with

u
[j]
2,i,1, ..., u

[j]
2,i,l2,i

∈
{
x1, ..., xn, ϕ

[j]
1,1(u

[j]
1,1,1..., u

[j]
1,1,l1,1

), ..., ϕ
[j]
1,kj,1

(u
[j]
1,kj,1,1

..., u
[j]
1,kj,1,l1,kj,1

)
}
,

where u
[j]
1,i,1, ..., u

[j]
1,i,l1,i

∈ {x1, ..., xn},

for all x1, ..., xn ∈ X and for i = 1, ..., kj,ν , ν = 1, ..., ℓj − 1.
This description is somewhat necessary for formally discussing the Forward

Mode of AD using the algebra of dual numbers (see Section 4). It is indeed not
too important for the approach we will discuss first.

3 Forward AD—An elementary approach

In this approach, the function f is described as a composition of multi-variate
and multi-dimensional mappings. Differentiating this composition to obtain

Jf (c) ·
⇀
x , for given c ∈ X ⊂ Rn and

⇀
x ∈ Rn, leads, by the chain rule, to a

product of matrices. This method has, for example, been described in [8, section
2] and, comprehensively, in [3] and [4]. We follow mainly the notation of [3].

The simple idea is to express f as a composition of the form

f = PY ◦ Φµ ◦ · · · ◦ Φ1 ◦ PX .

Here, PX : X → H is the (linear) natural embedding of the domain X ⊂ Rn

into the so-called state space H = RdimH , where dimH = n + µ for µ being

the total number of elementary functions ϕ
[j]
ν,k, ϕ

[j]
ℓj

which make up the function
f . Each Φi : H → H , referred to as an elementary transition, corresponds to
exactly one such elementary function. The mapping PY : H → Y = f(U) is
some suitable linear projection of H down onto Y = f(U) ⊂ Rm.

Determining now Jf (c) ·
⇀
x for fixed c ∈ X and fixed

⇀
x ∈ Rn becomes, by

the chain rule, the evaluation of the matrix-vector product

Jf (c) ·
⇀
x = PY · Φ

′
µ,c · · · Φ

′
1,c · PX ·

⇀
x , (3.1)

where Φ′
i,c denotes the Jacobian of Φi at (Φi−1 ◦ · · · ◦ Φ1 ◦ PX) (c).

Each computation of Φ′
i,c should now only involve one computation of (some

directional derivative of) the gradient ∇ϕi(c
[i]) of some elementary function ϕi

(equal to ϕ
[j]
ν,k or ϕ

[j]
ℓj

for some j, ν, k) at some c[i]. Again, the computation

of the ∇ϕi(c
[i]) simply reduces to calling partial derivatives, and, similarly,

computing the numbers c[i] shall also only require the calling of some other

elementary function ϕl. This way, Jf (c) ·
⇀
x is computed ‘automatically’ and,

at no time in this process, any actual differentiation takes place.
The process is now performed in a particular ordered fashion, which we

describe in the following.
The evaluation of f at some point x = (x1, ..., xn) can be described by a

so-called evaluation trace v[0] = v[0](x), ...,v[µ] = v[µ](x), where each v[i] ∈ H

7



is a so-called state vector, representing the state of the evaluation after i steps.
More precisely, we set

v[0] := PX(x1, ..., xn) = (x1, ..., xn, 0, ..., 0) and v[i] = Φi(v
[i−1]), i = 1, ..., µ.

The elementary transitions Φi are now given by imposing an ordering on the

ϕ
[j]
ν,k, ϕ

[j]
ℓj
, such that ϕi is the i-th elementary function with respect to this order,

and by setting Φi




v1
...

vn+µ


 =




v1
...

vn+i−1

ϕi(vi1 , ..., vini
)

vn+i+1

...
vn+µ




, for all




v1
...

vn+µ


 ∈ H ,

and vi1 , ..., vini
∈ {v1, ..., vn+i−1} ∩ Ui, where Ui ⊂ Rni is the open domain of

ϕi. Note that this is not a definition in the strict sense, since we do not specify
the arguments vi1 , ..., vini

of ϕi. These will depend on the actual functions f

and ϕi. (Compare the example below.)
Therefore, we have

v[i](x) = Φi(v
[i−1](x)) =




v
[i−1]
1 (x) = x1

...

v
[i−1]
n (x) = xn

...

v
[i−1]
n+i−1(x)

ϕi(vi1(x), ..., vini
(x))

0
...
0




=




v
[i−1]
1 = x1

...

v
[i−1]
n = xn

...

v
[i−1]
n+i−1

ϕi(vi1 , ..., vini
)

0
...
0




,

for vi1 = vi1(x), ..., vini
= vini

(x) ∈ {v
[i−1]
1 , ...,v

[i−1]
n+i−1} ∩ Ui.

It is clear that, for the above to make sense, the ordering imposed on the

ϕ
[j]
ν,k, ϕ

[j]
ℓj

must have the property that all arguments in ϕi(vi1 , ..., vini
) have

already been evaluated.
The definition of the projection PY : H → Y = f(U) ⊂ Rm depends on the

ordering imposed on the ϕ
[j]
ν,k, ϕ

[j]
ℓj
. If this ordering is such that we have for the

top-level elementary functions ϕ
[1]
ℓ1

= ϕn+µ−m, ..., ϕ
[m]
ℓm

= ϕn+µ, then we will
have

f [1](x1, ..., xn) = v
[µ]
n+µ−m , ..., f [m](x1, ..., xn) = v

[µ]
n+µ

and we can choose PY (v1, ..., vn+µ) = (vn+µ−m, ..., vn+µ).

Example 3.1. The following is taken from [3, page 332].
Consider the function f : R2 → R given by f(x1, x2) = exp(x1) ·sin(x1+x2).
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Choose H = R6 and f = PY ◦ Φ4 ◦ Φ3 ◦ Φ2 ◦ Φ1 ◦ PX with

PX : R2 → R6, with PX(x1, x2) = (x1, x2, 0, 0, 0, 0),

Φ1 : R6 → R6, with Φ1 (v1, v2, v3, v4, v5, v6) = (v1, v2, exp(v1), v4, v5, v6),

Φ2 : R6 → R6, with Φ2 (v1, v2, v3, v4, v5, v6) = (v1, v2, v3, v1 + v2, v5, v6),

Φ3 : R6 → R6, with Φ3 (v1, v2, v3, v4, v5, v6) = (v1, v2, v3, v4, sin(v4), v6),

Φ4 : R6 → R6, with Φ4 (v1, v2, v3, v4, v5, v6) = (v1, v2, v3, v4, v5, v3 · v5),

PY : R6 → R, with PY (v1, v2, v3, v4, v5, v6) = v6.

Analogously to the evaluation of f(x), the evaluation of the matrix-vector

product (3.1) for some c ∈ Rn and some
⇀
x = (x′

1, ..., x
′
n) ∈ Rn can be expressed

as an evaluation trace v′[0] = v′[0](c,
⇀
x), ...,v′[µ] = v′[µ](c,

⇀
x), where

v′[0] := PX ·
⇀
x = (x′

1, ..., x
′
m, 0, ..., 0) and v′[i] := Φ′

i,c · v
′[i−1]

, i = 1, ..., µ.

By the nature of the elementary transformations Φi, each Jacobian
Φ′

i,c := JΦi
(v[i−1](c)) will be of the form

Φ′
i,c =




1 · · · 0 0 · · · 0
...

. . .
...

... · · ·
...

0 · · · 1 0 · · · 0
∂ϕi

∂v1
(· · · ) · · · · · · · · · · · · ∂ϕi

∂vn+µ
(· · · )

0 · · · 0 1 · · · 0
...

...
...

...
. . .

...
0 · · · 0 0 · · · 1




← (n+ i)-th row,

(3.2)

where ∂ϕi

∂vk
(· · · ) = ∂ϕi

∂vk
(vi1 (c), ..., vini

(c)) is interpreted as 0 if ϕi does not depend
on vk.

Thus, each v′[i] will be of the form

v′[i] =




v′[i−1]
1 = x′

1
...

v′[i−1]
n = x′

n

...

v′[i−1]
n+i−1

∇ϕi(vi1 , ..., vini
) ·




v′i1
...

v′ini




0
...
0




,
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for v′i1 = v′i1(c,
⇀
x), ..., v′ini

= v′ini
(c,

⇀
x) ∈ {v′[i−1]

1 , ...,v′[i−1]
n+i−1}, where the v

′
i1
, ..., v′ini

correspond exactly to the vi1 , ..., vini
. That is, if vij = v

[i−1]
l (c), then v′ij =

v′[i−1]
l (c,

⇀
x).

The directional derivative of f at c in direction of
⇀
x is then

Jf (c) ·
⇀
x = PY · v

′[µ].

Example 3.2. The computation of Jf (c1, c2) ·

(
x′
1

x′
2

)
for f : R2 → R given by

f(x1, x2) = exp(x1) · sin(x1 + x2)

has four evaluation trace pairs [v[0],v′[0]], ..., [v[4],v′[4]], where

v[0] =




c1
c2
0
0
0
0




, v′[0] =




x′
1

x′
2

0
0
0
0




and

v[4] =




c1
c2

exp(c1)
c1 + c2

sin(c1 + c2)
exp(c1) · sin(c1 + c2)




,

v′
[4]

=




x′
1

x′
2

exp(c1)x
′
1

x′
1 + x′

2

cos(c1 + c2)(x
′
1 + x′

2)
sin(c1 + c2) exp(c1)x

′
1 + exp(c1) cos(c1 + c2)(x

′
1 + x′

2)




.

Then

∇Jf ((c1, c2)) ·

(
x′
1

x′
2

)
= PY · v

′[4]

=
(
exp(c1) sin(c1 + c2) + exp(c1) cos(c1 + c2)

)
x′
1 + exp(c1) cos(c1 + c2)x

′
2.

Note that in the evaluation process, given the Φi, each pair [v[i],v′[i]] de-

pends only on the previous pair [v[i−1],v′[i−1]
] and the given vectors c,

⇀
x . (Since

v[i] = Φi(v
[i−1]) and v′[i] = JΦi

(v[i−1](c)) ·v′ [i−1]
.) Therefore, in an implemen-

tation, one can actually overwrite [v[i−1],v′[i−1]
] by [v[i],v′[i]] in each step.

Note further that the (n+ i)-th entry in each pair [v[i],v′[i]] is of the form

ϕi(vi1 , ..., vini

),∇ϕi(vi1 , ..., vini
) ·




v′i1
...

v′ini





 ∈ R2, (3.3)
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i.e. consisting of a value of ϕi and a directional derivative of this elementary
function. Since the previous n+ i− 1 entries are identical to the first

n + i − 1 entries of [v[i−1],v′[i−1]
], the computation of [v[i],v′[i]] is effectively

the computation of (3.3).
We summarize the discussion of this section in the following theorem:

Theorem 3.3. By the above, the evaluation of Jf (c) ·
⇀
x can be achieved by

the process of computing the evaluation trace pairs [v[i],v′[i]]. This process is
equivalent to the process of computing the pairs (3.3).

The following section is concerned with a method which uses this last fact
directly from the start. This approach also provides a better understanding on
how an Automatic Differentiation system could actually be implemented. A
question which may not be quite clear from the discussion so far.

4 Forward AD—An approach using Dual Num-

bers

Many descriptions and implementation of Forward AD actually use a slightly
different approach than the elementary one that we have just described. Instead
of expressing the function whose derivative one wants to compute as a compo-
sition, the main idea in this ‘alternative’ approach5 is to lift this function (and
all elementary functions) to (a subset of) the algebra of dual numbers D. This
approach has, for example, been described in [5], [7] and [10].

Dual numbers, introduced by Clifford [1], are defined as D := (R2,+, ·),
where addition is defined component wise as usual and multiplication is defined
as

(x1, y1) · (x2, y2) := (x1x2, x1y2 + y1x2), ∀ (x1, y1), (x2, y2) ∈ R2.

It is easy to verify that D with these operations is an associative and com-
mutative algebra over R with multiplicative unit (1, 0) and that the element
ε := (0, 1) is nilpotent of order two.

Analogously to a complex number, we write a dual number z = (x, y) as
z = x + yε, where we identify each x ∈ R with (x, 0). We will further use
the notation (x, x′) instead of (x, y), i.e. we write z = x + x′ε. The x′ in this
representation is referred to as the dual part of z.

We now define an extension of a differentiable function g : U → R, on an
open set U ⊂ Rµ, to a function ĝ : Dµ ⊃ U × Rµ → D on a subset of the dual
numbers6, by setting

ĝ(x1 + x′
1ε, ..., xµ + x′

µε) := g(x1, ..., xµ) +


∇g(x1, ..., xµ) ·




x′
1
...
x′
µ





 · ε.

(4.1)

5Indeed, we will see at the end of this section, that Forward AD using dual numbers is
completely equivalent to the method of expressing f as PY ◦ Φµ ◦ · · · ◦ Φ1 ◦ PX .

6Here, µ ∈ N+ is just some positive integer and does not have the same meaning as in the
previous section.
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This definition easily extends to a differentiable function f : X → Rm, on open
X ⊂ Rn, as f̂ : Dn ⊃ X × Rn → Dm with

f̂(x1 + x′
1ε, ..., xn + x′

nε) :=




f̂ [1](x1 + x′
1ε, ..., xn + x′

nε)
...

f̂ [m](x1 + x′
1ε, ..., xn + x′

nε)


 (4.2)

= f(x1, ..., xn) + Jf (x1, ..., xn) ·




x′
1
...
x′
µ


 ε.

We first have to show that definition (4.1) makes sense. I.e., that it is
compatible with the natural extension of functions on U which are defined via
usual arithmetics. That is, we show the following:

Proposition 4.1. Definition (4.1) is compatible with the natural extension of

(i) the identity function,

(ii) constant functions,

(iii) the mappings sumk, prodk : Rk → R, defined by

sumk(x1, ..., xk) := x1 + · · ·+ xk and prodk(x1, ..., xk) := x1 · · ·xk,

(iv) (multivariate) polynomials

to the dual numbers D.

Proof. (i) and (ii) follow directly from the definition.
(iii): We have

ŝumk(x1 + x′
1ε, ..., xk + x′

kε)

= x1 + x′
1ε+ · · ·+ xk + x′

kε

= (x1 + · · ·+ xk) + (x′
1 + · · ·+ x′

k)ε

= (x1 + · · ·+ xk) +







1
...
1




T

·




x′
1
...
x′
k





 ε

= sumk(x1, ..., xk) +


∇ sumk(x1, ..., xk) ·




x′
1
...
x′
k





 ε
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and, since ε2 = 0,

p̂rodk(x1 + x′
1ε, ..., xk + x′

kε)

= (x1 + x′
1ε) · · · · · (xk + x′

kε)

= (x1 · · · · · xk) +




k∑

i=1

x′
i

k∏

j=1
j 6=i

xj


 ε

= (x1 · · · · · xk) +







x2x3 · · ·xk

x1x3x4 · · ·xk

...
x1x2 · · ·xk−1




T

·




x′
1
...
x′
k







ε

= prodk(x1, ..., xk) +


∇ prodk(x1, ..., xk) ·




x′
1
...
x′
k





 ε

(iv): This follows from (i)-(iii).

We further need to prove that definition (4.1) behaves well for functions
which depend on other functions. That is, we show the following:

Proposition 4.2. Let g : U → R be differentiable on the open set U ⊂ Rµ,
such that

g(x1, ..., xµ) = gℓ(x0,1, ..., x0,µ0 , g1(x1,1, ..., x1,µ1), ..., gℓ−1(xℓ−1,1, ..., xℓ−1,µℓ−1
)),

where gi : Ui → R are differentiable on the open sets Ui ⊂ Rµi with
xi,j ∈ {x1, ..., xµ}. Then

ĝ(x1 + εx′
1, ..., xµ + εx′

µ)

= ĝℓ(x0,1 + εx′
0,1, ..., x0,µ0 + εx′

0,µ, ĝ1(x1,1 + εx′
1,1, ..., x1,µ1 + εx′

1,µ1
), ...,

ĝℓ−1(xℓ−1,1 + εx′
ℓ−1,1, ..., xℓ−1,µℓ−1

+ εx′
ℓ−1,µℓ−1

)). (4.3)

Proof. The right hand-side of equation (4.3) is equal to

ĝℓ

(
x0,1 + εx′

0,1, ..., x0,µ0 + εx′
0,µ,

g1(x1,1, ..., x1,µ1) +


∇g1(· · · ) ·




x′
1,1
...

x′
1,µ





 ε, ...,

gℓ−1(xℓ−1,1, ..., xℓ−1,µℓ−1
) +


∇gℓ−1(· · · ) ·




x′
ℓ−1,1
...

x′
ℓ−1,µℓ−1





 ε

)
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= gℓ
(
x0,1, ..., x0,µ0 , g1(x1,1, ..., x1,µ1), ..., gℓ−1(xℓ−1,1, ..., xℓ−1,µℓ−1

)
)

+




∇gℓ(· · · ) ·




x′
0,1
...

x′
0,µ

∇g1(· · · ) ·




x′
1,1
...

x′
1,µ




...

∇gℓ−1(· · · ) ·




x′
ℓ−1,1
...

x′
ℓ−1,µℓ−1










ε, (4.4)

where ∇gℓ(· · · ) =
dgℓ

d(x0,1,...,x0,µ0 ,g1(··· ),...,gℓ−1(··· ))
(· · · ).

The left hand side of (4.3) is obviously equal to

g(x1, ..., xµ) +


∇g(x1, ..., xµ) ·




x′
1
...
x′
µ





 · ε. (4.5)

By assumption,

g(x1, ..., xµ) = gℓ(x0,1, ..., x0,µ0 , g1(x1,1, ..., x1,µ1), ..., gℓ−1(xℓ−1,1, ..., xℓ−1,µℓ−1
)).

Further,

∇g(x1, ..., xµ)

=
d

d(x1, ..., xµ)
gℓ(x0,1, ..., x0,µ0 , g1(x1,1, ..., x1,µ1), ..., gℓ−1(xℓ−1,1, ..., xℓ−1,µℓ−1

))

= ∇gℓ(x0,1, ..., x0,µ0 , g1(x1,1, ..., x1,µ1), ..., gℓ−1(xℓ−1,1, ..., xℓ−1,µℓ−1
))

·
d

d(x1, ..., xµ)

(
(x1, ..., xµ) 7→

(
x0,1, ..., x0,µ0 , g1(· · · ), ..., gℓ−1(· · · )

))
,

where ∇gℓ(· · · ) =
dgℓ

d(x0,1,...,x0,µ0 ,g1(··· ),...,gℓ−1(··· ))
(· · · ).

Now, clearly

d

d(x1, ..., xµ)

(
(x1, ..., xµ) 7→

(
x0,1, ..., x0,µ0 , g1(· · · ), ..., gℓ−1(· · · )

))
·




x′
1
...
x′
µ



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equals




∂x0,1

dx1
· · ·

∂x0,1

dxµ

∂x0,µ0

dx1
· · ·

∂x0,µ0

dxµ

∂g1(··· )
dx1

· · · ∂g1(··· )
dxµ

...
...

...
∂gℓ−1(··· )

dx1
· · · ∂gℓ−1(··· )

dxµ







x′
1
...
x′
µ


 =




x′
0,1
...

x′
0,µ

∇g1(· · · )




x′
1,1
...

x′
1,µ




...

∇gℓ−1(· · · )




x′
ℓ−1,1
...

x′
ℓ−1,µℓ−1







.

Hence, (4.4) equals (4.5) and we are done.

One can now determine the directional derivative Jf (c) ·
⇀
x of a differentiable

f : Rm ⊃ X → Rm, X open, at a fixed c =




c1
...
cn


 ∈ Rn in direction of a fixed

⇀
x =




x′
1
...
x′
n


 ∈ Rn, by extending each f [j] to the dual numbers and. That

is, one replaces the arguments (x1, ..., xn) in f [j] by (c1 + x′
1ε, ..., cn + x′

nε) and

applies first (4.1) to the elementary functions ϕ
[j]
1,1, ..., ϕ

[j]
1,kj,1

. This then leads

to the extension of the ϕ
[j]
2,1, ..., ϕ

[j]
2,kj,2

to the dual numbers and one can apply

(4.1) again and so on.
We obtain therefore for i = 1, ..., kj,ν , ν = 1, ..., ℓj − 1:

ϕ̂
[j]
1,i

(
u
[j]
1,i,1 +

(
u
[j]
1,i,1

)′
ε, ..., u

[j]
1,i,l1,i

+
(
u
[j]
1,i,l1,i

)′
ε

)

= ϕ
[j]
1,i(u

[j]
1,i,1, ..., u

[j]
1,i,l1,i

) +


∇ϕ

[j]
1,i(u

[j]
1,i,1, ..., u

[j]
1,i,l1,i

) ·




(
u
[j]
1,i,1

)′

...(
u
[j]
1,i,l1,i

)′





 ε,

with

u
[j]
1,i,1 +

(
u
[j]
1,i,1

)′
ε, ..., u

[j]
1,i,l1,i

+
(
u
[j]
1,i,l1,i

)′
ε ∈ {c1 + x′

1ε, ..., cn + x′
nε}.

Then,

ϕ̂
[j]
2,i

(
u
[j]
2,i,1 +

(
u
[j]
2,i,1

)′
ε, ..., u

[j]
2,i,l2,i

+
(
u
[j]
2,i,l2,i

)′
ε

)

15



= ϕ
[j]
2,i(u

[j]
2,i,1, ..., u

[j]
2,i,l2,i

) +


∇ϕ

[j]
2,i(u

[j]
2,i,1, ..., u

[j]
2,i,l2,i

) ·




(
u
[j]
2,i,1

)′

...(
u
[j]
2,i,l2,i

)′





 ε,

with

u
[j]
2,i,1 +

(
u
[j]
2,i,1

)′
ε, ..., u

[j]
2,i,l2,i

+
(
u
[j]
2,i,l2,i

)′
ε

∈

{
c1 + x′

1ε, ..., cn + x′
nε, ϕ̂

[j]
1,1(· · · ), ...,

̂
ϕ
[j]
1,kj,1

(· · · )

}

...

̂
ϕ
[j]
ℓj−1,i

(
u
[j]
ℓj−1,i,1 +

(
u
[j]
ℓj−1,i,1

)′
ε, ..., u

[j]
ℓj−1,i,lℓj−1,i

+
(
u
[j]
ℓj−1,i,lℓj−1,i

)′
ε

)

= ϕ
[j]
ℓj−1,i

(
u
[j]
ℓj−1,i,1, ..., u

[j]
ℓj−1,i,lℓj−1,i

)

+


∇ϕ

[j]
ℓj−1,i

(
u
[j]
ℓj−1,i,1, ..., u

[j]
ℓj−1,i,lℓj−1,i

)
·




(
u
[j]
ℓj−1,i,1

)′

...(
u
[j]
ℓj−1,i,lℓj−1,i

)′





 ε,

with

u
[j]
ℓj−1,i,1 +

(
u
[j]
ℓj−1,i,1

)′
ε, ..., u

[j]
ℓj−1,i,lℓj−1,i

+
(
u
[j]
ℓj−1,i,lℓj−1,i

)′
ε

∈

{
c1 + x′

1ε, ..., cn + x′
nε, ϕ̂

[j]
1,1(· · · ), ...,

̂
ϕ
[j]
1,kj,1

(· · · ), ϕ̂
[j]
2,1(· · · ), ...,

̂
ϕ
[j]
2,kj,2

(· · · ), ...

...,
̂
ϕ
[j]
ℓj−2,1(· · · ), ...,

̂
ϕ
[j]
ℓj−2,kj,ℓj−2

(· · · )

}
.

Finally,

ϕ̂
[j]
ℓj

(
u
[j]
ℓj,1

+
(
u
[j]
ℓj ,1

)′
ε, ..., u

[j]
ℓj,lℓj

+
(
u
[j]
ℓj ,lℓj

)′
ε

)

= ϕ
[j]
ℓj

(
u
[j]
ℓj,1

, ..., u
[j]
ℓj ,lℓj

)
+


∇ϕ

[j]
ℓj

(
u
[j]
ℓj,1

, ..., u
[j]
ℓj,lℓj

)
·




(
u
[j]
ℓj ,1

)′

...(
u
[j]
ℓj ,lℓj

)′





 ε,

(4.6)

with

u
[j]
ℓj,1

+
(
u
[j]
ℓj,1

)′
ε, ..., u

[j]
ℓj,lℓj

+
(
u
[j]
ℓj ,lℓj

)′
ε
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∈

{
c1 + x′

1ε, ..., cn + x′
nε, ϕ̂

[j]
1,1(· · · ), ...,

̂
ϕ
[j]
1,kj,1

(· · · ), ϕ̂
[j]
2,1(· · · ), ...,

̂
ϕ
[j]
2,kj,2

(· · · ), ...

...,
̂
ϕ
[j]
ℓj−1,1(· · · ), ...,

̂
ϕ
[j]
ℓj−1,kj,ℓj−1

(· · · )

}
.

Now, we have the following:

Theorem 4.3. The lifting process of f [j] to a subset of the dual numbers, as

described above, computes the directional derivative ∇f [j](c) ·
⇀
x of f [j] at fixed

c ∈ Rn in direction of fixed
⇀
x ∈ Rn as the dual part of ϕ̂

[j]
ℓj
(· · · ).

Proof. By applying proposition 4.2 successively, we obtain

ϕ̂
[j]
ℓj

(
u
[j]
ℓj ,1

+
(
u
[j]
ℓj,1

)′
ε, ..., u

[j]
ℓj,lℓj

+
(
u
[j]
ℓj,lℓj

)′
ε

)
= f [j](c1 + x′

1ε, ..., cn + x′
nε).

Since ϕ
[j]
ℓj

(
u
[j]
ℓj,1

, ..., u
[j]
ℓj ,lℓj

)
= f [j](c1, ..., cn) by construction, (4.6) implies

∇ϕ
[j]
ℓj

(
u
[j]
ℓj,1

, ..., u
[j]
ℓj,lℓj

)
·




(
u
[j]
ℓj ,1

)′

...(
u
[j]
ℓj ,lℓj

)′


 = ∇f [j](c1, ..., cn) ·




x′
1
...
x′
n


 .

Example 4.4. Consider again the function f : R2 → R2 given by

f(x1, x2) =

(
sin(x2) + cos(x2

1 + 3) · 5x2

exp(sin(x1)) + 4x3
2

)
.

We replace x1, x2 in f [1] and f [2] by c1 + x′
1ε and c2 + x′

2ε.
We have, by definition (4.1), proposition 4.1 and proposition 4.2,

f̂ [1](c1 + x′
1ε, c2 + x′

2ε)

= sin(c2 + x′
2ε) + 5(c2 + x′

2ε) · cos((c1 + x′
1ε)

2 + 3)

= sin(c2) + cos(c2)x
′
2ε+ (5c2 + 5x′

2ε) · cos(c
2
1 + 3 + 2c1x

′
1ε)

= sin(c2) + cos(c2)x
′
2ε+ (5c2 + 5x′

2ε) · (cos(c
2
1 + 3)− sin(c21 + 3)2c1x

′
1ε)

= sin(c2) + cos(c2)x
′
2ε+ 5c2 cos(c

2
1 + 3)− 10c1c2 sin(c

2
1 + 3)x′

1ε+ 5 cos(c21 + 3)x′
2ε

= sin(c2) + 5c2 cos(c
2
1 + 3) +

(
−10c1c2 sin(c

2
1 + 3)x′

1 + (cos(c2) + 5 cos(c21 + 3))x′
2

)
ε.

By theorem 4.3, the dual part of this expression is ∇f [1](c1, c2) ·

(
x′
1

x′
2

)
. I.e.,

∇f [1](c1, c2) ·

(
x′
1

x′
2

)
= −10c1c2 sin(c

2
1 + 3)x′

1 + (cos(c2) + 5 cos(c21 + 3))x′
2.
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Similarly,

f̂ [2](c1 + x′
1ε, c2 + x′

2ε)

= exp(sin(c1 + x′
1ε)) + 4 · (c2 + x′

2ε) · (c2 + x′
2ε)

2

= exp (sin(c1) + cos(c1)x
′
1ε) + 4(c32 + c22x

′
2ε+ 2c22x

′
2ε)

= exp(sin(c1)) + exp(sin(c1)) cos(c1)x
′
1ε+ 4c32 + (4c22x

′
2 + 8c22x

′
2)ε

= exp(sin(c1)) + 4c32 +
(
exp(sin(c1)) cos(c1)x

′
1 + 12c22x

′
2

)
ε.

Then, by theorem 4.3,

∇f [2](c1, c2) ·

(
x′
1

x′
2

)
= exp(sin(c1)) cos(c1)x

′
1 + 12c22x

′
2.

Therefore,

Jf (c1, c2) ·

(
x′
1

x′
2

)
=

(
−10c1c2 sin(c

2
1 + 3)x′

1 + (cos(c2) + 5 cos(c21 + 3))x′
2

exp(sin(c1)) cos(c1)x
′
1 + 12c22x

′
2

)
.

Thus, a (basic) implementation of an Automatic Differentiation System can
be realised by implementing (4.1) for all elementary functions together with the
rules of addition and multiplication on dual numbers. The actual computation
of a directional derivative of a function f is then performed by simply replacing
the arguments of each f [j] by dual numbers c1+x′

1ε, ..., cn+x′
nε and evaluating

f̂ [j](c1 + x′
1ε, ..., cn + x′

nε).
Note again that, at no time during this process, any actual differentiation

takes place. Instead, we are computing and passing on the pairs

ϕ̂
[j]
ν,k(· · · ) =


ϕ

[j]
ν,k(· · · ), ∇ϕ

[j]
ν,k (· · · ) ·




(
u
[j]
ν,k,1

)′

...(
u
[j]
ν,k,lν,k

)′





 (4.7)

and ϕ̂
[j]
ℓj
(· · · ) =


ϕ̂

[j]
ℓj
(· · · ), ∇ϕ̂

[j]
ℓj

(· · · ) ·




(
u
[j]
ℓj,1

)′

...(
u
[j]
ℓj,lℓj

)′





 , (4.8)

which computes ‘automatically’ the directional derivatives ∇f [j](c) ·
⇀
x and,

therefore, the directional derivative Jf (c) ·
⇀
x ..

Note further that the pairs (4.7), (4.8) are exactly the same pairs (just with
different indices) as the ones in (3.3). This means that the processes described
in this and in the previous section reduce to exactly the same arithmetic oper-
ations.

Indeed, if we impose a suitable ordering on the ϕ
[j]
ν,k, ϕ

[j]
ℓj
, let ϕi the i-th

function with respect to this ordering, and store the pairs (ci, x
′
i) and

ϕi(· · · ),∇ϕi(· · · )




u′
i,1
...

u′
i,li





 in an array, we obtain the evaluation trace pairs

[v[i],v′[i]]. In summary:

18



Theorem 4.5. The evaluation of the directional derivative Jf (c) ·
⇀
x through

the lifting of each f [j] to a function defined on a subset of D, is equivalent to

the process of computing the evaluation trace pairs [v[i],v′[i]], as described in
the previous section. This process is equivalent to the computation of the pairs
(4.7), (4.8) in suitable order.

5 Forward AD and Taylor Series expansion

In the literature (see, for example, [7]), definition (4.1) is often described as
being obtained by evaluating the Taylor Series Expansion of ĝ about (x1 +
x′
1ε, ..., xµ + x′

µε).
To understand this argument, recall that the Taylor series of an infinitely

many times differentiable multivariate function g : U → R on an open set
U ⊂ Rµ about some point c = (c1, ..., cµ) ∈ U is given by

T (g; c)(x) =

∞∑

n1+···+nµ=0

(x1 − c1)
n1 · · · (xµ − cµ)

nµ

n1! · · ·nµ!

∂n1+···+nµg

∂xn1
1 · · · ∂x

nµ
µ

(c),

for all x = (x1, ..., xµ) ∈ U .
Let now g̃ : Dµ ⊃ U × Rµ → D be an extension of g to the dual numbers

(that is g̃|U = g). We define the Taylor series of g̃ about some vector of dual

numbers (c,
⇀
c ) := (c1 + c′1ε, ..., cµ + c′µε) ∈ U ×Rµ analogously to the real case.

That is,

T (g̃; (c,
⇀
c ))((x,

⇀
x))

=

∞∑

n1+···+nµ=0

(
(x1 − c1 + (x′

1 − c′1)ε)
n1 · · · (xµ − cµ + (x′

µ − c′µ)ε)
nµ

n1! · · ·nµ!

·
∂n1+···+nµ g̃

∂xn1
1 · · · ∂x

nµ
µ

((c,
⇀
c ))

)
,

for all (x,
⇀
x) := (x1 + x′

1ε, ..., xµ + x′
µε) ∈ U × Rµ.

Trivially, this series converges for (x,
⇀
x) = (c,

⇀
c ). Further, due to ε2 = 0,

the Taylor series about any (x,0) = (x1 + 0ε, ..., xµ + 0ε) ∈ U × Rµ converges

for the arguments (x,
⇀
x) = (x1 + x′

1ε, ..., xµ + x′
µε), for all

⇀
x ∈ Rµ. We have,

identifying x with (x,0),

T (g̃;x)(x,
⇀
x) =

∞∑

n1+···+nµ=0

(x′
1ε)

n1 · · · (x′
µε)

nµ

n1! · · ·nµ!

∂n1+···+nµ

∂xn1
1 · · · ∂x

nµ
µ

g̃(x) (5.1)

=
1∑

n1+···+nµ=0

(x′
1ε)

n1 · · · (x′
µε)

nµ

n1! · · ·nµ!

∂n1+···+nµ

∂xn1
1 · · · ∂x

nµ
µ

g̃(x)

= g̃(x) +

µ∑

k=1

∂

∂xk

g̃(x) · x′
kε
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= g̃(x1, ..., xµ) +


∇g̃(x1, ..., xµ) ·




x′
1
...
x′
µ





 ε

= g(x1, ..., xµ) +


∇g(x1, ..., xµ) ·




x′
1
...
x′
µ





 ε.

As we see, the right-hand side of the last equation is equal to
ĝ(x1+x′

1ε, ..., xµ+x′
µε) in definition (4.1). Hence, if we choose g̃ as ĝ, we obtain

ĝ(x1 + x′
1ε, ..., xµ + x′

µε) = T (ĝ; (x1, ..., xµ))(x1 + x′
1ε, ..., xµ + x′

µε). (5.2)

That is:

Proposition 5.1. The extension of a differentiable g : Rµ ⊂ U → R, U open,
to a subset of the dual number as defined in (4.1), is the (unique) function ĝ,
with the property that the images of any (x1 + x′

1ε, ..., xµ + x′
µε) under ĝ and

T (ĝ; (x1, ..., xµ)) are equal.

(Note that this does not mean that ĝ is analytic on U .)
Since we identify U with its natural embedding into Dµ, we can replace g̃(x)

by g(x) in the right-hand side of (5.1). It is custom to do this in the left-hand
side of (5.1) as well. That is, one usually writes T (g; (x1, ..., xµ)) instead of
T (g̃; (x1, ..., xµ)) or T (ĝ; (x1, ..., xµ)).

By the above, it is obvious that one can describe the process of determining

the directional derivatives ∇f [j](c) ·
⇀
x of each f [j] in terms of Taylor series

expansion. I.e., one determines these derivatives by replacing the (x1, ..., xn) in

the elementary functions ϕ
[j]
1,1, ..., ϕ

[j]
1,kj,1

by (c1+x′
1ε, ..., cn+x′

nε) and evaluates
the Taylor series of these functions or, more precisely, of their extensions to
the dual numbers, about the real parts of their arguments. This leads to the

extension of the ϕ
[j]
2,1, ..., ϕ

[j]
2,kj,2

to the dual numbers and one evaluates the Taylor
series of these functions and so on.

This process is, by (5.2), obviously identical to the one described on the
previous pages.

6 Forward AD, Differential Geometry and Cat-

egory Theory

In recent literature (see [6]) the extension of differentiable functions g : U → R

on open U ⊂ Rµ to a function ĝ : Dµ ⊃ U × Rµ → D is described in terms
of the push-forward operator known from Differential Geometry. We shortly
summarize the discussion provided in [6].

Let M,N be differentiable manifolds, TM, TN their tangent spaces and let
h : M → N be a linearly approximatable function. The push-forward (or
differential) T (h) = dh of h can be defined7 as

T (h) : TM → TN with T (h)(x,
⇀
x) = (h(x), dxh(

⇀
x)),

7The definition we are using here is the same as in [6]. Some authors define T (h) = dh via

dh(x,
⇀
x ) = dxh(

⇀
x ).
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where dxh(
⇀
x) is the push-forward (or differential) of h at x applied to

⇀
x .

If now f : X → Rm on open X ⊂ Rn is a differentiable function, this reads

T (f) : X × Rn → R2m with T (f)(x,
⇀
x) =

(
f(x), Jf (x) ·

⇀
x
)
.

Identifying R2m with Dm and in light of (4.2), this means nothing else than

T (f) = f̂ .

Furthermore, in the special case of a real-valued and infinitely many times dif-
ferentiable function g : U → R on open U ⊂ Rµ we also have, by equation
(5.2),

T (g)(x,
⇀
x) = T (g;x)(x,

⇀
x), ∀(x,

⇀
x) ∈ U × Rµ,

which justifies using the letter T for both, the push-forward and the Taylor-series
of g in this setting.

It is now easy to check that T (idM) = idTM and that

T (h ◦ g) = T (h) ◦ T (g),

for all g : M → N and h : N → L, for differentiable manifolds M,N,L. Hence,
the mapping T given by

M 7→ TM

h 7→ T (h)

is a functor from the category of differentiable manifolds to itself. Furthermore,
since TR = R2, one can even consider the ring of dual number D as the image
of R under T , equipped with the push-forwards of addition and multiplication.
That is,

(D,+, ·) = (TR, T (sum), T (prod)) .

Extending this to higher dimensions, the lifting of a differentiable function f :
X → Rm on open X ⊂ Rn to a function f̂ on a subset of the dual numbers
X × Rn ⊂ Dn may be considered as the application of the functor T to X , Rm

and f . In other words,

f̂ : X × Rn → Dm = T (f) : TX → TRm = T (f : X → Rm) .

In summary, the Forward Mode of AD may also be studied from viewpoints of
Differential Geometry and Category Theory.

7 The Reverse Mode of AD

Let, as before, f : X → Rm on open X ⊂ Rn be differentiable. As already
mentioned, the Reverse Mode of Automatic Differentiation evaluates products
of the Jacobian of f with row vectors. That is, it computes

↼
y · Jf (c), for fixed c ∈ X and

↼
y ∈ R1×m.

It not really possible to encode this evaluation using dual numbers. Instead,
an elementary approach, similar to the FAD approach in section 3 will have to
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suffice. The Reverse Mode is, for example, described in [3], [4] and [8]. We
follow mainly the discussion in [3].

Express again f as the composition PY ◦ Φµ ◦ · · · ◦ Φ1 ◦ PX , with PX , PY

and the Φi as in section 3. The computation of
↼
y · Jf (c) is, by the chain rule,

the evaluation of the product

↼
y · Jf (c) =

↼
y · PY · Φ

′
µ,c · · · Φ

′
1,c · PX

⇔ Jf (c)
T ·

↼
y
T
= PT

X · Φ
′T
1,c · · · Φ

′T
µ,c · P

T
Y ·

↼
y

T
, (7.1)

where again Φ′
i,c denotes the Jacobian of Φi at (Φi−1 ◦ · · · ◦ Φ1 ◦ PX) (c).

Obviously, the sequence of state vectors v[i] ∈ H is the same as in the
Forward Mode case. The difference lies in the computation of the evaluation

trace of (7.1), which we denote by v[µ] = v[µ](c,
↼
y), ...,v[0] = v[0](c,

↼
y).

For simplicity, assume PY (v1, ..., vn+µ) = (vn+µ−m, ..., vn+µ), for all

(v1, ..., vn+µ) ∈ H and denote
↼
y

T
= (y′1, ..., y

′
m). We define the evaluation trace

of (7.1) as

v[µ] := PT
Y ·

↼
y

T
= (0, ..., 0, y′1, ..., y

′
m) and v[i−1] := Φ′T

i,c · v
[i].

By (3.2)

(n+ i)-th column

↓

Φ′T
i,c =




1 · · · 0 ∂ϕi

∂v1
(· · · ) 0 · · · 0

...
. . .

...
...

...
...

0 · · · 1
... 0 · · · 0

0 · · · 0
... 1 · · · 0

...
...

...
...

. . .
...

0 · · · 0 ∂ϕi

∂vn+µ
(· · · ) 0 · · · 1




,

where ∂ϕi

∂vk
(· · · ) = ∂ϕi

∂vk
(vi1 (c), ..., vini

(c)) is interpreted as 0 if ϕi does not depend

on vk, and the vi1(c), ..., vini
(c) ∈ {v

[i−1]
1 (c), ...,v

[i−1]
n+i−1(c)}.

Therefore, each v[i−1] is of the form

v[i−1] =




v
[i]
1 + ∂ϕi

∂v1
(· · · ) · v

[i]
n+i

...

v
[i]
n+i−1 +

∂ϕi

∂vn+i−1
(· · · ) · v

[i]
n+i

∂ϕi

∂vn+i
(· · · ) · v

[i]
n+i

v
[i]
n+i+1 +

∂ϕi

∂vn+i+1
(· · · ) · v

[i]
n+i

...

v
[i]
n+µ + ∂ϕi

∂vn+µ
(· · · ) · v

[i]
n+i




.
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The value
↼
y · Jf (c) is then given by

(
↼
y · Jf (c)

)T
= PT

X · v
[0].

Note that, in contrast to Forward AD, the sequence of evaluation trace
pairs [v[i],v[i]] appears in reverse order (that is, [v[µ],v[µ]], ..., [v[1],v[1]]). In
particular, unlike to Forward AD, it is not efficient to overwrite the previous
pair in each computational step. Indeed, since the state vector v[i] is needed
to compute v[i], the pairs [v[i],v[i]] should not be computed (as pairs) at all.
Instead, it is more efficient to first evaluate the evaluation trace v[1], ...,v[µ],
store these values, and then use them to compute the v[µ], ...,v[1] afterwards.

Example 7.1. Consider the function

f : R→ R2, with f(x) =

(
x

exp(x) sin(x)

)
.

We want to determine (y′1 y′2) · Jf (c) for fixed
↼
y = (y′1 y′2) ∈ R1×2 and

c = c ∈ R.
Set H = R5 and f = PY ◦ Φ4 ◦ Φ3 ◦ Φ2 ◦ Φ1 ◦ PX with

PX : R→ R5, with PX(x) = (x, 0, 0, 0, 0),

Φ1 : R5 → R5, with Φ1 (v1, v2, v3, v4, v5) = (v1, exp(v1), v3, v4, ),

Φ2 : R5 → R5, with Φ2 (v1, v2, v3, v4, v5) = (v1, v2, sin(v1), v4, v5),

Φ3 : R5 → R5, with Φ3 (v1, v2, v3, v4, v5) = (v1, v2, v3, v1, v5),

Φ4 : R5 → R5, with Φ4 (v1, v2, v3, v4, v5) = (v1, v2, v3, v4, v2 · v3),

PY : R5 → R, with PY (v1, v2, v3, v4, v5) = (v4, v5).

Clearly, we obtain the evaluation trace v[0](c), ...,v[4](c) with

v[0](c) =




c

0
0
0
0




, ...,v[4](c) =




c

exp(c)
sin(c)
c

exp(c) sin(c)




.

The Reverse Mode of Automatic Differentiation produces now the vectors
v[4], ...,v[0] with

v[4] =




0
0
0
y′1
y′2




,v[3] =




0
y′2 sin(c)
y′2 exp(c)

y′1
0




,v[2] =




y′1
y′2 sin(c)
y′2 exp(c)

0
0




,

v[1] =




y′1 + y′2 cos(c) exp(c)
y′2 sin(c)

0
0
0




,v[0] =




y′1 + y′2 exp(c)(sin(c) + cos(c))
0
0
0
0




.
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Then
(y′1 y′2) · Jf (c) = PT

X · v
0 = y′1 + y′2 exp(c)(sin(c) + cos(c)).

We summarize:

Theorem 7.2. The evaluation of
↼
y · Jf (c) can be achieved by computing the

vectors v[0], ...,v[µ] and v[µ], ...,v[0], where the computation of each v[i−1] is
effectively the computation of the real numbers

v
[i]
k +

∂ϕi

∂vk
(vi1(c), ..., vini

(c)) · v
[i]
n+i, k 6= n+ i,

and
∂ϕi

∂vn+i

(vi1(c), ..., vini
(c)) · v

[i]
n+i.

Remark 7.3. (i) It is not hard to see that the Reverse Mode is the dual con-

cept of the Forward Mode. As a matter of fact, while Jf (x) ·
⇀
x is the

push-forward of f at x applied to
⇀
x , the matrix product

↼
y · Jf (x) is the

pull-back of f at x applied to the linear map
↼
y (which is an element of

R1×m, the dual space of Rm). Indeed, given x, we have trivially

(
↼
y · Jf (x)

)
·
⇀
x =

↼
y ·
(
Jf (x) ·

⇀
x
)
, (7.2)

for all
↼
y ∈ R1×m,

⇀
x ∈ Rn.

(ii) If we use the notations v′[−1] :=
⇀
x ,v′[µ+1] := Jf (c) ·

⇀
x and v[µ+1] :=

↼
y

T
,

v[−1] :=
(
↼
y · Jf (c)

)T
, then (7.2) (with x = c) reads

v[−1]T · v′[−1]
= v[µ+1]T · v′[µ+1]

.

In fact, given c,
⇀
x and

↼
y , it follows immediately from the definitions of

v′[i] and v[i] that the scalar products of the evaluation trace vectors of the
Forward and Reverse Mode

v[i]T · v′[i]

are constant (equal to
↼
yJf (c)

⇀
x ) for all i = −1, ..., µ+1. (That is, at each

time of the computations.)
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