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Abstract In this study, we link and compare the geo-

graphically weighted regression (GWR) model with the

kriging with an external drift (KED) model of geostatistics.

This includes empirical work where models are perfor-

mance tested with respect to prediction and prediction

uncertainty accuracy. In basic forms, GWR and KED

(specified with local neighbourhoods) both cater for non-

stationary correlations (i.e. the process is heteroskedastic

with respect to relationships between the variable of

interest and its covariates) and as such, can predict more

accurately than models that do not. Furthermore, on spec-

ification of an additional heteroskedastic term to the same

models (now with respect to a process variance), locally-

accurate measures of prediction uncertainty can result.

These heteroskedastic extensions of GWR and KED can be

preferred to basic constructions, whose measures of pre-

diction uncertainty are only ever likely to be globally-

accurate. We evaluate both basic and heteroskedastic

GWR and KED models using a case study data set, where

data relationships are known to vary across space. Here

GWR performs well with respect to the more involved

KED model and as such, GWR is considered a viable

alternative to the more established model in this particular

comparison. Our study adds to a growing body of empirical

evidence that GWR can be a worthy predictor; comple-

menting its more usual guise as an exploratory technique

for investigating relationships in multivariate spatial data

sets.

Keywords Heteroskedastic � Local uncertainty �
Relationship nonstationarity

1 Introduction

A routine problem in spatial statistics is that of accurate

prediction of an attribute at locations where no measure-

ments have been taken and accurate estimates of the

uncertainty surrounding such predictions. Spatial predic-

tion is not only valuable to researchers who attempt to

model spatial processes, but also to policy makers who

need to plan and manage the outcomes of spatial processes

at different spatial scales. Often overlooked in model

specification is the importance of allowing: (a) data rela-

tionships and (b) data variability, to vary across space. In

essence (and depending on the nature of the spatial pro-

cess), incorporating the former specification has the

potential to improve prediction accuracy, whilst incorpo-

rating the latter has the potential to improve prediction

uncertainty accuracy. In this respect, a key aim of this

study is to demonstrate the utility of basic (specification (a)

only) and heteroskedastic (specifications (a) and (b)) geo-

graphically weighted regression (GWR) models in relation

to comparable kriging with an external drift (KED) models.

The GWR models are evaluated in the context that KED

is a best linear unbiased predictor (BLUP) and this statis-

tical property ensures that it would be frequently the pre-

dictor of choice. The intention here is not to show that

GWR is superior to KED, but that it may provide an

alternative that in some circumstances is worth consider-

ation for other reasons. The use of GWR as a predictor has
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attracted much attention, where it has been empirically and

favourably compared to: (i) alternative regressions (e.g.

Zhang et al. 2005; Gao et al. 2006; Bitter et al. 2007;

Kupfer and Farris 2007) or (ii) kriging (Páez et al. 2008). In

contrast, GWR has been empirically and unfavourably

compared to: (a) alternative regressions (Wheeler and

Waller 2009; Salas et al. 2010) or (b) kriging (Lloyd 2010).

Simulated data comparisons between GWR and kriging

can be found in Harris et al. (2010a), where kriging is again

favoured. Thus in context, our study is aimed at adding to

the empirical evidence for using GWR as a predictor in

relation to KED, but now we extend the empirical evalu-

ation by calibrating heteroskedastic models, so that esti-

mates of prediction uncertainty are evaluated. To our

knowledge, only Harris et al. (2010a) has evaluated such

measures, but for basic models only.

We now describe in detail the GWR and KED models,

where critical linkages between them are stated and dis-

cussed. Models are then empirically evaluated using a

freshwater acidification critical load data set for Great

Britain, where relationships between contextual catchment

data and critical loads are known to vary across space and

where accurate local uncertainty outputs are vital to an

informed management strategy for the protection of

freshwaters. Although the results of our analyses may

further understanding of the critical load process, the study

has a firm methodological emphasis on the prediction

techniques themselves.

2 Prediction methods

Both GWR and KED can be defined using

Z xð Þ ¼ m xð Þ þ R xð Þ, where the random function Z(x) is

decomposed into a mean m(x) and residual R(x) component.

Here x is any spatial location (observed or unobserved) and

z(xi) is the data with i = 1, …, n. Both GWR and multiple

linear regression (MLR), model m(x) assuming R(x) is a

stationary random function with E{R(x)} = 0 and

VAR{R(x)} = R, where the elements of the diagonal

(n 9 n) matrix R ¼ r2I reflect zero spatial autocorrelation. In

GWR, spatially-varying relationships between the dependent

variable and its covariates are accounted for via locally

weighted MLR fits that are calibrated from spatial data.

For KED, m(x) is modelled with MLR, but now the

elements of R reflect a structured covariogram C(h), where

h is the separation distance vector h = xi - xj. As is

standard practice, the elements of R are found from the

variogram c(h) via the relationship C(h) = r2 - c(h).

Accordingly, R is a function of variogram parameters and

can be denoted by Rh, where for this study, h is a variogram

parameter vector consisting of a nugget variance c0; a

structural variance c1; and a correlation range a. The KED

model can be calibrated in an implicit or explicit form (e.g.

Bailey and Gatrell 1995), where the former caters for

spatially-varying relationships, via the use of local neigh-

bourhoods (as now the MLR component fit is also local;

e.g. Wackernagel 2003, pp. 283–299). In this respect, this

particular form of KED acts as a direct alternative to GWR.

For KED and GWR, prediction uncertainty at a point

location can be accounted for via a conditional distribution

defined by the prediction and its variance (i.e. an assumption

of multivariate normality of Z is taken for both models).

However for basic constructions, this approach is rarely

recommended as the prediction variances are unlikely to

vary in accordance with the variability in the local data used

to provide the predictions (with respect to kriging see,

Journel 1986; Switzer 1993; Heuvelink and Pebesma 2002;

Harris et al. 2010b). As such, we adapt KED using the locally

varying (variogram) sills methodology presented in Isaaks

and Srivastava (1989, pp. 516–523), where variance non-

stationarity is dealt directly and simply via a local correction

of the KED variances. We call this heteroskedastic KED

model, H-KED and as will be seen, we can locally-correct the

KED variances in a number of different ways. Similarly for

GWR, we address its stationary residual variance by cali-

brating a heteroskedastic version (H-GWR) (Fotheringham

et al. 2002), which allows the residual variance to vary across

space. Both H-KED and H-GWR should provide both

globally- and locally-accurate prediction variances.

2.1 Geographically weighted regression (GWR)

For k independent covariates y1; y2; . . .yk, the MLR model

can be written as Z = Yb ? R, where Z is the (n 9 1)

sample (dependent) data vector, Y is the (n 9 k) covariate

matrix, b is a (k 9 1) vector of unknown parameters, and R is

a (n 9 1) residual vector. The ordinary least squares (OLS)

parameter estimates b̂ are found from b̂ ¼ YTY
� ��1

YTZ,

and ẑMLR xð Þ ¼ y xð ÞTb̂ is the MLR prediction at x (where

y(x) is a (k 9 1) vector of covariates at x). The corresponding

GWR model has parameter estimates b̂ xð Þ found from

b̂ xð Þ ¼ YTW xð ÞY
� ��1

YTW xð ÞZ where W(x) is a (n 9 n)

diagonal matrix of spatial weights. The GWR prediction at

x is:

ẑGWR xð Þ ¼ y xð ÞTb̂ xð Þ ð1Þ

and the GWR prediction variance1 at x is estimated using:

r2
GWR xð Þ ¼ VAR ẑ xð Þ � z xð Þf g ¼ r̂2 1þ S xð Þ½ � ð2Þ

Here S(x) = y(x)T[YTW(x)Y]-1YTW2(x)Y[YTW(x)Y]-1y(x)

and the residual variance is taken as r̂2 ¼ RSS=ðn� ENPÞ,

1 For corresponding MLR prediction variances use:

S(x) = y(x)T[YTY]-1y(x).
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where RSS is the residual sum of squares and ENP is the

effective number of parameters of the GWR fit (Leung et al.

2000).

For our case study, the weighting matrix in GWR is

specified using an (isotropic) exponential kernel, which

was chosen from preliminary experimentation with GWR

fits using a number of kernel types. For this continuous,

distance-decay kernel, weights at location x accord to

wðxÞ ¼ expð�di=bÞ where the bandwidth parameter is the

distance b and di is the distance between x and a sample

location i. An optimal bandwidth is found with an adaptive

technique2 using leave-one-out cross-validation, where the

root mean squared prediction error (RMSPE) is calculated

for a range of bandwidths and the bandwidth that gives the

minimum RMSPE is considered optimal.

2.2 Heteroskedastic GWR (H-GWR)

A H-GWR model is calibrated by replacing the global r̂2 in

expression 2 with a local estimate r̂2 xð Þ. The model has an

iterative form, where at each iteration step, a re-weighted

GWR fit is found (Fotheringham et al. 2002, pp. 80–82).

The re-weighting is based on a mean smoothing over the

observed squared residuals, which is used to provide esti-

mates of r2(x). In particular, the usual geographic weight at

x is multiplied by the inverse of r̂2 xð Þ, where this second

weighting corrects for local heteroskedasticity and is

analogous to the use of weighted least squares (WLS) in

MLR to stabilise a non-constant residual variance. The

algorithm is applied with updated estimates of b̂ xð Þ and

r̂2 xð Þ, until an acceptable level of convergence is

reached. As the parameter estimates b̂ xð Þ are updated

(i.e. b̂ xð Þ ¼ b̂U xð Þ), then the H-GWR prediction at x is also

updated to give:

ẑHGWR xð Þ ¼ y xð ÞTb̂U xð Þ ð3Þ

and the final r̂2 xð Þ replaces r̂2 in expression 2 to give this

prediction variance at x:

r2
HGWR xð Þ ¼ r̂2 xð Þ 1þ S xð Þ½ � ð4Þ

Thus H-GWR has the potential to improve prediction

accuracy, as well as prediction uncertainty accuracy over a

basic GWR model. The bandwidth (and kernel function)

specified with H-GWR is the same as that found optimally

with basic GWR. The same bandwidth and kernel function

is also used to smooth the observed squared residuals.3

The local mean smoother used, is given in Sect. 2.4,

expression 7.

2.3 Kriging with an external drift (KED)

For parameter estimation in KED, we use restricted maximum

likelihood (REML), to first identify relatively unbiased esti-

mates of Rh and then in turn, relatively unbiased estimates of b

via generalised least squares (GLS) (e.g. Schabenberger and

Gotway 2005, pp. 259–263). Here, and after some initial

experimentation, we specify an (isotropic) exponential vario-

gram model-type only, i.e., c hð Þ ¼ c0 þ c1 1� exp �h=að Þð Þ.

Thus b̂GLS ¼ YT Rh½ ��1Y
� ��1

YT Rh½ ��1Z provides the

parameter estimates for the MLR component and the KED

prediction at x is:

ẑKED xð Þ ¼ y xð ÞTb̂GLS þ rT
h Rh½ ��1 Z� Yb̂GLS

� �
ð5Þ

where rh is a (n 9 1) vector of spatial covariances between

residuals at x and the sample locations. The KED variance

at x is:

r2
KED xð Þ ¼ r̂2 � rT

h Rh½ ��1rh

n o

þ
�

y xð Þ � YT Rh½ ��1rh

� �T

YT Rh½ ��1Y
� ��1

� y xð Þ � YT Rh½ ��1rh

� ��
ð6Þ

and the KED weights at x are kKED(x) = [Rh]-1rh.

Observe that r̂2 is the estimate of the residual variogram

sill (c0 ? c1), where c0 and c1 are partial sills.

To find ẑKED xð Þ and r2
KED xð Þ, an implicit solution is

adopted when KED is specified with local neighbourhoods.

Neighbourhood size is chosen optimally using the same

leave-one-out cross-validation procedure as that used to

find the bandwidth in GWR.4 Technically, local residual

variogram parameters should be estimated that are specific

to x, but instead, the parameters of the global residual

variogram are retained. When KED is approximated in this

manner, it is no longer a BLUP (Chilès and Delfiner 1999,

p. 201). However, the approximation usually has a minimal

effect on (overall) prediction accuracy and is often used to

reduce computational burden. The approximation is not so

easily justified from a prediction uncertainty viewpoint as

the KED variance depends strongly on the variogram,

except that reliable (automatic) local variography is rarely

viable (Schabenberger and Gotway 2005, pp. 425–426).

2 In this case the bandwidth is a nonlinear parameter, which reflects a

fixed local sample size that exerts the greatest influence on each local

regression fit.
3 This is a pragmatic modelling decision where an alternative would

be to find an optimal bandwidth at each iteration step of the H-GWR

fit. Further work could address this issue.

4 In this respect, both GWR and KED are optimised for prediction

accuracy only. For KED, a more succinct approach for neighbourhood

selection is described in Rivoirard (1987), but is not used here as it

would compromise our GWR to KED comparison.
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2.4 Heteroskedastic KED (H-KED)

For our H-KED model, we first model some simple rela-

tionship between the local means and variances (of the raw

data) and then transfer this relationship to locally correct the

KED variances in relation to their predictions. This approach

implicitly assumes that (unseen) local variograms vary

proportionally across space, which in turn entails that they

only differ from the global variogram by some re-scaling

factor. As the KED variances are primarily a function of the

variogram,5 then they too are assumed proportional to (the

sill of) the global variogram. Consequently, the global

variogram and the KED variances can be locally adjusted by

the same re-scaling factor. Ignoring local variogram pro-

portionality when applying KED does not affect prediction

accuracy, but does result in an over-estimation of the KED

variance at locations where a local variogram’s sill would be

smaller than that defined by the global variogram (and vice

versa). Problems with the H-KED approach centre on a

tenuous assumption of variogram proportionality. An alter-

native would be to calibrate KED with the true local vari-

ograms (see above), but H-KED is much simpler, as only

one (not multiple) variograms are needed.

In this study, the following H-KED procedure is adop-

ted. Firstly, KED predictions and relative KED variances

are found at target sites, via the use of a variogram model

standardised to a sill of one. To find the H-KED variances,

the relative KED variances need to be multiplied by local

variance estimates at the same sites. Here the local variance

estimates are found indirectly via a modelled relationship

to local means. Thus (initial) local mean and local variance

estimates are found (at the calibration sites, say) and then

this (local statistic) data is used to calibrate some regres-

sion, where the variance is equated to some function of the

mean. This regression is then solved at target sites, where

the KED predictions are used as the local mean estimates

so that the local variance estimates are found. Our (initial)

local mean m(x) and variance s2(x) estimates are found in a

geographically weighted (GW) form using:

m xð Þ ¼
Xn

i¼1

wiz xið Þ
,
Xn

i¼1

wi ð7Þ

s2 xð Þ ¼
Xn

i¼1

wi z xið Þ � m xð Þð Þ2
,
Xn

i¼1

wi ð8Þ

where the weights wi accord to the same exponential kernel

function defined before. Both the GW mean and GW vari-

ance calculations are specified using the same (adaptive)

bandwidth. This bandwidth is chosen by judgement, where

first, an optimal bandwidth for the GW mean is found using

leave-one-out cross-validation. This bandwidth is then

increased if it is considered too small to be used for the GW

variance estimates (or vice versa), where the plot of GW

means against GW variances is considered too scattered (or

too smooth). This procedure is conducted so that simple but

true relationships with this local statistic data are favoured,

which in turn, promotes parsimonious regressions.6

2.5 Linkages between the methods

A. For KED, it is assumed that the residual process is

worth modelling, whereas for GWR the residual pro-

cess is assumed random. Here GWR strives to model

spatial patterns through variation in regression coeffi-

cients (only) and as such, tends to use more parameters

to describe the mean structure than KED does. On

balance, KED tends to be the more complex model.

B. Model calibration for GWR and KED is influenced by

one kernel or one variogram function, respectively. The

kernel function in GWR directly weights data, whereas

the variogram in KED indirectly weights data. For

GWR, dependent and covariate data are weighted at

each calibration point, whereas for KED, only depen-

dent data are weighted (as the trend can be filtered out

via the use of constraints, e.g. see Goovaerts 1997).

C. Weights in KED will not decay uniformly from a

calibration point as in GWR, since accounting for

spatial dependence leads to desirable weighting effects

(i.e. information/screening/relay) that accord to the

data’s spatial configuration (Chilès and Delfiner 1999,

p. 205). Thus spatial configuration will directly affect

any performance comparison between GWR and KED.7

D. For KED in local neighbourhoods (KED-LN), each

local MLR fit relates to GWR specified with a box-car

kernel (i.e. weights accord to w(x) = 1 if di B s and

w(x) = 0 if di [ s, where s is the bandwidth). Differ-

ences still exist as the former uses GLS estimation

locally, whilst the latter uses OLS estimation locally.

E. It follows from point D, the only instance when GWR

can be considered a special case of KED-LN is when

GWR is specified with a box-car kernel and KED-LN is

specified with a nugget variogram (provided the same

bandwidth/neighbourhood is specified); both of which

generally do not happen in practice. This is analogous to

an equivalence of MLR and KED in a global neighbour-

hood (KED-GN).

5 Observe that the first part of the KED variance in expression 6

represents the kriging variance of the residuals and the second part is

a consequence of estimating the MLR trend component.

6 Clear relationships can also be promoted by replacing the GW

variance estimates with GW standard deviation (SD) estimates (and

adapting the whole H-KED procedure accordingly).
7 Laslett (1994) provides a general view on this issue with respect to

kriging versus splines.
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F. With respect to each model’s matrix algebra (and the use

of box-car kernels and nugget variograms aside), the WLS

weights matrix W(x) of GWR does not equate to the GLS

variance–covariance matrix Rh(x) of KED-LN

(Rh(x) refers to specific rows and columns of Rh at

x according to the size of the neighbourhood). Here, the

diagonal elements of W(x) are nonstationary, whilst those

of Rh(x) are stationary. Furthermore, W(x) always has

zero off-diagonal entries, whereas those ofRh(x) arenever

all non-zero. For these reasons, the trend component of

KED-LN (or KED) cannot equate to some GWR model.

G. The critical difference between GWR and KED is how

each model is able to use information in relation to

modelling spatially-varying relationships. For GWR

specified with a continuous distance-decay kernel all

sample data is used and a different set of regression

parameters can be found at target locations. If KED

uses all the data, the same set of regression parameters

result at target locations. Thus KED can only model

spatially-varying relationships, via data subsets. How-

ever when local subsets are used, GWR is not limited to

a box-car form (as in KED-LN), since GWR can use a

distance-decay kernel, such as the bi-square (i.e.

w(x) = (1 – (di/s)2)2 if di B s and w(x) = 0 if di [ s).

H. Point G enables GWR to be a more flexible (and robust)

model. This is particularly pertinent when covariates are

not continuous and/or locally collinear, since KED-LN

will fail across a range of neighbourhoods due to matrix

instability (e.g. Deutsch and Journel 1998, p. 71), whilst

GWR specified with some distance-decay kernel is

usually able to circumvent such problems. For instances

where collinearity problems cannot be adequately

addressed with basic GWR, the ridge or lasso GWR

models of Wheeler (2007, 2009) would be a more formal

way of dealing with them. These variants of GWR are

also known to improve prediction accuracy over basic

GWR in such data situations. Presumably, the trend

component of KED-LN could be similarly adapted, if

collinearity problems occur.

I. Finally, our chosen H-GWR and H-KED models are

deliberately simple. Here, we could specify our H-GWR

model using the same approach as that used in H-KED

and similarly, our H-KED model could follow a

similar approach to that used in H-GWR. Instead, we

calibrate heteroskedastic models that are likely to be

familiar to each model’s respective audience.

3 Case study: data and model assessment diagnostics

3.1 Case study data

Our case study data is a multivariate freshwater acidification

critical load data set covering Great Britain (CLAG

Freshwaters 1995).8 The size and scale of this data suits

nonstationary modelling, where a previous investigation

with GWR provided evidence of space-varying relationships

between contextual catchment data and critical load (Harris

et al. 2010c). Here three continuous covariates and one class

covariate are available. The continuous covariates are

termed weighted geological sensitivity (Wt.GSP), weighted

soil buffering capacity (Wt.SBCP) and weighted soil critical

load (Wt.SCLP). The nominal nine-class covariate is termed

dominant land cover (LC9D). Table 1 summarises the range

of values that the weighted covariates can take according to

an expected acid buffering capacity. Thus low critical load

values would be expected to correspond to low Wt.GSP/

Wt.SBCP/Wt.SCLP values (and vice versa). The land cover

covariate is described in Table 2. Origins of the catchment

data can be found in Kernan et al. (1998, 2001).

An unbalanced (or preferential) critical load sampling

campaign entails that declustered data sets are used to ensure

unbiased estimates of any (global) moment or model param-

eter. As such, (for this and previous studies), two data subsets

were found which comprise of a spatially representative

(declustered) data set of 497 sites for model calibration and a

spatially representative (declustered set-aside) data set of 189

sites for model validation. This data post-processing also

ensured that the distribution summary statistics for the cali-

bration and validation data sets are almost identical. In sum-

mary, the calibration and validation data were chosen so that a

well-judged comparison of model form is possible (see Fig. 1).

Table 1 Continuous weighted catchment covariates

Buffering

capacity

Wt.GSP Wt.SBCP Wt.SCLP Acid

sensitivity

Low

;

High

1.0

;

4.0

10.0

;

80.0

0.1

;

4.0

High

;

Low

Table 2 Nine-class land cover covariate

LC9D class Description

1 Water and built/bare ground

2 Mown/grazed turf

3 Meadow/verge/semi-natural

4 Tilled land

5 Deciduous woodland

6 Coniferous woodland

7 Lowland semi-natural grass/moor

8 Upland semi-natural grass/bog moor

9 Upland semi-natural shrub moor

8 Critical load data can be found at http://critloads.ceh.ac.uk/

index.htm (last accessed 10 January 2009).
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Observe that we aim to predict site-specific threshold data.

Further work (not presented here) would compare the resultant

critical load predictions (and their estimates of uncertainty)

with their corresponding deposition (contaminant) prediction

model outputs; in order to find the (all important) critical load

exceedance (critical load minus deposition) data. That is,

apply the critical load concept at un-sampled freshwater sites

(Nilsson and Grennfeld 1988). This dual and interactive pre-

diction methodology (e.g. Van Meirvenne and Goovaerts

2001) should ultimately provide accurate estimates of critical

load exceedance risk. For freshwater sites where this risk is

high, acidification and associated environmental damage is

likely. Such sites can then be targeted and managed accord-

ingly. For Great Britain, the granite regions of Scotland and

Wales are particularly affected by acidification.

It is not our intention to generalise the results from this

study. Instead our aim is to present and interpret the results

in the context of this particular data set. In our view, an

empirical evaluation has merit and the concept of ‘external

objectivity’ (Matheron 1989, p. 38) can be invoked, where

the worth of a given predictor can be gauged by its per-

formance in the ‘long run’ through an increasing number

and variety of applications. For generalised results, simu-

lated data comparisons can be more fruitful, where some

initial steps have been undertaken in Harris et al. (2010a).

3.2 Model assessment diagnostics

For actual z(xj) and predicted ẑ xj

� �
data; model predic-

tion accuracy is measured by: (a) the mean predic-

tion error, MPE ¼ 1=Nð Þ
PN

j¼1 z xj

� �
� ẑ xj

� �� 	
;

RMSPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Nð Þ

PN
j¼1 z xj

� �
� ẑ xj

� �� 	2
q

; and the

mean absolute prediction error,

MAPE ¼ 1=Nð Þ
PN

i¼1 z xj

� �
� ẑ xj

� ��� ��; where N = 189.

Rank-based diagnostics are also found. Here the mean rank

Fig. 1 Location and

distribution of critical load data:

a model calibration and b model

validation. Maps shown with

IDW fit to all critical load data

for context (note that the

Orkney and Shetland Islands in

the far NE of Great Britain have

no sampled sites). Units for

critical load data are in

keq H? ha-1 year-1
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of a model is defined as: MRKm ¼ 1=Nð Þ
PN

j¼1 rmj,

where rmj is the rank of the mth model for accurately

predicting the jth observation. At each validation

point, models are ranked according to the smallest

absolute prediction error. The SD of the ranks is

SDRKm ¼ 1= N � 1ð Þð Þ
PN

j¼1 rmj �MRKm

� �2
h i0:5

. Models

that perform well should have a small mean rank and a

small SD of ranks.

In a global-sense, prediction uncertainty accuracy can be

measured using the mean squared deviation ratio,

MSDR ¼ 1=Nð Þ
PN

j¼1 z xj

� �
� ẑ xj

� �� 	2
.

r2
P xj

� �� �
. Here

MSDR \ 1 implies that the prediction variances rP
2(xj)

tend to over-estimate the squared prediction errors (and vice

versa). In a local-sense, prediction confidence interval (PCI)

accuracy can be assessed using coverage probabilities. For

example, if symmetric 95% PCIs were calculated at each

validation site, then a correct modelling of local uncertainty

would entail there is a 0.95 chance that the actual value z(xj)

falls within the interval. If a coverage probability is found

for a range of symmetric PCIs (say from a 1% to a 99% PCI

in increments of 1%) and the results plotted against the

probability interval p, then an accuracy plot is found.

Accuracy plots can be summarised by the G-statistic,

defined as G ¼ 1�
R 1

0
3a pð Þ � 2½ � �n pð Þ � p

� 
dp, where �n is

the fraction of actual values falling in the PCI, and a value

of 1 is sought. The indicator function a(p) is defined as

a pð Þ ¼ 1 if �n pð Þ� p
0 otherwise

�
;

which implies that twice the importance is given to devi-

ations when �n pð Þ\p. For cases where two models provide

similar accuracy plots, one model can be preferred if its

PCI widths that contain the actual value are smaller (i.e.

more precise). Here the corresponding PCI width plots can

be constructed and compared. For details use Goovaerts

(2001).

4 Case study: analysis and results

Our first objective is to assess model prediction accuracy in

relation to: (a) covariate subset selection; (b) the nature of

any structure shown in the KED variogram; and (c) the

nature of relationship nonstationarity between critical load

and covariates. Here we only calibrate MLR, GWR, KED-

GN and KED-LN models, where findings from this

preliminary analysis should provide insight into the dif-

ferences between GWR and KED-LN when predicting with

space-varying relationships. This analysis is conducted

using a leave-one-out approach, where the results are also

used to provide a covariate subset for our second study

objective, where we calibrate both basic and heterosked-

astic models for prediction at the validation sites. In this

focused analysis, we investigate prediction and prediction

uncertainty accuracy for: MLR, GWR, KED-GN, KED-

LN, H-GWR and H-KED.

4.1 Preliminary analysis

An AIC-led investigation presented in Harris et al. (2010c)

indicated that: Critical Load = f(Wt.GSP, Wt.SBCP,

LC9D2, LC9D3, LC9D4) provides the most parsimonious

MLR fit; whereas a GWR model of this form: Critical

Load = f(Wt.GSP, Wt.SBCP, Wt.SCLP, LC9D2, LC9D3,

LC9D4) provides the most parsimonious local (and overall)

fit (i.e. Wt.SCLP only appears to be important locally). This

prior work also indicated that Wt.GSP and Wt.SCLP have

the strongest nonstationary relationships with critical load.

For this study, we build on such results and immediately

discard the other six land class covariates. The retained land

class covariates all have a positive relationship to critical

load and to further simplify our analysis, we aggregate these

covariates to form a single land class covariate, termed

Arable. This covariate is similarly defined in the compara-

ble critical load studies of Kernan et al. (1998, 2001) and the

aggregation loses little in predictive information.

Therefore using our reduced covariate data set, we can

now calibrate (a manageable) fifteen models for each of

MLR, GWR, KED-GN and KED-LN (i.e. 60 models in

total) and assess their prediction accuracy via RMSPE.

Each of the fifteen models relates to a unique combination

of covariates. In addition, we report the relative structural

variability (RSV, where RSV = (c1/(c1 ? c0)) 9 100%)

and the correlation range of each KED variogram. Here

residual spatial dependence is viewed as strong when RSV

values tend to 100% in conjunction with a long correlation

range. Table 3 and Fig. 2 summarise the results of this

exercise, where models are ranked according to the

strength of spatial dependence found in their respective

KED variogram. This ranking is based on a judged eval-

uation of the RSV and correlation range data (and is not

intended to be definitive). All models are calibrated using

covariate data with a small random error addition (between

0.0001 and 0.001). This was only necessary so that all 15

KED-LN models could be calibrated. The effect of this

error addition (for models that could be calibrated with or

without the error) was only observed in the fourth decimal

place of the resultant RMSPE data.9 This problem with

KED-LN directly relates to point H of Sect. 2.5, where the

nature of our covariate data results in exact (or near exact)

9 The random error addition was not required for our focused

analysis, as our chosen KED-LN model could be reliably calibrated

without it.
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local collinearity, which occurs more frequently as the

neighbourhood is reduced.

From Table 3, the KED variograms with little structure

(low ranks) tend to coincide with a well-informed trend

component, which is expected. Observe that the first five

ranked KED variograms essentially depict pure nugget

(random) variation, as the correlation range is extremely

small. In fact, all 15 KED variograms were estimated with

a high value of c0; reflecting a high level of underlying

noise in the critical load data. This small scale random

variation is expected from known flaws in the measurement

and sampling strategy (Harris et al. 2010c). In summary,

spatial dependence in all fifteen residual processes is not

particularly strong. Also from Table 3, the size of the

GWR bandwidth or KED-LN neighbourhood can indicate

which data relationships are more nonstationary than sta-

tionary. Here Wt.GSP, Wt.SCLP and Arable appear to have

a nonstationary relationship with critical load, whilst the

large bandwidths/neighbourhoods associated with

Wt.SBCP, suggest a stationary one.

From Fig. 2, some interesting and important results

emerge. Here each model’s prediction accuracy is plotted

in relation to any structure seen in a model’s corresponding

KED variogram. Firstly, the most accurate set of models is

Prediction accuracy in relation to KED variogram structure
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Fig. 2 Leave-one-out RMSPE

data for 60 model fits. Models

are ranked by the structure seen

in the KED variogram, where

models to the left relate to

relatively weak spatial

dependence. Covariate subset

labels are explained in Table 3

Table 3 Calibration details for 60 model fits (see also Fig. 2)

Covariate subset Model name GWR Bandwidth KED-LN

Neighbourhood (%)

Variogram

RSV

Variogram

range

Variogram

rank

All covariates ALL 0.020 10 100.0 7.3 1

Wt.GSP ? Wt.SBCP ? Arable G-SB-A 0.095 40 100.0 7.4 2

Wt.GSP ? Wt.SCLP ? Arable G-SCL-A 0.022 8 100.0 7.5 3

Wt.GSP ? Arable G-A 0.034 22 100.0 7.8 4

Wt.SBCP ? Arable SB-A 0.034 57 100.0 9.0 5

Wt.SBCP ? Wt.SCLP ? Arable SB-SCL-A 0.009 10 29.3 27.4 6

Wt.GSP ? Wt.SBCP G-SB 0.060 28 12.7 47.2 7

Wt.GSP ? Wt.SBCP ? Wt.SCLP G-SB-SCL 0.022 26 12.1 58.9 8

Wt.SBCP SB 0.022 93 20.8 78.6 9

Wt.SBCP ? Wt.SCLP SB-SCL 0.012 34 19.2 84.4 10

Wt.GSP ? Wt.SCLP G-SCL 0.022 10 18.0 113.7 11

Wt.GSP G 0.022 10 20.8 116.0 12

Wt.SCLP ? Arable SCL-A 0.008 6 27.8 60.9 13

Wt.SCLP SCL 0.008 10 32.0 152.0 14

Arable A 0.007 12 40.4 61.0 15

A variogram rank of 1 refers to relatively weak spatial dependence
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when all four covariates are specified. Here all four models

perform similarly and as such, little is gained in specifying

a spatial model in preference to MLR. This strong pre-

diction performance coincides with little structure seen in

the KED variogram; and in general, as the covariate subset

is reduced, KED structure improves, but prediction accu-

racy weakens. A few GWR and KED-LN models still

perform well however, with a reduced covariate data set.

This is a model misspecification issue where seemingly

important spatial effects can be (partially) attributable to

missing covariates. In all fifteen model sets, MLR is always

the poorest predictor, whereas in general, GWR is the most

accurate predictor followed by KED-LN and KED-GN.

As would be expected, all models tend to perform in a

similar manner if critical load to covariate relationships are

stationary. This effect tends to occur when Wt.SBCP is

included as a covariate (suggesting strength in this sta-

tionary relationship to critical load). In such cases, KED-

GN (or possibly MLR) can be preferred to KED-LN or

GWR. Conversely, strongly dissimilar model performances

are found when some combination of Wt.GSP, Wt.SCLP

and Arable are included as covariates. In these cases, MLR

always performs poorly whilst GWR and KED-LN always

perform relatively well (and should be preferred).

For KED-GN, its prediction improvement over MLR

depends on the strength of structure seen in the KED

variogram, where as would be expected, improvement is

greatest when the KED variogram structure is strong.

Although KED-GN does not account for nonstationary

relationships, any short fall in the performance of its MLR

trend component can be partially accounted for in the

modelling of its residual component. In this respect, KED-

GN often performs well with respect to GWR. This effect

can be considered analogous to the usual analytical

impasse when separating first- from second-order effects.

In the context of this study, we are most concerned with

models fitted using a covariate subset where relationships

are strongly nonstationary. This is apparent when the

Fig. 3 a Bandwidth function

for GWR (and H-GWR)

calibration (shown with

selective filtering of bandwidth

size); b REML variogram fit for

KED calibration; fit shown with

method of moments (MOM)

residual variogram estimator for

context only; c KED

neighbourhood function;

d surface of r̂2 xð Þ for H-GWR
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Fig. 5 Local a mean and b SD

surfaces for H-KED models

Fig. 4 Goodness of fit plots for

the local mean and local SD

regressions of the H-KED

models: a LR; b GWR; and

c MLR
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difference in prediction performance between (i) MLR and

GWR and (ii) KED-GN and KED-LN is greatest. Here four

covariate subsets immediately stand out: (a)

Wt.GSP ? Wt.SCLP ? Arable; (b) Wt.GSP ? Wt.SCLP;

(c) Wt.SCLP ? Arable; and (d) Wt.SCLP only (these are

highlighted in Fig. 2). In all four cases, either a KED-LN or

a GWR model would be our chosen critical load predictor.

Observe that the strength of structure seen in KED vario-

gram does not play a role in differentiating between a

KED-LN and GWR model. This empirically confirms the

linkages between these models set out in Sect. 2.5, where

GWR with anything other than a box-car kernel cannot be a

special case of KED-LN or its trend component. If this

were the case, differences in performance between the two

models should increase as the KED variogram depicts

greater structure. This effect is not apparent, not only

across the four chosen covariate subsets, but also across all

fifteen covariate subsets.

Finally, we can choose a covariate subset for a focused

analysis where models are calibrated to predict at the

validation sites. Here we can choose any one from the four

covariate subsets above, as only in these cases would we

consider applying KED-LN or GWR over a stationary

counterpart. Choosing from these four covariates subsets

should not be dismissed as a fabrication to promote our

model comparison, as it is common for some covariates to

be unavailable at some sites (Kernan et al. 1998, 2001). As

such, we choose Wt.GSP ? Wt.SCLP as our covariate

subset, for no other reason than models using this covariate

subset have been calibrated in related studies and thus an

extended comparison is possible.

4.2 Focused analysis: model calibration

4.2.1 GWR and KED

The bandwidth function for our chosen GWR models is

given in Fig. 3a. The function is well-behaved where a

clear minimum is reached at a bandwidth of 2.2%. The

exponential variogram model and the neighbourhood

function for our chosen KED models are given in Fig. 3b,

c, respectively. The variogram parameters are estimated at:

c0 = 17.15, c1 = 3.76 and a = 114 km. The neighbour-

hood function is fairly well-behaved, where a size of 10%

or 16% can be taken as optimal. The latter is chosen at it

provides better prediction accuracy results at the validation

sites.

4.2.2 H-GWR

To gauge residual variance nonstationarity with the GWR

models, a surface of r̂2 xð Þ for the fifth and final iteration of

the H-GWR model is given in Fig. 3d. High residual var-

iability appears in areas of northern and SW England,

which can be attributable to pockets of (high) outlying

critical load data. Residual variability is lowest in northern

Scotland and directly relates to an area of low-valued

critical loads and low critical load variation (see Fig. 5a,

b). At the validation sites 1:86� r̂2 xð Þ� 21:94 which can

be compared to a global estimate of r̂2 ¼ 14:08 squared

units used in the basic GWR model. Thus an assumption of

residual variance stationarity in basic GWR can be viewed

as rather strong.

4.2.3 H-KED

For the H-KED model, KED-LN is chosen for adaptation,

since it predicts more accurately than KED-GN. Scatter-

plots for the (initial, GW) local mean and in this instance,

local SD estimates (at the 497 calibration sites) are given in

Fig. 4a–c, where a clear tail-off in linearity at high mean

values directly relates to an area of unusually low critical

load variability in SE England (cf. the corresponding sur-

faces in Fig. 5a, b). To model this nonlinearity, two non-

parametric regressions to the mean and SD data are

considered: (a) a local regression (LR) fit and (b) a GWR

fit. For LR, nonstationarity and nonlinearity is modelled in

attribute-space, whilst GWR models nonstationary and

nonlinearity in geographic-space. In this instance, the LR

fit is specified with a tri-cube weight function (together

with a linear polynomial) and an optimal bandwidth is

found using an AIC procedure (for details use Loader

2004). The GWR fit is specified with an exponential kernel

and an optimal bandwidth is similarly found using AIC (for

details use Fotheringham et al. 2002, pp. 61, 96). AIC

procedures are preferred to cross-validation as they reduce

instances of over-fitting, which can result in poor local SD

estimates (including negatives) when the LR or GWR

models are calibrated at the validation sites (especially in

Table 4 Prediction and prediction uncertainty accuracy at validation

sites

Model MPE RMSPE MAPE MRKm SDRKm 1-MSDR G-statistic

MLR 0.13 4.47 3.22 3.48 1.64 0.007 0.942

GWR 0.09 4.05 2.82 2.98 1.10 -0.066 0.931

H-GWR 0.38 4.08 2.81 2.86 1.31 -0.062 0.957

KED-GN 0.10 4.09 2.87 3.00 1.47 0.110 0.913

KED-LN 0.03 3.91 2.72 2.68 1.39 0.204 0.892

H-KED-LR 0.03 3.91 2.72 2.68 1.39 -0.267 0.929

H-KED-GWR 0.03 3.91 2.72 2.68 1.39 -0.072 0.898

H-KED-MLR 0.03 3.91 2.72 2.68 1.39 0.344 0.887

H-KED-DV 0.03 3.91 2.72 2.68 1.39 0.485 0.857

All models use CL = f(Wt.GSP, Wt.SCLP) as the trend function

Calibration data mean used as a predictor gives MPE, RMSPE and MAPE values of

-0.04, 5.61 and 4.59, respectively
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extrapolation situations). In both cases, fairly well-defined

minimums were reached. Figure 4a, b depict the LR and

GWR fits to the mean and SD data. An AIC-defined MLR

fit to the same data is also given for context (Fig. 4c); and

is retained to calibrate its own (naı̈ve) H-KED model. Here,

GWR is the best fitting model (R2 values are 0.99, 0.97 and

0.76, for GWR, LR and MLR, respectively) even though it

is not the most complex (ENP values are 160.4, 492.0 and

2, respectively).

Thus the described LR, GWR and MLR models are

solved at the validation sites using KED predictions as

local mean estimates. This procedure provides local SD

estimates, which are first squared and then, multiplied by

relative KED variances in order to find the locally cor-

rected KED variances. For LR, GWR and MLR, the fol-

lowing models result: H-KED-LR, H-KED-GWR and

H-KED-MLR, respectively. In addition, a fourth (second

naı̈ve) H-KED model is calibrated where local variance

estimates are found directly at the validation sites (i.e.

simply using expression 8 with the calibration data and a

bandwidth of 7%). This model is named H-KED-DV. It is

envisaged that H-KED-KV will perform poorly in relation

to the other three H-KED models as its local variance

estimates do not benefit from a link (via the local statistic

regression fits) to the spatial process as whole and will tend

to a reflect an under-smoothed estimate of local variability

(see discussions given in Switzer 1993).

4.3 Focused analysis: prediction accuracy

Prediction accuracy diagnostics for our (now nine) study

models is given in Table 4, where KED-LN and the four

H-KED models will provide the same results. Reassur-

ingly, all models predict better than the calibration mean

and diagnostics indicate that KED-LN is the most accurate

predictor whilst MLR is the least accurate. Both GWR and

H-GWR perform with merit. Observe that KED-GN per-

forms little different to a GWR model, even though it does

not account for relationship nonstationarity. This is a result

of effects that have been described in Sect. 4.1, but also

reflects KED-GN’s BLUP status. Actual versus predicted

scatterplots for each model (not shown) all indicated a high

smoothing bias, where no one model could be considered a

particularly good predictor of critical load.

Fig. 6 Accuracy plots for:

a GWR; b H-GWR; c KED-LN;

and d H-KED-LR (all shown

with naı̈ve MLR model)
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4.4 Focused analysis: prediction uncertainty accuracy

Diagnostics measuring prediction uncertainty accuracy are

given in Table 4. Models that perform well in a global-

sense (via 1-MSDR i.e. MSDR bias) are MLR, H-GWR,

GWR and H-KED-GWR. In a local-sense via the G-sta-

tistic, H-GWR, MLR, GWR and H-KED-LR perform well.

For choosing an H-KED model, H-KED-LR and H-KED-

GWR both out-perform the naı̈ve H-KED-MLR and

H-KED-DV models. Hence this provides some value to the

use of nonlinear fits to local mean and SD data when

applying this locally corrective kriging variance approach.

Accuracy and PCI-width plots for the model pairs: (i)

GWR/H-GWR and (ii) KED-LN/H-KED-LR10 are given in

Figs. 6 and 7; and are shown with the results from the naı̈ve

MLR model for context. For each of our chosen models, its

accuracy and PCI-width plot should be viewed in con-

junction. In this respect, H-GWR is clearly the best per-

former, as its accuracy plot is (above and) closest to the 45�

line and its PCI-widths are consistently the smallest. Rather

surprisingly, the next best performer is (basic) GWR. As

expected, both basic models are out-performed by their

heteroskedastic counterpart. Observe that MLR’s good

performance with respect to PCI accuracy is simply a

consequence of wider PCI-widths (i.e. PCI precision is

poor). Further locally orientated assessments are possible

by relating the absolute (actual) prediction errors

z xj

� �
� ẑ xj

� ��� �� to the (estimated) prediction standard errors

rP(xj). This data should have a MLR fit with a slope of one

that passes through the origin. Here, all basic predictors

perform poorly, whereas all heteroskedastic models per-

form relatively well. Scatterplots of this data, for the same

model pairs as before are presented in Fig. 8; where both

H-GWR and H-KED-LR are able to provide variability in

their rP(xj) distribution, and in doing so, these estimates

can correlate with the actual prediction errors. However for

both heteroskedastic models, rP(xj) is often under-esti-

mated, resulting in fairly weak correlations. In summary,

H-GWR is viewed as the best overall performer and

H-KED-LR (or H-KED-GWR) is viewed as the best KED

model, with respect to prediction uncertainty accuracy.

Fig. 7 PCI-width plots for:

a GWR; b H-GWR; c KED-LN

and d H-KED-LR (all shown

with naı̈ve MLR model)

10 The H-KED-LR and H-KED-GWR models are effectively inter-

changeable, where the former is now chosen as demonstration.
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Finally, the spatial pattern of each model’s prediction

variances can be investigated. Here the prediction vari-

ances for KED-LN and GWR exhibit little spatial variation,

whilst those for H-KED-LR and H-GWR (Fig. 9) do;

reflecting the nonstationary modelling decisions taken. As

is well-known, the KED-LN variances will depend largely

on data geometry, as large KED-LN variances tend to lie

where sampling is sparse. Conversely, GWR prediction

variances do not depend on data geometry and instead vary

according to the nature of local relationships (i.e. they

reflect uncertainty in local attribute-space). The GWR

model also provides lower prediction variances than KED-

LN. Both heteroskedastic models provide low prediction

variances in northern Scotland, reflecting an area of low-

valued critical loads and low critical load variation.

H-GWR prediction variances tend to mimic that of the

residual variance surface of Fig. 3d and are high in areas of

northern and SW England. In relation to the H-KED-LR

model, H-GWR tends to provide a prediction variance

distribution with a lower spread. The H-KED-LR variances

are similarly high in areas of SW England, but unlike the

H-GWR model, high prediction variances are also found in

areas of eastern England.

5 Discussion and conclusions

In this study, we have linked GWR to KED (with local

neighbourhoods) in both basic and heteroskedastic forms.

Linkages have been discussed from a model construction

viewpoint and via the outcomes of an empirical analysis.

Both models cater for nonstationary relationships between a

variable of interest and its covariates. However crucial dif-

ferences exist, especially with respect to their use of infor-

mation when modelling such relationships. Here GWR can

be calibrated using all the sample data, whilst KED cannot.

On balance, our empirical work (with a freshwater

acidification critical load data set) suggests that a basic

KED model should be preferred with respect to prediction

accuracy, but that a heteroskedastic GWR model should be

preferred with respect to prediction uncertainty accuracy.

For this particular process, models that account for both

Fig. 8 Actual (absolute)

prediction errors versus the

estimated prediction standard

errors for: a GWR; b H-GWR;

c KED-LN; and d H-KED-LR.

Correlations are 0.02, 0.34, 0.08

and 0.39, respectively
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relationship and variance heteroskedasticity should be

preferred to models that do not. Overall there is little to

choose between GWR and KED, and in this respect, GWR

(the less recognised predictor) has performed with merit.

For GWR to be routinely used as a spatial predictor, it not

only needs to provide tolerably accurate predictions, but

also needs a form that can provide accurate prediction

variances. In this respect, our study has demonstrated a

GWR methodology to achieve this, which has not been

applied in a prediction context before.

As always, empirical work cannot be readily general-

ised, but it is surmised that GWR will prove similarly

worthy in other spatial prediction problems. It is envisaged

that future work could: (a) investigate more deeply the

nature of the GWR prediction variances; (b) include (and

possibly adapt) a Bayesian spatially-varying coefficient

Fig. 9 Prediction variance

surfaces for: a GWR;

b H-GWR; c KED-LN; and

d H-KED-LR. All surfaces are

found using the same

smoothing function
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model (e.g. Gelfand et al. 2003; Waller et al. 2007) or the

local cokriging models of Pereira et al. (2002) for model-

ling nonstationary relationships; and (c) find ways to gen-

eralise (and confirm) our results using both real and

simulated data sets, where issues of sample size and con-

figuration are also incorporated.
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