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Abstract 

This paper describes the development and application of a modified Grouping Genetic 

Algorithm (GGA) used to identify sets of optimal ambulance locations. The GGA was 

modified to consider a special case with only two groups, and the reproduction and 

mutation schemes were modified to operate more efficiently. It was applied to a case 

study locating ambulances from a fixed set of alternative locations. The sites were 

evaluated using data of emergency medical services (EMS) calls summarised over 

census areas and weighted by network distance. Census areas serviced by the same 

selected location defined ambulance catchments. The results indicated alternative 

sites for ambulances to be located, with average EMS response times improved by 1 

minute 14 seconds and showed the impacts of having different numbers of 

ambulances in current locations and in new locations.  The algorithmic developments 

associated with the modified GGA and the advantages of using census areas as spatial 

units to summarise data are discussed.  
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1. Introduction 

 

This work describes the development of a modified Grouping Genetic Algorithm 

(GGA) which was applied to an ambulance location problem. Site location is an 

important aspect of spatial planning, especially in public health domains, which have 

to balance current needs, expectations of future requirements and competing demands 

for resources. Planners require evidence to inform ‘location allocation’ decisions 



which have traditionally been supported by GIS analyses of accessibility to facilities. 

As techniques have become more sophisticated (for example the evolution from 

deterministic analyses to ones using heuristic search algorithms), the dimensionality 

and scope of analyses have increased. Deterministic or brute force methods that 

evaluate every possible combination of solutions may be unsuitable for locational 

problems with thousands of demand points and a large number of subsets to be 

evaluated (Church, 1999). For example, in one part of the case study presented below 

there are over 103347 sets of possible locations to evaluate. In such cases deterministic 

solutions may be too computationally demanding (Li and Yeh, 2005). In this context 

heuristic search algorithms provide useful modelling tools. Genetic Algorithms (GAs) 

have been suggested by a number of workers as offering a suitable search heuristic to 

answer site location questions (e.g. Jin and Wang 2001; Zhan et al. 2003; Ducheyne et 

al. 2004). Set covering models have been developed to identify ambulance site 

locations, including the p-median problem of locating facilities (Hodgson, 1988) and 

the maximal covering location problem (Church and ReVelle, 1974).  P-median 

models seek to minimise the sum of distance (or average distance) between demand 

nodes and facilities (Rosing et al. 1979). They have been used to minimise distances 

between supply and demand points in ‘location / allocation’ problems (e.g. Alp et al., 

2003; Snyder and Daskin, 2005). Maximal covering approaches are concerned with 

maximizing the coverage of a given set of facilities (e.g. Batta et al., 1989; Chiyoshi 

et al., 2003). Deterministic and probabilistic models of ambulance location are 

reviewed in Schilling et al. (1993) and Brotocorne et al. (2003) respectively. 

 

The development and application of a modified GGA described in this paper extends 

other work using GAs to address the location allocation / p-median problem in a 

number of ways. First, the GGA is modified to consider a special case with only two 

groups (a discrete set of candidate locations are designated as ‘used’ or ‘not used’), 

which are fixed in size. Second, it bridges the gap between theoretical models and 

real-world problems. Much other work in operations research literature has addressed 

small scale studies, based on simplified and / or simulated cases to illustrate model 

development. This work addresses a real logistics problem based on real locations 

within a regional case study including its entire road network and uses actual 

emergency medical services (EMS) data rather than simulated EMS demand. Third, 

the model allows for different numbers of facilities to be located within the solution 



and their benefits evaluated. As ambulance response time to EMS cases is a critical 

factor in patient survival (Snyder et al., 2007; Stiell et al., 1999), the approach 

provides nuanced evidence to those responsible for developing spatial policy. Section 

2 describes the scientific context of this work. In Section 3 details the modified GGA 

and its algorithmic components, and discusses the advantages of the GGA approach. 

The analytical methods are described in Section 4 before the results are presented 

(Section 5), discussed (Section 6), and some conclusions are drawn (Section 7).  

 

2. Background 

 

The problem addressed in this work is how to optimally allocate resources (in this 

case ambulance locations) based on need. In operations research other workers have 

considered ambulance location models using p-median and maximal covering 

approaches. Early work developed and applied deterministic approaches to identify 

ambulance locations (eg Berlin and Liebman, 1974; Daskin, 1982; Uyeno and 

Seeberg, 1984). Genetic Algorithms are suitable when the number of potential 

solutions is too large to be evaluated deterministically.  Genetic algorithms are 

heuristic search algorithms (Goldberg, 1989), introduced by Holland (1975), that 

allow the survival of the fittest (Huang et al., 2004). Models that incorporate GAs are 

frequently referred to as ‘optimisation models’ in the literature. They simulate the 

process of genetic mutation, gene combination, and selection in biological evolution. 

The aim is to breed fitter generations, where fitness is evaluated over an objective 

function. Experiments in which the optimal solution is known suggest that it is likely 

that the optimal solution exists within the final generation of the algorithm if 

sufficient generations have been simulated, despite not being able to state its 

optimality with certainty. A set of simple scenarios illustrating this can be found in 

the genalg R package (Willighagen, 2005). 

 

Genetic algorithms have been extensively applied to p-median, maximum covering 

and other spatial problems in combination with GIS-based analyses. A non-exhaustive 

sample of the literature is reviewed here. Alp et al. (2003) proposed a p- median 

location/allocation model using genetic algorithms to locate facilities in response to 

hypothetical demand points and to determine ‘catchments’ by allocating those points 

to the facilities. Li and Yeh (2005) compared GAs with simulated annealing and GIS 



neighbourhood search methods in order to determine optimal locations for hospital 

locations based on population density and proximity to roads in Hong Kong. Vink and 

Schot (2000) used a GA to optimise the location of drinking water production based 

on environmental constraints and the transport network. Samanta and Jha (2008) used 

a GA linked to GIS to identify the location of a rail network and its stations. They 

combined network, site parameter and demographic data in a GIS to identify suitable 

sites evaluated on cost. Stewart et al. (2004) developed a land use planning support 

system using a GA with GIS. Their objective was to accommodate recent 

developments in land use planning including the involvement of stakeholders and a 

highly complex set of constraints to the decision problem in order to facilitate an 

interactive decision support systems. As there was no absolute ‘optimal solution’ to 

their problem they used the results of the GA analysis as the focus of interaction in 

order to generate user feedback on the different solutions. Genetic algorithms in 

combination with GIS have also been used for route planning (Huang et al., 2006; 

Dadkar et al., 2008), forest resource planning (Ducheyne et al., 2006) and ecological 

niche modelling (Levine et al., 2009). Xiao et al. (2007) provide a thorough review of 

algorithmic developments in the context of multi-objective spatial decision making 

and Li et al (2009) provide a recent extension using ant colony optimisation 

techniques. Other approaches specific to the ambulance site location models have 

incorporated hypercube structures (Larson, 1974, 1975) with genetic algorithms. 

Hypercube structures consider vehicle state probabilities and other related 

performance measures such as workloads, travel times, etc. They have been used to 

model emergency service provision with developments of the maximal covering 

location problem (e.g. Batta et al., 1989; Chiyoshi et al., 2003; Takeda et al., 2007).  

 

There are two main themes that emerge from the literature relating to the application 

of GAs to solve ambulance ‘location allocation’ problems. First, as Brown and 

Sumichrast (2003) note, classical GAs can have difficulties in subseting solutions into 

groups in a grouping problem. This is elaborated upon in the next section describing 

algorithm development. Second, classical GAs consider only individuals (locations) 

rather than sets or ‘groups’ of solutions together. It is not difficult to envisage a 

situation where the ‘best’ single location may not be included in the set of N best 

locations when the whole set is evaluated rather than the individual. Additionally, 

much of the previous research relating specifically to ambulance location problems 



have considered a small number of locations: Chuang (2007) used to a GA to identify 

only 4 facilities; Iannoni et al (2008) combined a GA within a hypercube to consider 

the optimal location of five ambulances on two connected stretches of highway. 

 

Grouping genetic algorithms are a development of the GA that consider groups or 

subsets of individuals rather just individuals. GGAs were proposed by Falkenauer 

(1998) to solve complex partitioning problems where in this study a set of potential 

locations are split into optimal groups and the group attributes are considered as 

genes. Recent work using GGAs in GIS context has applied a GGA to identify a 

logistics network that optimised the profitability of rice producers in Thailand 

(Pitaksringkarn and Taylor, 2005) and to optimally identify sets of post offices to 

close in order to satisfy government accessibility criteria (Comber et al., 2009). The 

operation of GAs and GGAs are described in more detail in the next section.  

 

3. Algorithm Development 

 

A number of non-genetic algorithms have been developed to address the location 

allocation / p-median problem – see for example Teitz and Bart (1968), Christofides 

and Beasley (1982), or Reese (2006) for a comprehensive overview. However, in 

practice these methods proved prone to finding ‘local’ optima (where the algorithm 

failed to converge on the global optimum arrangement) or to require very long 

running times. In the practical situations considered in this paper there are a large 

number of potential choices for siting, and distances are network-based rather than 

Euclidean. As alternative approaches, we could consider simulated annealing  (e.g. 

Righini, 1995) or genetic approaches – which are the subject of this paper.  An 

overview of genetic approaches is now set out. 

 

3.1 Introduction to GAs and GGAs 

 

The optimisation process in GA proceeds as follows. A potential set of solutions is 

created, sometimes called a ‘string’ (Huang et al., 2004) or more usually a 

‘chromosome’. Chromosomes form individuals and are composed of genes, which in 

a multi-site optimisation will be sets of individual sites. The chromosome is then 

evaluated based on some ‘fitness’ criteria which assess its performance. Genes from 



successful individuals (i.e. passing the criteria) are interchanged between individuals. 

This is done in a crossover which combines two chromosomes to create new 

chromosomes, which in turn form new individuals, in effect offspring or children. 

This process of creating new chromosomes from successful (i.e. highly ranked in the 

evaluation) ones continues usually for a predetermined number of cycles or until 

some convergence criteria are met. However it is possible for the optimisation to 

stagnate and to ensure that this does not happen mutation is an important part of the 

GA. Mutation occasionally adds some random new genes into the chromosome. In 

this way the GA ‘breeds’ optimal solutions by creating a more optimised (fitter) 

generation and hence the analogy with natural selection: crossover creates new 

chromosomes from successful ones, and mutation ensures diversity. So just as in 

natural selection, GAs ensure fitter more suitable individuals are parents to the next 

generation by allowing the individuals that to adapt to the fitness criteria to have 

offspring.  

 

A standard genetic algorithm represents each potential solution as a fixed length 

‘chromosome’ – in the original form this was a vector of binary elements – each of 

which could be thought of as a ‘gene’. More generally these binary genes are replaced 

by integers or real numbers. However, the standard GA approach does not correspond 

well to the p-median problem in a grouping context. By grouping here, we mean that 

the chromosomes here are used to associate each individual with a group – and there 

are a smaller number of groups than individuals. In this case there are just two groups 

– the ‘used’ and ‘not used’ categories. Falkenauer (1998) proposed the Grouping 

Genetic Algorithm (GGA) and identified three major drawbacks of applying a 

classical GA to a grouping problem: the standard GA encoding scheme is highly 

redundant in relation to groups; the recombination operator may produce new 

population members that do not contain any of the qualities of its parents; and, other 

standard operators may cause too much disruption to successful population members. 

GGA modifies the classical genetic algorithm by developing heuristic procedures to 

restore group membership during the crossover operation to any members that may 

have been displaced by other operations. The similarities and differences between GA 

and GGAs are discussed in Brown and Sumichrast (2003) and in Pitaksringkarn and 

Taylor (2005). 

 



The approach presented here is in the spirit of the work of Hosage and Goodchild 

(1986) in that it attempts to use a GGA to select an optimal subset of locations from a 

discrete set of points, where the subset has a fixed size. Standard GA approaches 

generate strings consisting of 0‘s and 1‘s which may be used to divide the locations 

into ‘used’ and ‘not used’ categories.  However the strings generated in this way 

could generate a ‘used’ category of any size from zero (where all genes take the value 

0) to the number of locations (where all genes take the value 1). Here, we only wish to 

consider strings with a fixed number of 1‘s - corresponding to the subset of locations 

being used having a fixed size. There is a need for strategies to avoid generating 

strings with either more or fewer 1’s than the desired string size. One approach is to 

apply a penalty function to the fitness of any string that does not have the desired 

number of 1’s.  The aim here is to ‘breed out’ strings with the wrong number of 1’s so 

that populations ultimately contain only strings with the desired number of 1‘s. 

However, rather than use a penalty function approach, our approach explores a search 

space consisting of all of the strings with the desired size number of 1’s – the 

breeding operations guarantee that, given ‘input’ chromosomes with a certain number 

of 1’s, offspring chromosomes will also have this number of 1’s.  Thus, rather than 

exploring the space of all binary strings, only strings with a given number of 1’s are 

considered - and no solution in the space is infeasible.  This ‘shrinkage’ in the search 

space – from strings of all combinations to those with a fixed number of 1‘s - leads to 

a considerably more efficient search than applying a penalty function approach to the 

full space. For example to choose 11 items out of 50, considering all possible subsets 

out of 50 regardless of size leads to a search space with around 1015 possibilities, but 

reducing the search space just to subsets of size 10 leaves around 1010 possibilities, 

reducing the size of the space by a factor of around 10,000.  

 

In the Falkenauer (1998) grouping genetic algorithm this standard chromosome 

representation is replaced by one in which groupings of genes are represented, rather 

than values attached to each gene. Rules for combining chromosomes and mutating 

them have to be modified to allow for this. We also employ ideas from Alp et al 

(2003). 

 

3.2 Modified GGA 

 



In the original GGA paper by Falkenauer (1998), a generic approach is outlined, and 

it is advocated that rules for regenerating chromosomes in specific group tasks should 

be devised on a bespoke basis. Brown and Sumichrast (2003) found that GGA 

performs worse when problem-specific knowledge is not incorporated into the 

replacement heuristic. In the algorithm here we opt for an approach that uniquely 

exploits the fact that only two groups are required (points at which ambulances are 

sited and ones at which they are not) – and in fact this means that a potential solution 

can be represented by listing only one of the two groups – the other being defined 

implicitly as the compliment of this group. In particular, we choose the smaller of the 

two potential groups to be the one stored as a chromosome. For example if we had to 

choose 10 ambulance locations out of a potential 50, each chromosome would be a set 

of size 10, listing the 10 points designated as an ambulance location. Alternatively, if 

we were choosing 40 stations, it is more efficient to consider sets of locations not 

designated as locations.  

 

The ‘genalg’ package contributed to the R statistical programming language project 

(R Development Core Team, 2008) by Egon Willighagen was modified to implement 

the algorithm. This library provides a set of genetic algorithm tools, which were 

augmented with an algorithm to select a ‘best subset’ based on the optimisation of an 

objective function, in this case weighted person distances. A description of the 

‘genalg’ package can be found at the R web site1. Full details of this algorithm now 

follow. 

 

3.3 Chromosome representation  

 

In this algorithm, as stated above, an individual chromosome is represented as a set of 

k unique integers, where each integer is in the range 1…N and where k is the number 

of ambulances and N is the number of candidate locations. If each generation has M 

chromosomes, then these can be stored in an M x k integer array.  

 

3.4 Evaluation and fitness function 

 

                                                        
1 http://cran.r-project.org/web/packages/genalg/genalg.pdf  



The objective function analysed was of the form:  

 

      (Equation 1)  

 

where i indexes the census areas C, pi is the number of emergency cases in the census 

area i, and dij is the distance between census area centroid i and possible ambulance 

location j, with j being the index of the nearest location to the census area i under a 

choice of k possible ambulance locations. The function computes the population 

weighted average distance to the nearest potential location, and in this case the 

function analysed the counts of actual emergency cases in each area. However it 

should be noted that pi can be varied to represent different populations. For example it 

could be the count of over 65’s, the total population or the ‘at risk’ population defined 

in some other way. Thus, the function measures access for the different subsets and 

the GGA optimisations seeks to minimise the value of the objective function. A 

similar objective function – although using Euclidean or Minkowski distances rather 

than network analysis, is considered in Murray and Estivill-Castro (1998). 

 

3.5 Selection of chromosomes, crossover and mutation 

Breeding of a new generation is achieved by selecting pairs of chromosomes based on 

their fitness, combining these to produce new offspring and possibly applying 

mutation. The initial selection is based on the ‘roulette wheel’ approach (see for 

example Mitchell (1998)), in which fitness is defined according to Section 3.4. When 

two chromosomes are selected in this way, the combination algorithm is as below.  

 

Denote the two chromosomes as the sets S1 and S2. First, find the set S1 ∪ S2, that is 

the list of all numbers appearing in both sets. Then select a new offspring set by 

randomly sampling k integers from S1 ∪ S2, without replacement. Repeating this 

operation M times will yield a new generation.  

 

Note that if S1 and S2 are identical, then their offspring will also be identical, and that 

if they have a large number of elements in common, there is a strong chance that these 

will appear in the offspring. Also, a form of ‘elitism’ is used, where the top 10% of 



the current population is automatically carried forward to the next. Finally, there is a 

small probability of mutation – where an element in a given subset of k ambulances is 

swapped for one of the M-k ambulances not in the subset. 

 

Thus, the modified algorithm has all of the elements of a standard genetic algorithm, 

but addresses the issue of optimal subset selection, rather than optimisation of a list of 

real numbers or integers. 

 

4. Methods 

 

4.1 Case study  

 

The case study is to select ambulance site locations from a set of fixed locations. 

Niigata is a prefectural city of 804,000 people in north-western Japan. Currently there 

are 27 ambulances stations providing EMS. In Japan there is a one-tiered EMS system 

provided by the fire department. Ambulances are located in some fire stations (one in 

each) and in Niigata there are 35 fire stations. When an emergency call is received, 

the nearest available ambulance is sent to the incident. Tanigawaa and Tanaka (2006) 

and Lewin et al. (2005) provide overviews of EMS provision, organisation and trends 

in Japan. The local authorities would like to identify ambulance locations and the 

number of ambulances that best match EMS needs under two scenarios: current 

locations and possible new locations as planning is compounded by a number of 

factors. Predicted future population changes indicate that Japan will have an 

increasingly older population and the majority of EMS cases relate to older people. 

For example in 2002 more than 50% of emergency calls in Tokyo were for patients 

over the age of 50 (Tokyo Fire Department, 2002). Also, the volume of emergency 

calls is increasing resulting in reduced average response times. In Niigata these trends 

are acute. The number of ambulance emergences cases has increased by ~50% over 

10 years from 55,434 cases in 1997 to 84,730 cases in 2007 and average ambulance 

response times have also increased by 1.2 minutes between 1998 and 2007 (Niigata 

Prefecture, 2008).  

 

4.2 Data and Preparation 

 



The Niigata City Fire Bureau provided prehospital medical emergency records of the 

21,788 cases that were attended by an ambulance in the period April to December in 

2007, 21,211 of which were geocoded and selected for analysis. In Niigata there are 

2076 census small areas (the smallest spatial units over which census data are 

reported). The road network for Niigata was provided by Increment P Corporation. 

Niigata currently has 35 potential locations for ambulances, which are shown with the 

21,211 EMS cases and the 27 existing fire stations with ambulances in Figure 1.  

 

Insert Figure 1 about here  

 

A point in polygon operation was used to generate a count of EMS cases for each 

census area and attached as an attribute to each point. A matrix of distances between 

each census point and each of the 35 fire stations was created from a GIS network 

analysis of shortest travel time. The census areas centroids were created using the area 

(x, y) envelope. The use of centroids as the location for output areas is commonly 

used in analyses that seek to relate polygon-based objects to linear networks, and 

unlike in the UK for example population weighted centroid locations are not 

available. For some sub-areas of the census polygon, the actual distance will be over-

estimated and for others it will under-estimated. In this analysis we have assumed that 

losses and gains balance each other out. A second distance matrix was created of 

distances between 1255 grid points and the census area points. This was to explore the 

potential of new site and to illustrate how the method could be used to explore the 

selection of alternative future locations upon which ambulance stations could be built. 

The grid points were spaced at 500m and selected to be within 50m of an existing 

road and shown in Figure 2. The distance matrices and the census area counts of EMS 

cases were used as input into the modified GGA.  

 

Insert Figure 2 about here  

 

4.3 Analyses 

 

Three analyses were run on the data to evaluate locations under a number of 

scenarios. First, to determine whether the current location of 27 ambulances could be 

improved in terms of reduced EMS response times, through the selection of 



alternative sets of ambulance site locations. Second, to quantify the impacts of 

different numbers of ambulances in terms of losses and gains in average EMS 

response times. Third, to select potential ambulance locations from a discrete set of 

new location points and to evaluate their impacts on response times. In each case up 

to 5 ambulances could be allocated to any one location and the GGA was run for 1500 

iterations.  

 

5. Results 

 

5.1 Improved locations 

 

The modified GGA was run to select 27 ambulances site locations evaluated on the 

network distance between each census centroids, weighted by the count of EMS 

cases. For each census area, the nearest site location was also calculated to indicate 

the catchment or service area for each ambulance location. These results are shown in 

Figure 3. Of the 27 locations, 23 were existing stations but 4 were not, indicating that 

some improvement in ambulance accessibility could be achieved with some re-

allocation of resources. 

 

Insert Figure 3 about here 

 

Policy makers and those who make decisions about resources need to be able to 

quantify the benefit associated with any site re-allocation. One simple measure is to 

calculate the difference in times or distances between each EMS case to its nearest 

new ambulance site and its nearest old one. The change in response time was 

calculated as follows.  First, the network distances from each of the 21,211 EMS case 

data points to the nearest of the 27 GGA modelled site locations were calculated and 

compared with distances to the nearest current ambulance site locations. Average 

distances from EMS cases to the nearest ambulance station, before and after GGA site 

selection, are shown in Table 1. For three locations of the 23 that were already sites 

with ambulances, the average travel distance to EMS cases increases by an average of 

319 metres but for other 20 the distances decrease on average by 630 metres. That 23 

out the current 27 locations were selected by the GGA is an interesting result: it 

indicates some degree of optimality in the choice of current ambulance locations 



amongst the 35 fire stations. Possible reasons include the traditional high fire risk in 

Japan associated with buildings constructed from timber and therefore the historical 

need for fire stations to be well placed. Additionally, a high proportion of EMS cases 

relate to the elderly and in 1986 a revision of the Firefighting Organization Acts was 

made that specified emergency care for people with acute illness as a major purpose 

of the EMS, which may have resulted in some reorganisation of local resources 

(Tanigawaa and Tanaka, 2006).  

 

Insert Table 1 about here  

 

5.2 Improved response times 

 

The original EMS case data indicated which ambulance attended the incident. The 

benefit of re-allocating ambulances was also quantified in terms of improved response 

time, a critical factor in patient survival. A network analysis was run on the EMS data 

on a case by case basis, identifying whether the nearest ambulance, second nearest, 

third nearest, etc, responded and the response time was calculated using average road 

speeds and distance from the current ambulance locations. The attendance by the nth 

nearest ambulance was then simulated with the new set of 27 GGA modelled 

ambulance locations using a network analysis, a second response time calculated and 

compared with the first. The modelled average response times between the current 

and modelled ambulance locations decreased from 5.35 minutes to 4.12 minutes.  

 

5.3 Different numbers of ambulances in current and new locations   

 

The GGA was also applied to sets of 1 to 50 locations to determine the benefits of 

increased or reduced numbers of ambulance site locations. This was done for two 

scenarios: using the 35 existing locations and using the 1255 potential new locations. 

For each set a number of outputs were produced by the GGA. These included:  

- the locations of the set of selected ambulance sites, allowing for up to 5 at any 

location;  

- the nearest location for each census area (thereby providing each potential 

location with its catchment); and  



- the person distances between the census area centroids and the nearest site 

location (i.e. accounting for the number of EMS cases in each area).  

The latter gives an indication of the decline in distance travelled with the addition of 

extra ambulances.  

 

The average distance between census area and nearest site declines as more sites are 

included in the set, as expected. For the 35 current sites, the benefit of additional 

stations levels out at around 35 – i.e. as the solution becomes spatially saturated – 

despite allowing for additional ambulances at each station. In contrast, the average 

distances to the 1255 potential locations continue to decrease as might be expected 

(Figure 4). The site location and its catchment as modelled by the modified GGA can 

be mapped for each set. Figure 5 illustrates the different locations for sets of 10, 25 

and 35 ambulances modelled from the 35 current locations and the 1255 potential new 

locations. We can see that the overall spatial patterns are similar, as the GGA sought 

to minimise person distances in each case. Mapping the selected ambulance site 

locations provides information to support ambulance location planning and allocation 

of future resources.  

 

Insert Figure 4 about here 

 

Insert Figure 5 about here 

 

6. Discussion  

 

 

In this work EMS cases were summarised over census areas and optimal ambulance 

location were modelled using a modified grouping genetic algorithm. The fitness of 

potential solutions were evaluated usingon EMS-distances between census area 

centroid and potential site. Of the re-allocating ambulances, 23 out of 27 were at 

existing sites, 4 were allocated to new sites, the average distance increased for 3 sites 

(by 319m) and decreased for 20 sites (by 630m). This indicates that by altering the 

location of just 4 out of 27 ambulances could produce considerable benefits in terms 

of reduced net distances. The change in response times, averaged over each case by 

case and based on network times factored road speeds improved by 1.23 minutes 



(from 5.35 minutes to 4.12 minutes), which although not precise – the times were 

based on road speeds – indicate the relative gains of reallocating ambulances. Other 

results from this study quantified the impacts of different numbers of facilities in 

terms of average ‘EMS case distances’ for both current potential sites (35) and for 

potential new sites (1255). Ambulance response times are critical for patient survival 

especially for severe emergency cases, where time to pre-hospital treatment is critical 

(Snyder et al., 2007; Stiell et al., 1999). Specifically, several studies have noted the 

improved survival of patients with a high risk of mortality when the response time 

was less than 4 to 5 minutes (Blackwell and Kaufman, 2002; Pons et al., 2005) and 

have sought to improve the response times through enhancing EMS management and 

relocating ambulance stations (Gossage et al., 2008; Peleg and Pliskin, 2004). 

Additionally, ambulance response time is an important indicator of pre-hospital 

emergency medical services (EMS) quality (Narad and Driesbock, 1999). Although 

statistical models for optimal location of ambulances have been widely discussed 

(Brotcorne et al., 2003), practical methods for the relocation and evaluation of their 

benefits have been limited. Quantifying the impacts of different numbers of re-

allocated facilitates in this way provides evidence to support policy decisions as 

public health policy planners are able to evaluate the impacts of increased or reduced 

numbers of ambulances.  

 

In this analysis the standard GGA was modified to do a number of things. First, it was 

modified to operate on a discrete set of potential points rather than generic (x, y) 

points as in previous work (e.g. Li and Yeh, 2005). Working with a set of discrete 

points is often more realistic in terms of resource planning and site location, where 

there may already be a set of potential sites (for example, the existing fire stations) or 

where sites are located on a network (such as a roads). The computational advantages 

of GAs are well described in the literature (Huang et al., 2004; Li and Yeh, 2005): 

they are able to converge on solutions much quicker than would be possible by brute 

force. They are an effective way to address problems in which although the search 

space may be specified as a set of linear constraints (as in Murray and Estivill-Castro, 

1998) the objective is non-linear, and with use of network distances, difficult to 

consider analytically. Also, using the modified GGA as specified here makes use of a 

tightly-defined search space which by definition excludes infeasible solutions, and 

through the simplicity of the ‘breeding’ routine is relatively computationally efficient. 



This overcomes the convergence problem of genetic algorithms as described by Li et 

al (2009, p400): “GA has problems in reaching the convergence if the number of 

targets is large. For example, the optimal locations of more than 15 targets can hardly 

be found using GA because the required length of chromosome is too long.” This 

work has identified sets of locations that minimise overall person network distances. 

Other criteria can be used as described in Comber et al. (2009) and they can be 

combined as described in Li and Yeh (2005). Second, in the modified GGA a site 

could be selected as part of the optimal set multiple times to allow for any huge 

spatial skew in the criteria to be accommodated. Third, the GGA was used to analyse 

and identify sets of n = 1 to n = 50 sites, with multiples on each site. This provides 

decision makers with evidence of the impacts of having different numbers of 

locations and allows them to determine the optimal number of sites through 

evaluation of the additional costs and gains (in this case decreased response times) 

both for existing sites and possible future sites.  

 

Enhancing traditional GA analyses in this way has a number of advantages:  

-­‐ Optimising over network distances to census areas can provide a more realistic 

analysis of optimal access to different goods or services. It allows disparities 

between different spatial and social groups to be examined and provides potential 

solutions. This method is generic and could readily be applied to optimise retail 

outlets by considering market footprints, for example.  

-­‐ The approach is relatively simple. It combines a GIS network analysis of distances 

between different sets of points with demographic data to create a weighting that 

can be adjusted depending on the objectives of the study or the phenomenon under 

investigation.  

-­‐ The approach allows planners to evaluate the current situation in terms of the 

number and location of resources. The result of the analysis suggests how current 

site location and number can be improved and quantifies the additional benefits in 

terms of reduced weighted access distances.  

 

The EMS cases were summarised over census areas. The network distances between 

each census centroid and each potential ambulance site location were weighted by the 

number of EMS cases as evaluation criteria in the GGA search and select process. 

Goldburg et al. (1990) showed that zone structure were crucial elements in travel time 



model validation. In this work census areas provided a convenient and useful spatial 

framework with which to develop the analysis. First, they were used to describe 

ambulance catchment areas indicating the expected geographical coverage for each 

selected site. Second, they were used to analyse average response times and to 

provide information about the benefits of different numbers of ambulances. Third, the 

use of census areas allows other socio-economic data to be integrated into the 

analysis. This is critical for resource planning especially in the context of changing 

population demographics. The number of EMS cases has been strongly correlated 

with specific census variables (Clark and Fitzgerald, 1999; McConnel and Wilson, 

1998). Census areas allow spatially distributed models of future EMS demand to be 

generated, for example by linking multivariable regression analysis of EMS case data 

against census variables with predicted population changes.  

 

Additional work has applied the site selection method to predicted, future EMS cases 

distributed over census areas to explore changes in the spatial distribution of EMS 

demand as well as its volume (Sasaki et al., 2010). This work selects ambulance site 

locations based on projected future population changes, particularly with respect to 

Japan’s aging society. In future work, the GGA will also be further extended to select 

locations over the 35 existing potential sites in combination with new ones allowing 

for different amounts of site replacement.  

 

7. Conclusions 

 

This paper presents a grouping genetic algorithm approach that overcomes the 

limitations of traditional genetic algorithm approaches in identifying groups or 

subsets of solutions (in this case ambulance locations). The GGA enables sets of 

solutions to be identified together and in a further development, an efficiency 

modification was applied to the GGA to shrink the search space. The benefits and 

efficiency of search space 'shrinkage' is evident when compared to 'penalty function' 

approaches. This approach was applied to a case study to optimise ambulance 

locations.  Ambulance response time is crucial for patient survival and 

computationally efficient location- allocation methods such as presented here offer 

the opportunity of dynamic location identification based on current need and 

predicted need. The method is generic, using census areas to summarise EMS case 



data, a network analysis of distances to locations and a GGA implementation. The 

evaluation criteria can be set according to local priorities (case distances, cost of new 

facilities, future EMS demand) to model the location of different numbers of 

facilities. In this way the approach supports spatial planning by providing a more 

nuanced picture of service need than previous approaches.  
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Figure 2. The study area with 1255 possible ambulance locations derived from a 
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Figure 3. Selected and current ambulance site locations: selected sites that are also 
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circles) and existing sites not selected (circle with cross).  



 
Figure 4. The change in average response times from census area centroids to their 

nearest ambulance as the number of potential stations increases selected from a) the 

current 35 potential locations (■) and b) the 1255 grid points (□). 

 
 

 



 
Figure 5. The distribution of selected ambulance site locations for n = a) 10 

ambulances, b) 20 ambulances and c) 30 ambulances, for locations based on existing 

sites (ringed circles) and 1255 grid points (crosses).  

 
 


