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Abstract

Geographical kernel weighting is proposed as a method for deriving local summary statis-
tics from geographically weighted point data. These local statistics are then used to visualise
geographical variation in the statistical distribution of variables of interest. Univariate and
bivariate summary statistics are considered, for both moment-based and order-based
approaches. Several aspects of visualisation are considered. F inally, an example based on
house price data is presented. # 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

One of the first subjects covered in elementary statistics courses is that of summary
statistics, or descriptive statistics. These are usually introduced as a means of data
reduction (Ehrenberg, 1982). For example, a mean and a standard deviation can give
information about the spread and location of a database containing a very large
number of measurements. This general approach can be a very useful tool — indeed
some do not feel the need to progress to more sophisticated forms of statistical
analysis. However, for geographers these statistics have a major shortcoming. They
may be thought of as whole-map statistics (Openshaw, 1991). Rather than giving
information about spatial variation within the study region, the entire data set (the
‘whole map’) is summarised as a single entity. For the spatial analyst, classical data
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reduction perhaps provides too much reduction — summarising a data set with a
map may be more helpful than with a pair of numbers.
This problem is perhaps best understood with a practical example. Consider the

county of Tyne and Wear in the UK, shown in Fig. 1. In Fig. 2, the agreed sale
prices of 1067 houses in and around the county of Tyne and Wear, UK in 19911 are
shown in the form of a stem-and-leaf diagram. A map of the study area is provided
in Fig. 1. The sale price has a mean value of £43,472 and a standard deviation of
£22,642. However, this does not imply that one could select any neighbourhood in

Fig. 1. Map of study area: urban areas are hatched, and locations of houses in the sample shown as
points. Note some houses are outside of the study area to reduce the problems of edge eff ects.

1 We gratefully acknowledge the Nationwide Building Society for allowing us to use this data.
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Tyne and Wear and expect a typical house price of £43,472, or a ‘spread’ of house
prices characterised by a standard deviation of £22,642. Local variations in the
housing market are very important to consider.
In this paper we outline a method which allows a wide variety of summary statis-

tics to be localised — so that for any point (u,v) in the study area a summary for a
small area around that point can be obtained. The approach has parallels with that
of geographically weighted regression (GWR; Brunsdon, Fotheringham, & Charlton,
1996; Fotheringham, Charlton, & Brunsdon, 1998). As with GWR, the approach is
based on weighted statistics, with each observation in the data set being weighted in
terms of its proximity to (u,v).
However, it is not just the mean and standard deviation that can be treated in this

way. A glance at F ig. 2 suggests that the distribution of house sale prices is not
symmetrical — there is a long upper tail. The skewness of the distribution is a
descriptive statistic which conveys this information at a whole-map level, but again
it might be helpful to investigate localised skewness. Maps of this would help to
investigate whether the skewness seen at the global level is reflected locally, or whe-
ther the upper tail seen globally is due to a few estates having an unskewed collec-
tion of expensive housing. Also of interest are order-based descriptive statistics, such
as the median and inter-quartile range. These tend to be more robust to outliers.
Here, we outline an approach where localised versions of these may also be derived.
The advantages of this approach over simple choropleth maps as a data explora-

tion tool are twofold. F irstly, the well-known diffi culties associated with data
aggregation to a pre-specified system of areal units is avoided. Openshaw collectively
terms these diffi culties the Modifiable Areal Unit Problem (MAUP) and provides a

Fig. 2. Stem-and-leaf plot of house sale price data from Tyne and Wear. Numbers in stem are multiples
of 10,000, leaves are multiples of 1000. Each number represents two observations.
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comprehensive discussion of their scope and nature (Openshaw, 1984). Secondly, it
provides a direct way of viewing changes in the degree of variability of more general
‘shape’ of data distributions over a geographical space — such eff ects can only be
inferred from a choropleth map, and indeed the perception of these may well
be subject to the MAUP.
This paper sets out the approach in two stages. Firstly we give an overview of the

basic method, and then outline a general theoretical perspective which may be used
to derive localised versions of a large set of summary statistics. Secondly we consider
a set of global descriptive statistics which might be appropriate candidates for
localisation, and then, using results from Section 2, a set of definitions of localised
statistics are drawn up. Having considered practical aspects of computation and
visualization, the paper concludes with a more detailed consideration of the house
sale price data introduced earlier.

2. Localised descriptive statistics

As mentioned above, the key to the localisation method described here is geo-
graphical weighting. This has been previously used in a regression context (Brunsdon
et al., 1996; Fotheringham, Charlton, & Brunsdon, 1997) and extended to spatial
regression models (Brunsdon, Fotheringham, & Charlton, 1998). Initially, we
describe the basic methodology for adapting global statistics to local ones via geo-
graphical weighting, and then we consider the process in more theoretical depth. The
latter provides a conceptual framework for deriving localised versions of a very
general range of statistics.
In a sense, the work reported here is akin to the broader subject of spatial inter-

polation, and it is worth discussing this linkage. Methods for interpolating spatial
data are widely used in geographical research. These methods are usually available
in GIS software and are often used, for example, in interpolating values at the mesh
points of a regular grid from irregularly spaced sample data. Remote sensing soft-
ware provides another rich source of functions for processing data that are collected
on a regular lattice (for example high-pass filters for noise removal). It might there-
fore be argued that the statistics proposed here off er little that is new. However the
research reported here forms part of a general methodology that can be applied to
a wide range of descriptive statistics. In order to put this assertion into context it
is desirable to review briefly some of the more common methods for spatial
interpolation.
A number of useful summaries of what methods are available for spatial inter-

polation have been compiled (Lam, 1983) and (Burrough, 1986). One classification
of methods is to consider those that are useful for irregularly spaced sample data
(for example, spot heights obtained from field survey), and conversely, those that are
useful for data collected on a regular lattice (for example a remotely sensed image).
Another classification of interpolators is based on whether the interpolated surface
passes exactly through the sample data, or whether the results are approximate
(assuming some model of global trend). Yet another view of interpolation arises by
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considering the sampling points to be the result of some stochastic process. F inally
we may consider whether methods are appropriate for categorical or continuous
attributes.
One frequently used set of techniques assumes that that the spatial variation in the

attribute arises as the result of some moving average process. This requires that
the analyst specifies some sample size for the computation of the moving average
and some form of distance weighting function so that near sample points have a
greater weight in the resulting interpolation than far sample points. The inputs to
such interpolation procedures are the values of an attribute at a set of irregularly
spaced locations, and the output is usually, but not always, the values of an attribute
interpolated at a set of regularly spaced locations. With the data for a raster image,
the attribute value may be required at the mesh points of a grid that is rotated, or
skewed from those at which the sensors in the satellite obtained the data. Such
geometric correction employs similar methods to those outlined above depending on
the type of data in the image. Whilst proximal methods may be reasonable for an
already classified image, distance based methods are more suited to preservation of
the original data values.
Another group of interpolators useful with regularly spaced sample locations (for

example raster data in a GIS) is provided by Tomlin’s Map Algebra moving window
functions (Tomlin, 1990). The focalmedian function, for example, will return the
median value of those in a window of user defined size. However, the output from
these functions is intended to be located only at the mesh points of the regular grid.
The localised descriptive statistics proposed here make use of some of these con-

cepts, notably the distance weighted interpolations and moving window methods, but
relax the need to pre-specify a window size. They are also useful with both regularly
and irregularly spaced locations for input and output. In addition to extending these
ideas, we intend to show how localised descriptive statistics may be derived by con-
sidering the probability density of the attribute of interest conditioned on the geo-
graphical location via the technique of Kernel density estimation (Silverman, 1986).

3. Concepts of localised descriptive statistics

In principal, the calibration of a statistical model is localised to a point (u,v) by
weighting each observation in the data set according to its proximity to (u,v). For
instance, if the ith data point is situated at point (ui,vi), then wi, the weight applied to
the ith point, could be defined by:

wi ¼ expð�d
2
i =h

2Þ ð1Þ

where di is the Euclidean distance between point i and (u,v). Points close to (u,v) are
highly weighted, and this weighting reduces as di increases, tending to zero as di
becomes very large. The parameter h — the bandwidth — controls the rate at which
this fall-off in weighting occurs. Note that the weighting scheme changes as (u,v)
moves. Thus, as (u,v) scans an entire study area, calibration of the model ‘focuses’
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on points in the locality of (u,v). Any model parameter estimated in this way
becomes a continuous function2 of (u,v), and can thus be represented graphically by
a surface or contour map. The bandwidth — whose dimension is that of a
distance — eff ectively determines the ‘tightness’ of the focus. In the weighting func-
tion in Eq. (1), observations at a distance 2h from (u,v) give a wi of about 0.02, which
is relatively low. Since the weighting varies with (u,v), we refer to the technique as
geographical weighting.
Here we apply geographical weighting to a variety of descriptive statistics. For

example the sample mean may be replaced by a locally weighted mean:

x�ðu; vÞ¼

P
xiwiðu; vÞP
wiðu; vÞ

ð2Þ

where the wi’s are determined by Eq. (1). The (u,v) notation after x and wi serves to
indicate that these quantities vary as (u,v) changes. For brevity, this will be omitted
for the wi’s in the rest of this paper — it will be assumed that all wi’s in this paper
depend on (u,v) unless otherwise stated. Equations such as Eq. (2) can also be sim-
plified if the wi’s are re-scaled to sum to one, which they may be without loss of
generality. In this case we define the new wi to be

wiP
wi (in terms of original wi’s).

Again we will assume that the wi’s have been scaled to sum to unity throughout the
paper, unless otherwise stated. Thus, Eq. (2) may be re-written as:

x�ðu; vÞ¼
X

xiwi ð3Þ

In fact, this is simply an interpolation formula (Ripley, 1981). However, the
geographical weighting approach may be extended beyond this. For example,
a geographically weighted standard deviation may be defined as:

sxðu; vÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðxi � x�ðu; vÞÞ

2wi
q

ð4Þ

Note the use of x(u,v) in this definition. Locally weighted variation around the
localised mean is of interest here, not locally weighted variation around the global
mean.
With Eqs. (3) and (4) we have a basic toolkit for exploring geographical variation

in statistical distributions. Evaluating this summary statistic for all points in the
study area yields a surface — which can be mapped. In Figs. 3 and 4, contour maps
of localised versions of the mean and standard deviation are shown for the house
price data, with h= 3 km. The mean value is lowest (below £30,000) in a central area
surrounding Newcastle and Gateshead, in the southernmost tip of the county
around Hetton-le-Hole and also towards the west. High mean values, in excess of
£60,000, are seen in the north west corner of the county. Similar comments can be
made in terms of the localised standard deviation — generally higher values (in

2 Provided the weighting function is continuous.
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excess of £26,000) occur where the local mean is highest, and low values where the
local mean is lowest. However, there are exceptions to this rule — for example a
‘dip’ between Gosforth and Tynemouth is evident in the localised standard devia-
tion, but not in the localised mean. Note that, although the study area is restricted to
the county itself, some data is taken from areas just beyond the county borders —
this is to avoid the problems of ‘edge eff ects’ — where sparse data close to the edge
of the study area may cause spurious patterns to appear. When considering only
global descriptive statistics the features of the Tyneside housing market shown in
Figs. 3 and 4 would remain hidden.
However, as suggested in Section 1, these two examples are not the only possibi-

lities. The obvious extension is to consider a geographically weighted skewness,
defined in terms of the third moment about the (local) mean:

bxðu; vÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðxi � x�ðu; vÞÞ

3wi
½sxðu; vÞ�

3

3

s

ð5Þ

Note that, as with the mean, it is the localised version of the standard deviation
that is used in the formula.

Fig. 3. Localised mean for house price data.
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Thus, using geographical weighting allows us to localise a number of moment-
based3 summary statistics. In each case, the localised statistics are generalisations of
the global ones — if n is the sample size, and each wi is equal to n�1 in any of expres-
sions (3)–(5), then these expressions would coincide with the unweighted definitions
of the statistics, regardless of (u,v). Thus, the global statistic is just a special case of
the geographically weighted statistic. In the following subsection we demonstrate
how generalisations of this form may be applied to a much broader range of sum-
mary statistics.

4. A theoretical perspective

Here, we give a theoretical interpretation of the simple geographical weighting
approach outlined above. In order to do this, we must first consider the probability
distribution of the data triplet (u,v,x). This is a three-dimensional quantity giving the
location of a data point, together with its x-value. Suppose the probability density
function is f (u,v,x). Here, we consider the location and the x-value to be random

Fig. 4. Localised standard deviation for house price data.

3 i.e. Based on expressions of the form
P
ðxi � cÞ

mwi.
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quantities — for example, if x is a house sale price then f (u,v,x) is the probability
density that some house sale takes place at location (u,v) and is sold for x. This
function contains information about the relative frequencies of house sales at dif-
ferent (u,v)-locations, and also about the likely value of house price sales at diff erent
(u,v)-locations. However, when considering local descriptive statistics, we are only
interested in the latter of these two factors. To focus attention on this, we consider
the conditional distribution of x given (u,v). This is written as f (x|u,v), and using a
standard result we have:

f ðxju; vÞ¼
f ðu; v; xÞ

Ð
x f ðu; v; xÞdx

ð6Þ

This is just the joint probability function with u and v treated as known values, re-
scaled so that

Ð
f ðxju; vÞdx ¼ 1. Thus, f (x|u,v) is essentially a univariate distribution

in x. By comparing these probability densities for diff erent (u,v)’s, we can see how
the local probability density for x varies geographically. Hence, we define the term
localised density of x to be the density f (x|u,v).
Now we return to summary statistics. Since localised densities are essentially uni-

variate densities, theoretical localised summary statistics may be defined by applying
the global summary statistic definition to localised densities. Thus, a localised mean
can be defined as:

Eðxju; vÞ¼
ð

x
xf ðxju; vÞdx: ð7Þ

Table 1 shows several definitions of summary statistics for a general univariate
density f (x), and a general discrete probability distribution Pr(x). Note that the

Table 1
Typical descriptive statistics for the univariate probability density function f (x)

Statistic name Definition Notation

Continuous Discrete

Mean
Ð
xf (x)dx

P
xPr(x) E(x)

Standard deviation
Ð
(x�E(x))2 f (x)dx

P
(x�E(x))2Pr(x) SD(x)

Skewness

Ð
ðx � EðxÞÞ3f ðxÞdx

SDðxÞ1:5

P
ðx � EðxÞÞ3PrðxÞ

SDðxÞ1:5
Sk(x)

p-Quantile Solution for q of
Ðq
�1 f ðxÞdx ¼ p Minimum solution for q of

PR(x< q)= p
Qp(x)

Median Q0.5(x) Med(x)

Inter-quartile range Q0.75(x)�Q0.25(x) IQR(x)

Quantile imbalance
2MedðxÞ� ðQ0:75ðxÞþ Q0:25Þ

IQRðxÞ
QI(x)
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notation for these distribution-based measures is diff erent from those based on the
sample data considered in Section 3. As it has been argued, all of these summary
statistics may be localised, by substituting f (x|u,v) for f (x) in this table. Thus, at
least for theoretical distributions, we have a way to define localised versions not only
for the moment-based mean, standard deviation and skewness statistics considered
earlier, but also for quantile-based statistics such as the median and the inter-
quartile range. Better still, we have a way of generating a localised version of any
statistic defined in terms of a univariate density function.
This characteristic sets this method apart from parametric model based techni-

ques, such as Kriging (Krige, 1966; Matheron, 1973). Kriging allows smooth pre-
diction surfaces to be computed which are similar to the locally weighted mean.
Some variants on the technique also allow for local changes in the geostatistical
characteristics of the model (Goovaerts, 1997). However these approaches assume
that the distribution of x is Gaussian. Thus, it is implicitly assumed that local
skewness is always zero, and that the local mean is always equal to the local median.
It is possible to transform x but this would then assume that the distribution of the
transformed x applied everywhere. In some situations, the distribution may vary
from place to place so that in some places a transformation might be appropriate,
but not in other places. Here, we relax the Gaussian assumption by using a non-
parametric model — we simply state that the local distribution of x is f (x|u,v),
without restricting f to any functional form — or indeed to the same function form
for all u and v. In the situation where there is prior knowledge that the distribution is
Gaussian (with or without transformation), Kriging is likely to give a more effi cient
estimate. However, in an exploratory context where no such prior knowledge exits,
the locally weighted methods set out here are more appropriate tools.
In practice we normally have a set of observed data, not a theoretical distribution.

How can we proceed in this case? One approach is to generate an estimate of the
underlying distribution f (u,v,x) based on the data, and then compute localised
summary statistics by first deriving an estimate of f (x|u,v) using Eq. (6), and then
applying the appropriate distribution-based summary statistic formula. Since here
the emphasis is based on an exploratory approach, we prefer not to adopt a para-
metric model for f (u,v,x). Instead, we use the non-parametric method of kernel
density estimation (Brunsdon, 1995; Silverman, 1986; Wand & Jones, 1995) to esti-
mate f directly from the data. We will not discuss the method in detail — consulting
any of the above publications provides detailed discussions of the method. However,
it is necessary to provide a basic outline. In the three dimensional case, a kernel
density estimate f̂ (u,v,x) of the density f (u,v,x) is defined by:

f̂ ðu; v; xÞ¼
1

nhuhvhx

X
K
u � ui
hu

;
v� vi
hv

;
x � xi
hx

� �

ð8Þ

where K(u,v,x) is a probability density function with mean zero and variance one.
Typically, it is unimodal, the mode is also located at zero and the function is sym-
metrical in that reversing the sign of any of u, v or x leaves the value of K(u,v,x)
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unaltered. A Gaussian distribution is a common choice, although this is not
universal. Thus, the expression on the right hand side of Eq. (8) can be interpreted as
the average of a set of ‘humps’ centered around each data point. The parameters hu,
hv and hx control the width the hump in the u, v and x directions. Like h in Section 3
these may be interpreted as bandwidths. Here, we assume that since u and v combine
to form a two-dimensional space, the kernels should be isotropic in this space. This
allows the results of the density estimation to be frame-independent in the sense
that the coordinate system may be rotated or translated without altering the results
of the analysis (Tobler, 1989). Thus, we set hu= hv= huv, giving:

f̂ ðu; v; xÞ¼
1

nh2uvhx

X
K
u � ui
huv

;
v� vi
huv

;
x � xi
hx

� �

ð9Þ

Next, we assume that the kernel distribution K(u,v,x) may be factorised as
�Kuv(u,v)Kx(x), where Kuv and Kx are, respectively, bivariate and univariate prob-
ability densities with mean zero and mode zero, and exhibit symmetry as defined
above. �is a constant chosen to ensure that the K(u,v,x) integrates to one, and the
variances of Kuv and Kx are chosen so that the variance of K is one. This is not too
much of a restriction on K — many common choices of K fit this form, including the
above mentioned Gaussian. If this assumption is made, we may write:

f̂ ðu; v; xÞ¼
�

nh2uvhx

X
Kuv

u � ui
huv

;
v� vi
huv

; Kx
x � xi
hx

� �

ð10Þ

Having reached this stage, we may substitute this expression for f̂ (u,v,x) into Eq.
(6), to obtain an estimate for the localised density f̂ (x|u,v):

f̂ ðxju; vÞ¼
h�1x

P
Kuv

u � ui
huv

;
v� vi
huv

� �

Kx
x � xi
hx

� �

Ð
xh
�1
x

P
Kuv

u � ui
huv

;
v� vi
huv

� �

Kx
x � xi
hx

� �

dx
ð11Þ

Note that the factor
�
nh2uv appears in both numerator and denominator and is there-

fore canceled out. We do not cancel the factor h�1x for reasons which will become
apparent below. Next, note that the factor not involving x in the denominator may
be brought outside the integral, and that the order of the summation and the inte-
gral may be reversed so that the denominator may be written:

X
Kuv

u � ui
huv

;
v� vi
huv

� �ð

x
h�1x Kx

x � xi
hx

� �

dx ð12Þ

Now note that the integral in expression (12) is just the integral of a probability
density function, and so is equal to one. Thus, expression (11) may be written as:
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f̂ ðxju; vÞ¼
h�1x

P
Kuv

u � ui
huv

;
v� vi
huv

� �

Kx
x � xi
hx

� �

P
Kuv

u � ui
huv

;
v� vi
huv

� � ð13Þ

This may be further simplified by setting:

wi ¼
Kuv

u � ui
huv

;
v� vi
huv

� �

P
Kuv

u � ui
huv

;
v� vi
huv

� � ð14Þ

to give:

f̂ ðxju; vÞ¼ h�1x
X

wiKx
x � xi
hx

� �

ð15Þ

Two important observations may now be made. F irstly, the wi’s defined above
sum to one, and are based on a kernel function centred4 on (u,v). They are therefore
similar to the wi’s introduced in Section 3. In fact, if Kx(x) is a Gaussian distribution,
they are identical. Secondly, setting wi= n�1 in expression (15) gives the standard
univariate kernel density estimator. Thus, expression expression (15) is a general-
isation of a standard univariate kernel density in the same sense that the localised
moment-based statistics in Section 3 are generalisations of their global versions. We
will term the estimate in expression (15) the localised kernel density estimate. Like a
standard kernel density estimate it is the average of distributions centered on the
x-observations, but now the average is weighted in terms of the proximity of each
observation to the point (u,v).
Tentatively, we now have a general method for computing localised summary

statistics. F irstly, estimate the localised density with a localised kernel density esti-
mate, and then substitute this into the expression for the statistic of interest. In fact,
localised density estimates can be a useful exploratory tool in themselves. For
example, using the house sales data from Fig. 2, setting huv at 3 km, and hx at
£12,000 and using Gaussian kernels, we compute localised kernel density estimates
(F ig. 5) at the two locations whose grid references are (417.0,568.0) and
(433.0,558.0). The former of these locations is in the Newburn area, and the latter is
in Washington (Fig. 1). Inspecting the two curves in Fig. 5, it can be seen that the
Newburn price distribution peaks at a higher value than that for Washington, and
that it also has a long upper tail.
Next, we compute some summary statistics from f̂ (x|u,v). The localised mean

derived in this way can be found by taking means of both sides of expression (15):

4 Until now Kuv was considered as being centered on (ui,vi). However, the symmetry of Ku,v implies that
(u,v) and (ui,vi) may be interchanged. Thus Kuv can also be thought of as centered on (u,v).
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Êðxju; vÞ¼
X

wi

ð

x
xh�1x Kx

x � xi
hx

� �

dx: ð16Þ

Noting that the integral on the right hand side is just the mean of the density Kx(x)
centered on xi, which has the value xi, we put:

Êðxju; vÞ¼
X

wixi: ð17Þ

Thus, the expression for the mean obtained in this way agrees with that obtained
using the geographical weighting principal (Eq. (3)). Next we consider localised
variance. This can be shown to be:

½cSdSdðxju; vÞ�2 ¼
X

wiðxi � Êðxju; vÞÞ
2 þ h2x: ð18Þ

Note that this does not agree with the earlier definition given in Section 3 (Eq. (4))
unless hx= 0. This implies an ‘improper’ kernel density estimate must be used to
allow the two definitions to coincide. However, if one considers the limiting behav-
iour of kernel density estimates as hx! 0, it can be shown that the density estimate in
expression (15) approaches a discrete distribution taking only the values {x1. . .xn}
with probabilities {w1. . .wn}. If this observation does not seem obvious, it may be
helpful to view a practical example. In Fig. 6 the eff ect of allowing hx to approach

Fig. 5. Localised kernel density estimates for house sale price.
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zero when the x-values are {1,2,3,4} and the corresponding wi’s are {0.1,0.4,0.4,0.1}
is shown. For low values of hx the graph approaches the form of four discrete ‘mass
points’ of relative value given by the wi’s.
Thus, as a limiting case of a localised kernel density estimate, we have the n mass

point distribution discussed above. Again, this is a localised distribution, as the wi’s
all depend on (u,v). Observations close to (u,v) have high wi’s (that is, high masses),
and observations further away from (u,v) have low wi’s (low masses). Essentially,
these are geographically weighted discrete distributions, taking only the values
{x1. . .xn}, with probabilities {w1. . .wn} whose values reflect the proximity of the
observations to the point (u,v). We term these localised mass point distributions
(LMPDs). LMPDs for Newburn and Washington [using the same (u,v) values as in
Fig. 5 and a bandwidth of 3 km with a Gaussian kernel] are shown in Fig. 7.

Fig. 6. Eff ect of letting bandwidth tend to zero in a localised kernel density estimate.
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These plots tell a similar story to the localised kernel density estimates considered
earlier, with the Newburn distribution having a much longer ‘tail’ of expensive houses
than Washington. The large spike at around £175,000 suggests that one house of
this price was sold very close to the (u,v) sampling point used to represent Newburn
here — there also appears to be a cluster of housing between about £90,000 and
£130,000.
Returning to the theory, we have noted that LMPDs yield estimates of the local-

ised mean and standard deviation which agree with those proposed in Section 3. In

Fig. 7. Localised mass point distributions for Newburn and Washington.
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fact, it can be shown that this agreement holds for any moment-based statistics.
Thus, in this section we have outlined two kinds of localised distribution estimate —
the localised kernel density estimate, and the LMPD. Use of the latter gives localised
moment estimates in agreement with the intuitive definitions for all moments. Of
course, one can also use localised mass point estimates as a basis for estimating any
localised statistic, provided the statistic is well defined for a discrete distribution. For
the remainder of the paper we use this method, for two main reasons — firstly, the
agreement between the definitions in Section 3 and those derived from LMPDs
seems an encouraging benchmark; and secondly, as shown in Section 5 deriving
localised versions of non-moment-based statistics from LMPDs tends to give com-
putationally simple results.
The practice of approximating a continuous distribution with a discrete one may

seem strange, however, it is not unprecedented. For example, the technique of
bootstrapping (Efron, 1979, 1981, 1982) relies on approximating a distribution
from a sample {x1. . .xn} as a mass point distribution with w1= w2= . . .= wn= n�1.
Indeed, a LMPD can be thought of as a generalisation of this distribution, in the
same sense that localised kernel density estimates are spatial generalisations of
ordinary kernel density estimates.

5. Applying the method to quantile-based statistics

An alternative to moment-based summary statistics are those based on quantiles,
such as the median and the inter-quartile range. The sample-based estimates of these
statistics tend to be more resistant to outliers than those for moment based statistics,
and they play a key rôle in the exploratory data analysis methodology set out by
Tukey (Tukey, 1977). In this section we consider the derivation of localised quantile-
based summary statistics using LMPDs. A number of such statistics are listed in
Table 1. Perhaps the least familiar of these is the quantile imbalance. This is based on
the position of the median relative to the first and third quartiles, and measures the
symmetry of the middle part of the distribution. It ranges from �1 (when the med-
ian is very close to the first quartile) to 1 (when the median is very close to the third
quartile), and is zero if the median bisects the first and third quartiles. Essentially,
this measures the degree of imbalance in the location of the median with respect to
the quartiles considered by Brimicombe when proposing the normalised boxplot as
an exploratory data analysis tool (Brimicombe, 1999). Unlike the skewness, it is not
aff ected by the shape of the tails of the distribution, measuring only the shape of the
distribution between the outer quartiles.
Note that all of these statistics are functions of the general p-quantile for various

values of p. Thus, deriving localised p-quantiles from LMPDs is the key to obtaining
the remaining statistics. Since we are working with LMPDs, we need the discrete
distribution expression for the p-quantile, which is the minimum solution for q of
the equation:

Prðx < qÞ¼ p: ð19Þ
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For a LMPD, we can write this expression as:
X

xi< q

wi ¼ p: ð20Þ

This expression may be best understood if we label the xi’s in ascending order —
and of course label the corresponding wi’s accordingly. Regard the left hand side of
Eq. (19) as a function of q. This takes value of the sum of the set {w1,w2,. . .wJ},
where J is the index of the largest xi not exceeding q. This function jumps by an
amount wi each time q exceeds a value xi. Thus, the left hand side only takes one of
the n values w1, w1+ w2,. . .w1+ w2+ . . .+ wn. (Note that the last of these is equal to
one.) Unless one of these values happens to equal p, Eq. (20) has no solution. For
some J we will have w1+ . . .+ wJ< p and w1+ . . .+ wJ+ 1> p. A problem therefore
arises: when this happens, it appears that the LMPD has no p-quantile.
We overcome this diffi culty by extending the defining a p-quantile in this situation

by interpolation. When q= xJ we have Pr(x4 q)= w1+ . . .+ wJ= wJ*, say, and when
q= xJ+ 1 we have Pr(x4 q)= w1+ . . .+ wJ+ 1= wJ+ 1*. If we were to assume that
Pr(x4 q) were a linear function between q= xJ and q= xJ+ 1, rather than the dis-
continuous jump it actually is, then the solution to Eq. (20) would be:

q ¼ xJ þ ðxJþ 1 � xJÞ
p � w�J
w�Jþ 1 � w

�
J

ð21Þ

This is just the standard linear interpolation formula. F inally, noting that
wJ+ 1* �wJ*= wJ+ 1 the result may be simplified to:

q ¼ xJ þ w
�1
Jþ 1ðxJþ 1 � xJÞðp � w

�
JÞ ð22Þ

The reader may wish to check that if p= 0.5, and all wi’s are equal to n�1, then we
obtain the standard expression for the sample median. Once again, we obtain an
expression which can be thought of as the geographically weighted generalisation of
as a global summary statistic.
Hence, via Eq. (22) we obtain localised versions of the median, the interquartile

range and the quantile imbalance. We have thus used LMPDs to define a set of
quantile based descriptive statistics to measure location (i.e. typical values of x),
spread and symmetry of a variable of interest, x. These complement the moment-
based descriptors derived in Section 4. Often, both types of statistic are of use:
typically, the quantile based estimates are more robust to outlying values (as stated
earlier), but the moment-based estimates tend to be smoother. We therefore suggest
a set of six summary statistics that may be used to investigate spatial variates in
univariate distributions, as set out in Table 2.
Note that this list is not exhaustive. For example, one could go on to consider

kurtosis (based on the fourth moment), or local modes. However, we feel that this
set of statistics provides a useful grounding for an exploratory analysis of local dis-
tribution shape.
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6. Computational issues and visualization

In Sections 2 and 5 a methodology for deriving localised summary statistics is set
out. However, for this to be of practical use consideration must also be given to
issues of computation and visualization of these statistics. Clearly the above results
would be of little value to applied geographers if they required impractical amounts
of time to compute, or if they could not be illustrated eff ectively. In this section we
outline the approaches we have adopted in both of these areas.

6.1. Computation

Computing locally weighted statistics via LMPDs will inevitably require a large
amount of computation. As stated above, localised statistics can be regarded as
mathematical functions defined over continuous regions on a map. However, in
practice they will be evaluated over a regular lattice of points, usually a regular grid.
Since the wi’s vary spatially, these must be re-computed for each point in the grid. As
there needs to be a reasonably fine lattice to obtain reasonable results (typically
between about 600 and 2000 points), this is generally the most time-consuming part
of computation. The next most time consuming task is perhaps the sorting of the xi’s
which is necessary to apply the localised p-median computations as outlined in Sec-
tion 5. However, this task only has to be performed once for the entire lattice.
To compute the statistics in Table 2, it is worth noting that there is a large degree

of cross referencing in their definitions — for example, the standard deviation defi-
nition refers to the mean, and the skewness refers to both the mean and standard
deviation. Assuming the sorting of the x’s and wi’s has already been carried out, all
of these dependencies are shown in Fig. 8. Note that although the quantile imbal-
ance depends on both the median and interquartile range, no arrows connecting
these boxes are shown as the routine to compute this quantity needs only call on the
p-quantile routine.

Fig. 8. Dependencies between local summary statistics.

Table 2
A typology of local summary statistics

Location Spread Symmetry

Moment based Mean Standard deviation Skewness
Quantile based Median Interquartile range Quantile imbalance
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In the diagram, if an arrow points from box A to box B, then the quantity in box
A must be computed in order to compute the quantity in box B. As can be seen,
everything depends on the wi’s, either directly or indirectly. The most eff ective order
in which to compute all of the statistics is to ensure that for any statistic, all of the
other statistics pointing to it have already been computed and stored as intermediate
results. Note that this implies that it is better to compute all six statistics in Table 2
in a single procedure, rather than creating six stand-alone procedures, each requiring
the wi’s to be computed independently. In fact, if the latter approach were taken,
computing all six statistics would require more than six repeat calculations of the
wi’s, as some of the procedures for more advanced statistics would call the more
basic procedures. Here, we have carried out the coding of the localised statistic
computation using the Lisp-Stat package (Tierney, 1990).

6.2. Visualization

Having computed localised statistics over a geographical study area, some con-
sideration should be given to the method of visualizing the results. Since localised
statistics can be represented as surfaces, or as abstract terrains, the obvious choices
for visualisation are those of contour (isoline) maps, three-dimensional surfaces or
unclassed choropleth grid maps (Tobler, 1973). All of these methods have a number
of distinct advantages and disadvantages (Kraak & Ormeling, 1996). Although it is
recommended that all of these techniques may be experimented with, here we have
opted to use isoline maps. The main reason for this is that it is intended to compare
several localised statistics — namely the six statistics suggested above — by applying
the principle of small multiples (Tufte, 1990). This is interpreted here as showing
small maps arranged in two rows and three columns — where splitting by row
divides the display into moment-based vs. order based statistics, and splitting by
column divides the display into measures of level, spread and symmetry. It has been
suggested (Kraak & Ormeling, 1996) that isoline maps are the most suitable choice
of visualization method for making such multiple comparisons.

7. An example

Here we apply the six localised statistics outlined in Table 2 to the house price
data introduced in Section 1. The results are illustrated in Fig. 9. Here, all six indi-
cators are shown as described above, visualized in the form of isopleth maps. Note
that to reduce complexity in the multiple images, the place names and scale
appearing in Figs. 3 and 4 are no longer shown. Note also that the mean and median
share the same contour levels, as do the standard deviation and the interquartile
range. This allows direct comparisons to be made.
Recall that the data comprise 1067 observations of house prices over a 1-year

period for the county of Tyne and Wear in northeast England (Fig. 1). The local
statistics can be used in a number of ways to explore these data. A choice needs to
be made on where to provide an estimate of the local statistics. We may provide
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Fig. 9. Multiple maps of localised statistics. Maps are alphabetically labelled: (a) skewness; (b) quantile
imbalance; (c) standard deviation; (d) inter-quartile range; (e) mean; and (f) median.
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estimates at the points at which the data are sampled or at the mesh points of a
regular grid. Alternatetively, we may provide estimates at some entirely diff erent set
of locations (for example, the centroids of postcodes or zip codes).
If it is desired to examine the price of a property in relation to others in the

neighbourhood, the diff erence between its actual price and the local mean or median
will give some indication of whether the house is locally more or less expensive. The
local variance or interquartile range will give some indication of housing mix.
The local skewness or quartile imbalance may give some insights as to whether the
property is unusually expensive or not.
We may be interested in broader patterns. If this is the case, then we may wish to

provide estimates of these local statistics at the mesh points of a regular grid — such
data can then be conveniently read into some GIS software to provide a picture of
the patterns across the region. This method has been used to generate some of the
plots in this paper, and it obviates the need to use any interpolation routines to
create a field from a set of irregularly spaced observations. Additionally, the user
can then query some of the individual data for insights into why local variations in
whatever is being summarised are taking place.
We may wish to provide estimates for some other set of locations. For instance, if

we are interested in obtaining some measure of affl uence for, say unit postcodes (the
UK equivalent of the US zip code area), then we might evaluate the local mean
house price at the centroid of each postcode. The UK Census of Population does
not collect information on household income, and consequently there is a large
geodemographic industry that attempts to estimate such data. Local estimates of
housing costs could provide a useful proxy, and looking at the localised distribu-
tions of housing cost provides an indication of the degree of ‘social mixing’ in an
area. Similarly, in epidemiological studies, it is sometimes useful to try to calculate
the probability of a birth being stillborn relative to local estimates of deprivation
(Dummer, Dickinson, Pearce, Charlton, Smith, & Salotti, 1998). Estimates of local
housing cost may help to provide further information on local levels of deprivation
in such studies.
Several experiments with diff erent bandwidths were carried out on the house price

data. The physical extent of the county is about 32 by 22 km. A bandwidth of 3 km
gives a rather general picture of local house price trends, indicating a roughly north-
west to south-east trend in mean house price — see Fig. 3. As it was desired to reveal
variations in price between the settlements in the county, a bandwidth of 1 km
appeared to provide an appropriate level of detail. However, there is no reason why
several bandwidths may not be tested in order to reveal local variations at diff erent
spatial scales.
The map of the local means in Fig. 9e reveals some interesting patterns (see Fig. 1

for locations). The highest levels are to be found west of Seaton Burn. Recall that
the local mean house price is around £44k. Examination of the data reveals two
properties sold for £115k and £63k in the locality — the wide local standard devia-
tion is evident from Fig. 9c. There is another high price locality around Forest Hall.
One of the properties in this suburb was sold for £100k. Other areas of expensive
housing are to the north end of Whitley Bay, Cleadon, Whickham and Rowlands
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Gill. At the other end of the price scale we find areas of low cost housing around
Chopwell where properties can be bought for as little as £20k. The west end of
Gateshead is another area of low cost housing as is the south end of Hetton-le-Hole
in the extreme south of the county. One regional pattern which is apparent among
the local detail is that housing in the older industrial areas along the Tyne (Wall-
send, Hebburn, Felling) and along the River Wear in Sunderland is generally of
lower cost than housing in the more affl uent commuter suburbs. The disparity is
evident in comparing local means in Tynemouth (£56k) and Wallsend (£32k), two
towns which are less than 7 km apart.
Examination of the local standard deviation map in Fig. 9c contrasts areas where

the housing is consistent in price against other areas where there is wider variation.
The older former industrial areas along the river have not only low cost housing but
housing which is similarly priced. Housing is often cited as an example of a com-
modity where the distribution of prices is usually positively skewed. Skewness
measures the direction in which outliers in a distribution tend to occur. In some
areas of high priced housing (Whickham, Rowlands Gill, Cleadon) the local price
distribution exhibits a negative skewness suggesting that in general local housing
costs are high but that there are a handful of relatively inexpensive houses.
Revisiting the maps of local mean (Fig. 9e) and local median (Fig. 9f) we observe

quite noticeable changes in local gradient. This is perhaps most noticeable in the
high price area around Whickham. Local medians would appear to be more sensi-
tive to local diff erences than are local means. With a 1 km bandwidth, the maps of
local interquartile range (Fig. 9d) and quantile imbalance (Fig. 9b) pick up rather
too much local noise and some further smoothing with a larger bandwidth is prob-
ably desirable.

8. Conclusion

There are a number of ways in which the ideas in this paper can be extended. For
example, although the illustrations given here all apply to univariate distributions,
the same principles could be applied in the multivariate case. Here, instead of con-
sidering distributions of mass points in one dimensional space, one could consider
the m-dimensional case. This leads to the localised variance-covariance matrices,
and consequently to the notion of localised principal components.
Another development could be that of nonparametric modeling. In this paper,

emphasis has been placed on the exploratory aspects of localised descriptive statis-
tics. However, it may be possible to consider localised estimates as a means of cali-
brating nonparametric models. For example, a model of the form:

zi � Nðf ðui; viÞ; gðui; viÞÞ ð23Þ

where (ui,vi) is a point in space, and zi is some variable of interest, could be cali-
brated using localised estimates of mean and variance to estimate the unknown
functions f and g. However, such estimates would be of limited use unless one was
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aware of the bias and standard error. In situations like this, the use of bootstrapping
methods (Efron, 1979, 1981, 1982) is likely to be of help. It is intended that this will
be the subject of further research.
The technique also raises some questions regarding the choice of bandwidth. Since

the emphasis in this paper has been exploratory, choice of bandwidth has been
rather arbitrary. The choice of 1 km in the examples seemed a realistic distance for
considering local variations in house prices. However, in some situations a band-
width may not readily suggest itself, and ‘automatic’ approaches to bandwidth
choice may be helpful. This itself raises another question — should one expect all
localised descriptive statistics to have the same optimal bandwidth? Again, this will
be the subject of future research.
In conclusion, a generalised approach to localised statistics has been proposed.

Through the idea of localised distributions, and in particular the localised mass
point distribution, a large number of localised statistics may be created. As well as
specific examples, this paper provides a framework for creating arbitrary localised
statistics. With geographically weighted regression (Brunsdon et al., 1996) an
approach for handling geographical nonstationarity in regression models was pro-
posed. It is hoped that the framework set out in this article, together with the
extensions suggested above, will lead to a very general approach to handling geo-
graphical nonstationarity in many aspects of statisticalmodeling and data exploration.
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