
Computers, Environment and Urban Systems 32 (2008) 268–277
Contents lists available at ScienceDirect

Computers, Environment and Urban Systems

journal homepage: www.elsevier .com/locate /compenvurbsys
Improving user assessment of error implications in digital elevation models

Amii R. Darnell *, Nicholas J. Tate, Chris Brunsdon
Department of Geography, University of Leicester, University Road, Leicester LE1 7RH, UK

a r t i c l e i n f o
Keywords:

Error
Uncertainty
Stochastic simulation
Digital elevation models
Propagation
0198-9715/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.compenvurbsys.2008.02.003

* Corresponding author. Present address: School
University of East Anglia, Norwich NR4 7TJ, UK. Tel.:
(0)1603458553.

E-mail address: a.darnell@uea.ac.uk (A.R. Darnell).
a b s t r a c t

A digital representation of a terrain surface is an approximation of reality and is inherently prone to some
degree of error and uncertainty. Research in uncertainty analysis has produced a vast range of methods
for investigating error and its propagation. However, the complex and varied methods proposed by
researchers and academics create ambiguity for the dataset user. In this study, existing methods are com-
bined and simplified to present a prototype tool to enable any digital elevation model (DEM) user to
access and apply uncertainty analysis. The effect of correlated gridded DEM error is investigated, using
stochastic conditional simulation to generate multiple equally likely representations of an actual terrain
surface. Propagation of data uncertainty to the slope derivative, and the impact on a landslide suscepti-
bility model are assessed. Two frameworks are developed to examine the probable and possible uncer-
tainties in classifying the landslide hazard: probabilistic and fuzzy. The entire procedure is automated
using publicly available software and user requirements are minimised. A case study example shows
the resultant code can be used to quantify, visualise and demonstrate the propagation of error in a
DEM. As a tool for uncertainty analysis the method can improve user assessment of error and its
implications.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. The importance of considering error in DEMs

Terrain is a topographic surface that varies continuously over
space. It is multiscale, including mountain ranges, river catchments
and individual slopes. The conceptualisation of topographic reality
can be represented in the form of a digital elevation model (DEM);
however it is not feasible to sample infinite points or to create a
continuous data structure from a finite data set. Thus approxima-
tions need to be made from discrete data that model the reality
of terrain as closely as possible. Digital models of terrain take dis-
crete data values of the elevation continuum and by using interpo-
lation methods, reconstruct a surface. Error is inherent due to this
approximation and can be considered the disparity in the elevation
value projected by a DEM and a reference for the ‘true’ surface. In
contrast, uncertainty is usually considered as the lack of knowl-
edge about the reliability of a DEM’s representation of the true sur-
face (after Hunter & Goodchild, 1997).

The elevations recorded within DEMs have been shown to con-
tain errors derived from a variety of sources: sampling, measure-
ment and interpolation (Fisher, 1998; Fisher & Tate, 2006). Even
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small elevation errors can greatly affect derivative products
(Holmes, Chadwick, & Kyriakidis, 2000). This can potentially have
a significant impact on the application of DEMs in Geographical
Information Systems (GIS) where derivatives of elevation are fre-
quently used. For example the propagation of error to slope can
have a significant influence on soil erosion prediction models
(Warren, Hohmann, Auerwald, & Mitasova, 2004). Therefore, after
establishing that errors exist in DEMs it is necessary to acknowl-
edge there is a risk that the outcome of any analysis based on this
information will be incorrect (Fisher, 1998).

1.2. Spatial dependency and variability

DEM vendors such as the United States Geological Survey
(USGS) generally provide users with a measure of vertical accuracy
in the form of the root mean squared error (RMSE) statistic (USGS,
1997). A global accuracy measure such as this has its advantages:
for example it is relatively quick to calculate, easy to report and
it is a standard recognised worldwide. Furthermore, as it implies
that error is uniform across the DEM (Burrough & McDonnell,
1998) comparison of different models is simple using this method.
However many papers have reported on the limitations of a single
value of accuracy, stressing that DEM error is spatially variable and
autocorrelated (e.g. Fisher, 1998; Holmes et al., 2000; Kyriakidis,
Shortridge, & Goodchild, 1999). Thus not only is error spatially var-
iable throughout a DEM, but within the model the error value of an
individual grid cell is related to errors from neighbouring cells.
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This spatial variability and spatial dependency (termed ‘spatial
autocorrelation’) can be crucial for environmental applications of
DEMs and its existence has been examined in many recent studies.

Several authors report the magnitude of DEM error is closely re-
lated to the characteristics of the terrain surface. For example slope
will influence interpolation procedures (Kidner, 2003). The positive
correlation of error and slope has been shown in numerous studies,
e.g. Hunter and Goodchild (1997), Veregin (1997) and Fisher
(1998); yet on mathematical surfaces (synthetic DEMs) smoother,
flatter areas generate a greater amount of uncertainty in their de-
rived parameters (Zhou, Liu, & Sun, 2006). However, a more recent
study by Holmes et al. (2000) found only a weak correlation be-
tween calculated DEM error and various terrain attributes. This
work largely adopted the geostatistical methods of Kyriakidis
et al. (1999) but whereas the earlier study found high DEM error
associated with areas of rough terrain, Holmes et al. (2000) found
correlation negligible. In another study Liu and Jezek (1999) ex-
plored the spatial autocorrelation pattern of DEM error and found
it to be closely reliant on the ruggedness of the terrain under inves-
tigation. However they stressed that surface slope cannot be sim-
ply used to predict the error magnitude; a linear relationship
between the magnitude of DEM error and terrain surface slope ex-
ists for smooth terrain surfaces only.

Hence it is intuitive that certain types of terrain are more suited
to the creation of accurate DEMs (Carlisle, 2005). A distinction
must be made between the characteristics of the actual terrain
and those represented by the digital model. There are two main
ideas here: (1) actual terrain characteristics can induce error in
the representation of elevation, and (independently) (2) error once
incorporated in the terrain model can propagate to derivatives, giv-
ing a false representation of a terrain characteristic. Irrespective of
which of these ideas prompts the research, many authors are
agreed there is an intimate relationship between elevation error
and terrain, and that this is influenced by the spatial autocorrela-
tion of the error.

1.3. Modelling error and its propagation

There are two approaches to error modelling: analytical error
models and (conditional and unconditional) stochastic simulation
(Fisher & Tate, 2006). The most frequently cited analytical model
of error was developed by Hunter and Goodchild (1995). This basic
model was based on simple probability theory and the RMSE of the
DEM. The RMSE was taken to be an estimate of the local error var-
iance around a measured elevation value. This technique is useful,
as it doesn’t require the comparison of DEM data with higher accu-
racy data however the limitations of a global accuracy measure
have been presented (e.g. Wise, 2000). Alternatively geostatistics
can be used to model the actual distribution of error with reference
to a higher accuracy dataset.

Arguably, the best method for error modelling is based on con-
ditional stochastic simulation (Fisher, 1998). Stochastic imaging
involves the modelling of spatial uncertainty through alternative
numerical representations (maps) of the same reality (Journel,
1996). Multiple versions of the derived products from these reali-
sations can also be determined, demonstrating error propagation
(Fisher, 1998). Kyriakidis et al. (1999) describe the mathematical
details of the process of stochastic simulation. Conditioning the
simulation model preserves sample observations of error and thus
allows consideration of spatial autocorrelation. Having modelled
the error there are a number of methods for tracing the propaga-
tion of quantitative error from source to surface derivatives, such
as Taylor series approximation, Rosenblueth’s method and Monte
Carlo simulation (see Heuvelink, 1998 for a discussion). The Monte
Carlo method has been cited as the best method for determining
the influence of error on DEM derivatives (Veregin, 1997). It is also
advantageous because it is not affected by the complexity or
non-linearity of the model (Burrough, 2002) and is thus generally
applicable. Monte Carlo simulation is a technique for producing
estimates of ‘true’ outcomes of stochastic processes by simply run-
ning many iterations of the model process and comparing the out-
comes. The main disadvantage is the numerical load as the process
is repeated for typically 50–2000 simulation runs (Heuvelink,
1998), but the method remains widely recommended.

1.4. Statement of the problem

Many researchers advocate that the responsibility of error con-
sideration lies with the data producer (e.g. Aguilar, Aguilar, &
Aguera, 2007) however many datasets are provided with RMSE
information only. This research moves towards enabling the DEM
user to be more appreciative of the possible implications of error
in their work. However, as the methods for uncertainty analysis
evolve to be more comprehensive, they also become more difficult
to understand and implement. Analytical procedures for error
investigation can be very intellectually and resource-intensive.
Furthermore the variety of methods proposed by academics and
researchers has created ambiguity for the ‘average’ DEM user. This
problem may be compounded by a general apathy or ignorance on
the part of DEM users. A recent paper by Wechsler (2003) surveyed
a spectrum of DEM users worldwide and found that only half of the
respondents considered their work influenced by uncertainty. Fur-
thermore a significant proportion (25%) had no awareness at all of
whether DEM errors affected their work and many reported that
they would spend a minimum amount of time to assess uncer-
tainty. This contributes to the general lack of quality standards
for GIS products derived by non-experts (Couclelis, 2003).

A DEM is usually created by interpolating a regularly gridded
surface from a discrete number of points. Errors due to the interpo-
lation process were not examined by this research but for a full re-
view of processing errors the reader is referred to Rees (2000),
Wise (2000) and Fisher and Tate (2006) among others. The main
aim of this research was to simplify existing procedures to enable
the ‘average’ DEM user to perform his/her assessment on the impli-
cations of error propagation to decision outcomes. This proposition
had two principal objectives. First a methodology was designed to
quantify, visualise and demonstrate the propagation of error. The
consideration of spatial autocorrelation was identified as signifi-
cant and thus conditional stochastic simulation was used, as sup-
ported above. Secondly the technique was designed to minimise
user requirements and maximise simplicity. Fundamentally soft-
ware needed to be accessible to all DEM users which suggested free
software copyrighted under the General Public Licence (GPL).

2. Methods

2.1. Overview

This paper presents the results of a prototype design to assess
the feasibility of a system for automating the quantification, prop-
agation and visualisation of error. The application of a DEM for
landslide susceptibility modelling was considered to add context
to discussion and demonstrate the relevance of the propagation
of error consideration. Two frameworks were adopted to examine
the probable and possible uncertainties in classifying the landslide
hazard: probabilistic and fuzzy.

Sample DEMs were acquired for a case study. Relative errors at
sample locations within each DEM were calculated with reference
to a higher accuracy dataset. To model the distribution of error
geostatistical modelling and Monte Carlo simulation were exe-
cuted by GSTAT in the R software environment (Pebesma, 1999).
R and GSTAT were both copyrighted under GPL, easy to install
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and freely available for download from the Internet (CRAN, 2007).
A working script in R was developed to automate the procedure by
linking new and existing R functions, and developing new code for
visualisation. The script was designed to adhere to the essential
requirements, whilst maintaining the option of modifying defaults
(Table 1). The user would benefit from an automated yet flexible
procedure and (owing to frequent annotation of the code) the user
Table 1
User requirements in the error assessment methodology

Requirement
type

Description Necessity

Data Test DEM(s) Essential
Higher accuracy data for reference surface Essential

Variables Sample size and point locations Essential
Grid resolution for display of results Optional

(default)
Number of simulations (N) Optional

(default)

Knowledge/
skills

Variogram interpretation Essential
basic

Interpretation of results Essential

External
software

Manipulation of data (e.g. MS Excel) Essential
Further (topographic) visualisation (e.g. Surfer,
Golden Software)

Optional

Reference surface, 
'true' elevation DEM(x)

Error points

Fitted variogram

N error map 
realisations

N equally 
probable DEMs

N slope mapsTake mean

Take mean

Landslide susceptibility
model

User 
interpretation

Fit an experimental
variogram

Conditional Gaussian
simulation

A

D

C

B

Fig. 1. The four stages of error assessment. Solid arrows illustrate inputs and flow
direction; dashed arrows indicate a process/object requiring further input.
would be provided with explanation and/or instructions
throughout.

Fig. 1 outlines the overall methodology. The approach can be di-
vided into four main stages: (A) modelling spatial dependence, (B)
stochastic simulation, (C) propagation to surface derivates, and (D)
propagation to a landslide susceptibility model. These stages will
now be discussed, following introduction to the study area and ref-
erence to the theoretical error model. The uncertainty analysis
methodology was finally incorporated into a procedure for the
DEM user.

2.2. Case study: The slovenian mountains

The study area occupied approximately 25 km2 of north-wes-
tern Slovenia and focused on a section of the Idrija River valley.
At the intersection of the Alps and Dinaride mountain range this
region is tectonically active and the strike-slip faults pose a serious
seismic hazard (Cunningham, Grebby, Tansey, Gosar, & Kastelic,
2006). Landslides are frequent. Previous research had revealed that
only slopes of 14 degrees or greater showed an association with
landslide occurrence that was significantly different from the ran-
dom occurrence of landslides (Komac, 2006 personal communica-
tion). This figure was taken as a critical angle, a, for slope
susceptibility to landslide in the study area, and was the simple
landslide model applied.

Two test DEMs were provided by the Survey and Mapping
Authority of Slovenia at 12.5 m and 25 m grid spacing. They were
derived independently using a combination of Interferometric
Synthetic Aperture Radar (InSAR) data, digitisation of paper maps
and geodetic data (roads, railways, buildings, etc.). The DEMs were
chosen for their differing resolution, a factor that has been shown
to affect derived slope (Warren et al., 2004). A Light Detection and
Ranging (LiDAR) dataset (Cunningham et al., 2006) was used as a
surrogate for the ‘true’ elevation, from which 100 sample points
were randomly selected to be representative of the reference ele-
vation surface. The height data resulting from the LiDAR survey
had an absolute RMS accuracy of better than 15 cm (Cunningham
et al., 2006). Wehr and Lohr (1999) provide a general overview of
LiDAR principles and Huising and Gomes Perreira (1998) consider
accuracy issues of LiDAR data. One hundred corresponding eleva-
tion values were therefore taken from each DEM for comparison.
Sample locations were determined by the LiDAR flight path and
were thus largely confined to the valley and its immediate vicinity.

In addition to the higher accuracy LiDAR dataset, two DEMs of
different resolutions were available. These were to test the proto-
type methodology and investigate the affect of differing resolution
on derived slope. However multiple DEMs for the same area are
not expected from the average DEM user; simply a DEM of un-
known quality and a set of distributed sample elevation values of
higher accuracy to act as a reference surface (for example elevation
values from global positioning system (GPS) points or spot heights)
are needed.

2.3. The error model

The first step was to define the error model. To find the error in
a given DEM dataset the elevation given by the DEM may be sub-
tracted from the ‘true’ elevation at a specific location. For a quan-
titative spatial attribute A(�), such as elevation, at some location
x 2 D its ‘true’ value is A(x) as defined by the model Heuvelink
(1998):

AðxÞ ¼ bðxÞ þ VðxÞ for all x 2 D ð1Þ

where b(x) is the deterministic variable, i.e. the interpretation of
A(�), and V(x) is the error.
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2.4. Uncertainty analysis and error propagation

A grid was constructed dependent on the bounds set by the
minimum and maximum coordinate sample values (grid resolu-
tion defaults to 100 m). For each DEM, error in elevation was calcu-
lated at each sample location. Where these coordinates did not
correspond to grid nodes they were interpolated. The effect of cor-
related gridded DEM error was then investigated using stochastic
conditional simulation to generate multiple equally likely repre-
sentations of an actual terrain surface (as discussed Section 1.3).
A raster error surface was then produced for each of the 100 sim-
ulations and the mean of these equally probable realisations was
taken as being representative of the whole. Propagation of data
uncertainty to the slope derivative and the impact on the landslide
susceptibility model were finally assessed.

There were four main stages to represent the error and demon-
strate the propagation of error to the landslide model.

2.4.1. Modelling spatial dependence
Geostatistical variograms have been employed to show the spa-

tial autocorrelation of error (Fisher & Tate, 2006). A variogram sum-
marises the relationship between differences in pairs of (error)
measurements and the distance of the corresponding points from
each other. A model was produced in GSTAT by a two-step procedure
of first calculating the sample variogram from the raw error data and
then fitting a variogram model (Pebesma & Wesseling, 1998). GSTAT
supports many model types including linear, spherical, Gaussian,
etc. Interpretation by the user was required to select an appropriate
model, this was unavoidable. However the GSTAT user’s manual
(Pebesma, 1999) provides some guidelines for this. The variogram
model (as defined by the function, sill and/or range) was fitted to
the sample variogram by weighted least squares estimation of the
variogram model parameters (Pebesma & Wesseling, 1998).

2.4.2. Stochastic simulation
The variogram model determined above was preserved and used

with sequential Gaussian simulation to generate N error map real-
isations. Each error realisation was added to the original test DEM
(re-gridded to error nodes) to generate N equally probable DEMs.
The basic steps of the conditional Gaussian simulation are detailed
within Holmes et al. (2000) and Aerts, Goodchild, and Heuvelink
(2003). The GSTAT program performed this simulation and required
only the input data, the fitted variogram model and specification of
N. N was specified to default to 100 after tests to optimize N whilst
restraining numerical load for computer processing.

2.4.3. Propagation through to surface derivatives
For the next stage error propagation to slope was considered.

Slope is the magnitude of the vector tangent to the topographic
surface (Raaflaub & Collins, 2006) and the overall average slope
was calculated according to the second-order finite difference
method (Fleming & Hoffer, 1979). Gradient was computed from
only the nearest four elevation points on the grid. Using the com-
pass based notation adopted by Aguilar, Aguilar, Aguera, and San-
chez (2006) the average slope gradient, AS, was given by:

tan AS �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZE � ZW

2Dx

� �2

þ ZN � ZS

2Dy

� �2
s

ð2Þ

where ZE, ZW, ZN, and ZS were the elevations of the four cardinal
points (east, west, north and south) and Dx and Dy represented
the spacing of the grid DEM (resolution). Jones (1998) tested eight
numerical slope algorithms (using synthetic and real data as test
surfaces) and found that Fleming and Hoffer’s method had the low-
est overall error for smooth surfaces. The slope algorithm calcula-
tion resulted in the generation of N equally probable slope maps.
2.4.4. Propagation to landslide susceptibility modelling
To test the methodology, a task was set within the context of a

landslide susceptibility model. The landslide model itself was not a
focus of the investigation and thus was very simple. The model de-
fined areas of slope angle greater than a critical angle, a, as suscep-
tible to the hazard of landslide. Discrete valued categories (such as
‘susceptible’ and ‘non-susceptible’) can contain errors due to mis-
classification (Zhang & Goodchild, 2002). To examine the probable
and possible uncertainties in classification, two frameworks were
adopted: probabilistic and fuzzy. Fuzzy logic deals with the impre-
cision of facts and possibilities, whilst probability deals with the
likelihood of a precise event (Zadeh, 1999). Thus probabilities
and possibilities can be used as different methods for conveying
uncertainty in spatial data. Rebiasz (2007) applied both for uncer-
tainty in investment project risk assessment. For a comprehensive
discussion of these methods, the reader is referred to Zhang and
Goodchild (2002). In this study the additional code was written
as follows:

2.4.4.1. Probability of susceptibility classification. A nominal value of
true was given to the simulated cell if its slope value exceeded the
critical angle and false if it did not. Counting up the true and false
declarations for each cell and dividing by N gave the probability of
that cell being susceptible to landslide.
F
a
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2.4.4.2. Fuzziness in susceptibility. For the N simulations the mini-
mum and maximum simulated values of slope (for each grid cell)
were recorded. Each value was then tested against the critical an-
gle as before and the cell attribute was set to true if it was greater
than a degrees and false if it was equal to or less than. A three-tier
classification system was used to define each cell. For each cell if
both minimum and maximum values were true then that cell
was given a value of 1 and was susceptible to landslide. If either
minimum or maximum were true then the node was given a value
of 0.5 and classified undecided. If neither were true, the cell was
not susceptible and was given a value of 0. This was an adaptation
of a fuzzy logic framework (see Zadeh, 1999). Davis and Keller
(1997) used a more detailed fuzzy logic technique for slope stabil-
Fig. 3. Spatial distribution and magnitude of mean error for 12.5 m
ity prediction, combining it with Monte Carlo simulation as
adopted here.
2.5. Summary of methods: a procedure for DEM user

Stages A through D used existing GSTAT functions (e.g. fit.vari-
ogram(), krige()) and new algorithms for the slope, landslide sus-
ceptibility and visualisation. A fully annotated script was written
to provide the user with full explanation of the processes at run-
time. Fig. 2 shows the entire procedure for the DEM user, with
new and existing functions highlighted. The procedure is also out-
lined below:
DEM: (a) levelplot using Lattice and (b) wireframe using lattice.
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1. Download the R setup program (about 30 MB) and install.
2. Open the R environment and install two packages: GSTAT and

Lattice.
3. Setup a working directory for the primary R script and those

additional scripts called during runtime (e.g. the algorithm for
slope calculation). There must also be at least one error data file
(more if comparing DEMs). Error is the disparity between the
reference surface and that projected by the DEM. These data
should be stored as a comma separated variable file, three col-
umns: coordinates x and y, and error.

4. Run the R script. This action prompts for the following user
inputs where necessary:
(a) Suitable grid resolution. This defaults to 100 m but may be

altered according to study area, sample size and simulation
quantity.

(b) Variogram parameters. The sill, nugget and range need to be
estimated from the experimental variogram in order to fit a
model.

(c) Number of simulations. This defaults to 100 but can be
changed.

(d) Visualisation preferences and display of the results.
Thus the program required minor setup but enough under-
standing to interpret (a) a variogram and (b) a visual display of
the results.

3. Results

3.1. Quantification and visualisation of error

An unexpected magnitude of error found in both case study
DEMs was concerning. Metadata was provided and quoted a max-
imum error of 3.8 m and 13.8 m, for the 12.5 m and 25 m DEMs
Fig. 4. Scatter plot showing the correlation of mean error and mean
respectively (courtesy of Survey and Mapping Authority of Slove-
nia). The mean error value of approximately +54 m for both DEMs
suggested a systematic error uniformly added to both. A likely
cause of this base error was an artefact of different sea level defi-
nitions. A uniform error did not impact on the significance of the
results as relative error values were unaffected. Furthermore the
case study was incidental, serving only to demonstrate the meth-
odology, for which it performed satisfactorily. Therefore the base-
line error was noted but not modified.

The spatial distribution of error was similar for DEMs of differing
resolution, although the peak in mean error was slightly greater for
the (coarser) 25 m DEM. The relative spatial variation of mean error
for the 12.5 m DEM is shown in Fig. 3. Graphics were created using
the Lattice package in R; these two visualisations show the flexibility
of the package in offering a plan view, or ‘Levelplot’, (Fig. 3a) and a 3D
‘Wireframe’ (Fig. 3b) of the mean error surface. All graphics can be
manipulated by the user (in terms of axes, colour schemes, labels,
etc.) but default to those shown in the figures presented. Images
(in addition to data) can be exported from R and saved.

Supplementary to the main enquiry, the data were also used for
a quick investigation of the relationship between error and slope
(derived using the second-order finite distance method). The re-
sults of this study appear to show a positive correlation of error
and slope at a slope angle of 30� or greater (Fig. 4). At this angle
of slope the error values appear to dramatically increase. For smal-
ler angles of slope there appears to be little or no relationship. The
possible baseline error is also clearly evident in Fig. 4.

3.2. Error propagation

To demonstrate the propagation of error to slope, values of
slope directly derived from each DEM were compared to the mean
values of the slope realisations (Fig. 5b). Subtracting one dataset
slope at every grid cell for the 100 realisations (12.5 m DEM).
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from the other provided an indication of how slope estimation
would differ were it derived directly from the DEM or from the
multiple equally likely realisations. The main region of slope dis-
Peak in mean error 
(407200, 109300)

a

b

Fig. 5. Maps from GSTAT for 12.5 m DEM showing the location of (a) mean error in elev
elevations on contours are in metres.
crepancy was adjacent to the peak in mean elevation error
(Fig. 5a). A topographic layer has been overlain to allow easier
comparison of the two mean output maps.
Focal slope 
discrepancy
is to the east 
of the peak 
in mean error

ation and (b) propagation of error to slope. Crosses mark sample site locations and
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The likelihood of any cell being classified as ‘susceptible’ to
landslide was calculated. This was used to demonstrate the propa-
gation of error to a landslide susceptibility model and provided a
measure of certainty about a decision such as landslide classifica-
tion based on elevation error. A probability of 1 was given to those
cells certain to be classified as ‘susceptible’ and zero to those cer-
tainly ‘not susceptible’, thus the cells most uncertain were about
the point of inflection at 0.5. These regions of greatest uncertainty
bordered the river valley in both DEMs (Fig. 6). Areas to the ex-
treme NE and SW are omitted from analysis as there are sparse
sample data in these areas (see Fig. 5a). Overall the test DEMs
showed very similar spatial probability distributions.
Fig. 6. The probability of a ‘susceptible’ classifi

Fig. 7. Fuzziness in defining cells as susceptible: (a) 12.5 m DEM; (b) 25 m DEM.; d
The fuzzy classification resulted in a three-tier distinction be-
tween ‘susceptible’, ‘not susceptible’ and ‘undecided’. There were
significant differences in the allocation of susceptibility areas from
the two DEMs (Fig. 7). In particular the variation was evident in the
valley bottom section (where highlighted). Fig. 8 summarises the
consequences of landslide classification based exclusively on either
the 12.5 m or the 25 m DEM. The coarser resolution DEM was more
uncertain about classifying a cell as susceptible or non-susceptible
to landslide. In comparison with the 25 m DEM, the 12.5 m DEM
classified a greater number of cells as ‘susceptible’ or ‘non
susceptible’.
cation, (a) 12.5 m DEM and (b) 25 m DEM.

arkest cells = ‘susceptible’, lightest cells = ‘not susceptible’, other = ‘undecided’.



Fig. 8. Barplot produced in GSTAT showing the percentage of cells in each of the
three classes.
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4. Discussion

4.1. Factors contributing to error and its propagation

The application of the prototype to a case study example has
demonstrated that error is spatially variable. Furthermore, the
mode of formation was different for each DEM so a similar spatial
distribution of error may support the hypothesis of a terrain-
dependent error causal factor (e.g. Liu & Jezek, 1999). In terms of
error in the slope derivative the main region of slope discrepancy
was adjacent to the peak in mean elevation error (Fig. 5), thus sup-
porting the hypothesis of error propagation and the previous work
of authors such as Murillo and Hunter (1997). However to make
any inferences on the contribution of terrain to error in the DEM
it would be necessary to investigate the uncertainty inherent in
the slope estimation. Many different algorithms are commonly
used to generate aspect and gradient from gridded DEMs and these
have differences in accuracy (Skidmore, 1989; Zhou & Liu, 2004).
For example Horn’s third-order finite difference method (Horn,
1981) uses all surrounding cells for analysis and could be better
suited to the rugged terrain studied here. Other methods could in-
clude estimation of slope via cubic splines or weighted local
regression. One reason that these alternative approaches to slope
estimation may be useful is that they all apply a greater degree
of smoothing than the basic method of slope estimation used here.

An estimate of slope is based on differences of height estimates,
and in the situation where measurement errors are not correlated,
the resultant error variances for estimates of difference in eleva-
tion equal the sum of individual errors in estimates of elevation.
Thus, errors in slope can be notably larger than the errors in eleva-
tion estimation. Even in cases where measurement errors are pos-
itively correlated, error in estimate of height difference is still
likely to be greater than individual errors of height estimation.
Methods such as Horn’s and the others mentioned above average
a number of difference estimates, rather than just relying on one
basic estimate in each direction. This averaging process reduces
the variance in the final estimate, and to some extent counters
the problem of higher error variance in slope estimation.

The cost of using either DEM for landslide susceptibility model-
ling was tested. On the basis of this study a fuzzy framework
proved to be the most useful approach for highlighting the conse-
quences of using different DEMs for landslide hazard assessment. A
method for a probabilistic assessment was also applied and dem-
onstrated the certainty in a decision such as landslide classifica-
tion. However the resultant maps were not adequate to illustrate
the differences between the two datasets. In this respect the fuzzy
framework was superior, its only disadvantage owing to it being a
more complicated technique for the user to understand.

4.2. Feasibility and significance of the methodology

The methods developed allowed the investigation of uncer-
tainty, as supported by the results. GSTAT provided the means
for geostatistical simulation. Additional code was written to make
the procedure as automated and as objective from user input as
possible (Fig. 2). System defaults can be modified according to
the familiarity of the user to general principles.

The use of GPL software enables any user to run and adapt the
source code. The existing code for stages A and B can be used for
any GIS application where DEM data and higher accuracy data
are available. Following minor modifications, the work could be
integrated into fitness for use assessment, risk management stud-
ies and cost benefit analyses etc. The studies of Hunter and De
Bruin (2006), Agumya and Hunter (2002) and Aerts et al. (2003)
provide interesting work on some of these themes. The implica-
tions and significance of such a generic approach are wide reaching
as the hardware, software and knowledge required are as non-spe-
cialist as possible. Thus even a novice DEM user is provided with
the tool to appreciate uncertainty in their data and further analy-
ses. However it is obligatory for the user to have a general under-
standing of uncertainty analysis and variogram modelling.
Uninformed interpretation of these aspects could add a further
dimension to error propagation.

4.3. Further work

A number of improvements to the general methodology are
possible (e.g. slope algorithm) and due to the modular nature of
the R code this would be simple to implement. The feasibility of
an automatic variogram fitting procedure could be investigated.
This would make the procedure more objective and also would re-
sult in a more statistically sound fitting (as each experimental vari-
ogram point can be weighted according to its own statistical
uncertainty) (Pardo-Iguzquiza, 1999).

Finally an interesting area of further study would be to ask a
variety of DEMs users to adopt the tool and survey their responses.
Particular information should be gathered on the technique’s ease
of use and its ability to communicate the uncertainty in the rele-
vant dataset.
5. Conclusion

The absence of simple yet robust uncertainty analysis proce-
dures has perhaps led to the indifference or incapacity of the
majority of DEM users to consider its influence. However the con-
sequences of error can be severe as they can propagate from the
DEM to decision outcomes, as demonstrated above. The methodol-
ogy developed here provides an instrument for error quantifica-
tion, demonstration of propagation, and visualisation that is a
simplification on existing techniques and moves towards full auto-
mation. Publicly available software has been used to facilitate a
universally distributable and pliable tool. Due to the modular nat-
ure of the methodology amendments and improvements can easily
be made. Some interesting areas of further study have also been
raised by this work.
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