
A

A Fast Minimal Infrequent Itemset Mining Algorithm1

KOSTYANTYN DEMCHUK and DOUGLAS J. LEITH, NUI Maynooth, Ireland

A novel fast algorithm for finding quasi identifiers in large datasets is presented. Performance measurements

on a broad range of datasets demonstrate substantial reductions in run-time relative to the state of the art

and the scalability of the algorithm to realistically-sized datasets up to several million records.

Additional Key Words and Phrases: itemset mining, breadth-first algorithm, frequency-based analysis, k-
anonymity, performance, load balancing.

ACM Reference Format:
Kostyantyn Demchuk and Douglas J. Leith. 2014. Fast Minimal Infrequent Itemset Mining Algorithm ACM
Trans. Knowl. Discov. Data. V, N, Article A (January YYYY), 24 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
In this paper we introduce a new algorithm, called Kyiv, for finding all minimal

attribute combinations occurring with less than a specified frequency within a data
set. On realistic data sets this algorithm is demonstrated to be considerably faster
than state of the art algorithms.

One application of this algorithm is in statistical disclosure control [Manning and
Haglin 2005; Haglin and Manning 2007; Gross et al. 2004; Elliot 2007; Templ et al.
2014]. In statistical disclosure control the released data, for example census microdata,
is required to be suitably anonymised. Of particular concern is the removal of quasi-
identifiers i.e. a subset of attribute values that can uniquely identify one or more en-
tries in a data set. Even apparently innocuous data can act as a quasi-identifier when
multiple values are combined together. For example, the seminal study of Sweeney
[Sweeney 2002] showed that 87% of the US population are uniquely identified by the
three attributes gender, zip code and date of birth and demonstrated the use of this
fact to de-anonymise published health data. It is therefore of fundamental interest to
enumerate those combinations of entries within a dataset which occur either uniquely
or sufficiently infrequently.

Other applications of our algorithm include rare itemset mining [Koh and Rountree
2005; Tsang et al. 2011; Szathmary et al. 2010; Tsang et al. 2013]. In rare itemset
mining the aim is to discover unusual, but informative, relationships between entries
in a data set. This is in contrast to frequent itemset mining where the interest is in
discovering relationships which are common within a data set. Rare but interesting
items might for example include adverse drug reactions within medical data [Ji et al.
2013] and attacker intrusion within network data [Rahman et al. 2008; Luna et al.
2010; Hommes et al. 2012] etc. Since rare items are, by definition, infrequent, a direct
approach to discovery is to enumerate the infrequent items and then search for infor-
mative relationships, e.g. those which are of sufficiently high confidence, within this
enumerated set.

The main contributions of the paper are as follows. We introduce a new algorithm
for minimal infrequent itemset mining, in both sequential and parallel form. The main
practical contribution is the speed up of almost two orders of magnitude offered by the
proposed algorithm on datasets of realistic complexity. Since execution time is cur-
rently the primary bottleneck in finding minimally infrequent itemsets, this is a sig-
nificant step forward. The main algorithmic novelty (from which the speed up arises)

1This work was supported by an IBM PhD Fellowship and by Science Foundation Ireland under Grant No.
11/PI/1177.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ar
X

iv
:1

40
3.

69
85

v3
  [

cs
.D

B
] 

 1
6 

O
ct

 2
01

4



A:2 Demchuk et al.

ID Query Date Link Clicked
3302 uterine bleeding and coumadin 2006-03-23

11:23:35
www.nlm.nih.gov

3302 children who have died from
moms postpartum depression

2006-03-24
15:41:21

www.cbsnews.com

6993 american heart association 2006-03-23
18:29:34

www.americanheart.org

6993 high blood pressure 2006-03-23
18:37:10

7005 notice of demand to pay judgment
form

2006-03-21
18:49:01

www.sba.gov

7005 free personal credit report 2006-03-20
11:26:42

www.experian.com

4417749 shadow lake subdivision gwinnett
county georgia

2006-04-24
21:48:01

4417749 jarrett t. arnold eugene oregon 2006-03-23
21:48:01

www2.eugeneweekly.com

Table I: Extracts from AOL web search dataset

is that by an appropriate choice of data structures and algorithmic formulation the
support item test for minimality can be performed in a hugely more efficient manner
(essentially with zero cost) than previously possible. A second algorithmic contribution
lies in the parallel implementation. Unlike some previous approaches, the proposed
approach elegantly allows the work load of parallel threads to be balanced so as to be
approximately the same. This means that no single thread becomes the performance
bottleneck and therefore ensures better scalability. We note that the speed up in exe-
cution time comes at the cost of much higher memory usage. However, since available
memory size continues to grow year on year while processor speed has largely stag-
nated in many practical applications this trade-off of memory for speed is a favourable
one. The new algorithm design is underpinned by new analytic results, the main an-
alytic contribution lying in Lemma 4.6 and Corollary 4.7. We present experimental
measurements evaluating the performance of the proposed algorithm on a range of
synthetic and application datasets, and compare this against the performance of the
popular algorithm MINIT [Haglin and Manning 2007] and of the recently proposed
MIWI Miner algorithm [Cagliero and Garza 2013].

1.1. Motivating Example
In 2006 AOL released web search log data in which user identities had been con-

cealed (replaced by unique identity numbers) but other data was left unchanged. Table
I presents some entries from this AOL data set. It can be seen that the search queries
and pages clicked are potentially sensitive in nature and it was further demonstrated
that de-anonymisation of users was possible e.g. that user #4417749 was Thelma
Arnold [Barbaro and Zeller 2006].

We consider quasi-identifiers within the search data for the first 65,517 users
in more detail. These users carried out 3,558,412 searches using 1,216,655 distinct
queries. Of these queries, 736,967 occur only once within the data set and so are poten-
tial quasi-identifiers. Restricting consideration to the first three words of each query
reduces the number of unique queries to 617,510, while restricting to the first two
words reduces this to 488,138 and restricting to the first word only yields 276,074
unique queries. Hence, it can be seen that simply truncating the search queries is

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A Fast Minimal Infrequent Itemset Mining Algorithm A:3

not sufficient to prevent a large number of the search queries from acting as quasi-
identifiers.

One simple and direct approach to masking these unique queries is to group unique
queries together into sets of queries where each set consists of k unique queries, k
being a design parameter. In the data set we now replace the query by a reference to
the set containing the query. In this way it is ensured that every query value in the
modified data set occurs at least k times within the data set. We performed this data
transformation on the AOL data using a value k = 5. In addition, we performed a
similar transformation to the web page clicked by a user following a query, also with
k = 5. After these changes each query value and each web page clicked value occurs
at least k = 5 times within the modified data set. Nevertheless, when this query value
is combined with the web page clicked value 586,698 of these pairs are still unique
within the modified data set. In the unmodified data set there are 1,030,387 unique
pairs, so the grouping of query of page clicked values has also reduced the number of
unique pairs. However, in view of the large value of unique pairs it is evidently not
sufficient to just consider individual entries but rather it is also necessary to consider
combinations of entries when anonymising a data set.

The difficulty with considering combinations of entries is that the number of combi-
nations to be tested grows combinatorially and so in realistically sized data sets highly
efficient algorithms are needed to test even combinations of 3 or 4 entries. One solution
to this combinatorial growth is to use sampling. For example, a subset of entries may
be drawn uniformly at random from the full dataset, the number of attribute combina-
tions occurring with less than a specified frequency within this subset determined and
then this information is statistically extrapolated to the full dataset. Sampling reduces
the computational burden but also carries the obvious risk of missing infrequently oc-
curring entries. More efficient algorithms allow consideration of larger samples and so
potentially significantly reduce this risk.

Note that the set of unique or sufficiently infrequently occuring combinations of
items within a data set is useful not just for verifying that restrictions on quasi-
identifiers are respected by a data set but, when quasi-identifiers are present, this
set is also useful as input to tools such as that in [LeFevre et al. 2005] for modifying
the data that require prior knowledge of the fields which act as quasi-identifiers. In
the above AOL example the set of unique combinations is the precisely set of elements
from which grouped values need to be constructed.

2. RELATED WORK
The first algorithm for unique itemset mining (the extreme case of infrequent item-

set mining) appears to be SUDA (special unique detection algorithm) proposed in
[Elliot et al. 2002]. This was followed shortly afterwards by the development of the
SUDA2 algorithm [Manning et al. 2008; Manning and Haglin 2005], which uses a re-
cursive depth-first search approach to generate candidate itemsets from the database
of interest (thus every candidate itemset exists in the database) and then efficiently
tests these for uniqueness and minimality. SUDA2 lends itself readily to parallelisa-
tion by allocating disjoint subtrees to different threads which then carry out a depth-
first search on the subtree. However, the work allocated amongst threads may be im-
balanced depending on the size and complexity of the subtree assigned to a thread,
leading to performance being constrained by the slowest running thread. A number of
mitigating strategies are therefore summarised in [Haglin et al. 2009]. SUDA2 is avail-
able in the sdcMicro package for R [Templ et al. 2013] and is essentially the state-of-
the-art algorithm in this area, being used by the UK and Australian national statistics
offices [Haglin et al. 2009] and supported by IHSN (International Household Survey
Network).

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 Demchuk et al.

Early work on infrequent (rather than only minimal) itemset mining initially made
use of variants of the Apriori algorithm for frequent itemset mining, see [Dong et al.
2007] and references therein, but quickly moved on to algorithms specifically tailored
to the infrequent mining task. Almost simultaneously three specialised infrequent
itemset algorithms were proposed by [Zhou and Yau 2007], [Szathmary et al. 2007]
and [Haglin and Manning 2007]. In [Zhou and Yau 2007] a hash based scheme re-
ferred to as HBS is proposed to mine association rules among rare items, involving
a direct search of item sequences contained in a database with pruning based on fre-
quency. In [Szathmary et al. 2007] an algorithm referred to as ARIMA (a rare itemset
miner algorithm) is proposed, and later refined in [Szathmary et al. 2012] by the ad-
dition of a depth-first search to exclude frequent itemsets. In [Haglin and Manning
2007] the MINIT (minimal infrequent itemsets) algorithm is proposed. MINIT uses
a recursive depth-first search with pruning, similarly to the SUDA2 algorithm devel-
oped by the same group, and is often used as the baseline algorithm against which
the performance of other infrequent mining algorithms is compared. In [Troiano et al.
2009; Troiano and Scibelli 2013] a breadth-first algorithm, Rarity, aiming at finding
not necessarily minimal infrequent itemsets, is introduced. Whereas other algorithms
start from small itemsets and increase the size as they search, Rarity takes the oppo-
site approach and proceeds from large itemsets to smaller ones (referred to in [Troiano
et al. 2009; Troiano and Scibelli 2013] as a top-down strategy). In [Gupta et al. 2011]
a pattern-growth recursive depth-first approach is proposed for minimal infrequent
itemset mining and two algorithms called IFP min and IFP MLMS (multiple level
minimum support) are introduced. It is observed that there exists a frequency thresh-
old below which MINIT generally outperforms IFP min and above which IFP min
outperforms MINIT. IFP min is also observed to outperform MINIT for large dense
datasets. Recently, [Cagliero and Garza 2013] extends consideration to the more gen-
eral task of discovering infrequent weighted itemsets (IWI) and introduces an algo-
rithm called MIWI (minimal IWI) Miner. When a weighting of unity is associated with
every itemset then this reduces to the infrequent itemset mining problem. For the
datasets considered, MIWI Miner is demonstrated to significantly outperform MINIT
for infrequent itemset mining. However, it is worth noting that the performance com-
parison in [Cagliero and Garza 2013] is made only for a small number of datasets.

3. PRELIMINARIES
A dataset A is a table with n rows and m columns. The columns in this table contain

categorical or finite range continuous data (such as age, income, zip code etc). Formally,

Definition 3.1 (Item). An item a is a triple (v, ja, Ra) in A, where v ∈ N is its value,
ja ∈ {1, . . . ,m} is the column of A containing v, and Ra ⊆ {1, . . . , n} is the set of A rows
in which the item appears.

Note that the column in which it appears distinguishes an item, the same value
appearing in two different columns being treated as two different items. This is in
line with previous work on infrequent itemset mining. Also observe that we consider
items with values from the field of positive integer (natural) numbers N, but since
any countable set can be mapped on to the integers this restriction is mild (while real
values are excluded, finite-precision values are admissible).

Let IA denote the set of all items in A. We define the frequency and uniformity of
items in the natural way, as follows:

Definition 3.2 (Frequency). An itemset I ⊆ IA is a set of items. A k-itemset refers
to an itemset of cardinality k. We let RI =

⋂
a∈I Ra denote the set of rows in which all

items of I appear, and we refer to |RI | as the frequency of itemset I.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A Fast Minimal Infrequent Itemset Mining Algorithm A:5

Definition 3.3 (τ -Infrequency). An item a ∈ IA is τ -infrequent if it has frequency
less than τ i.e. |Ra| ≤ τ and so the item occurs in τ or fewer rows of the dataset. We
let rA,τ ⊆ IA denote the set of τ -infrequent items in IA. Unless otherwise stated, we
confine consideration to τ values less than n, since trivially all elements of the dataset
are n-infrequent. Usually 0 < τ � n.

Definition 3.4 (Uniqueness). An item a ∈ IA is unique if it is 1-infrequent. That is,
|Ra| = 1 and so the item occurs in dataset A in exactly one row. We let δA ⊆ IA denote
the set of unique items in IA.

Definition 3.5 (Uniformity). Let B ⊆ {1, . . . , n} be a subset of row indices from
dataset A, and let IB = {a ∈ IA : Ra ∩ B 6= ∅}. An item a is said to be uniform
in IB if |Ra ∩ B| = |B|. That is, item a occurs in every row of subtable B. We let
UA = {a ∈ IA : |Ra| = n} denote the set of uniform items in IA.

Example 3.6. For dataset

A =

1 2 3 4
1 2 7 4
1 6 3 4
5 2 3 4


we have

IA = {(1, 1, {1, 2, 3}), (2, 2, {1, 2, 4}), (3, 3, {1, 3, 4}), (4, 4, {1, 2, 3, 4}),
(5, 1, {4}), (6, 2, {3}), (7, 3, {2})}.

δA = {(5, 1, {4}), (6, 2, {3}), (7, 3, {2})}.
UA = {(4, 4, {1, 2, 3, 4})}.

rA,τ =


∅ if τ ≤ 0
δA if 0 < τ < 3

IA \ UA if τ = 3
IA if τ > 3

.

Definition 3.7 (τ -Infrequent and Minimal Itemsets).
An itemset I ⊆ IA is τ -infrequent and minimal if:

(1) τ -Infrequency: |RI | ≤ τ ;
(2) Minimality: |RS | > τ ∀S ⊂ I, S 6= ∅.

When τ = 1 we refer to the τ -infrequent and minimal itemsets as being the unique
and minimal itemsets and in this case we often drop any τ subscripts to streamline
notation.

Note that to establish minimality in Definition 3.7 it is only necessary to test that
|RS | > τ for sets S ⊂ I of size |I| − 1 since RS′ ⊇ RS ∀S′ ⊂ S. These |I| − 1 subsets are
referred to as the support itemsets of I. Notice also that itemsets of size 1 (items) are
trivially minimal.

We denote the set of all unique and minimal itemsets by IA ⊆ 2IA and the set of
all τ -infrequent and minimal itemsets by IA,τ ⊆ 2IA , where 2IA denotes the set of all
subsets of IA. We use calligraphic script to indicate that IA is a set of sets (similarly for
IA,τ ) and to distinguish it from the set of items IA. Notice that IA,τ = IA when τ = 1.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 Demchuk et al.

4. MINIMAL INFREQUENT ITEMSET MINING
In this section we introduce a new algorithm for efficiently finding all of the τ -in-

frequent and minimal k-itemsets up to a user specified size kmax, 1 ≤ k ≤ kmax ≤ m
and frequency threshold τ > 0.

4.1. Pre-processing
We begin by observing that uniform items u ∈ UA can be deleted from IA as they

cannot form a minimal τ -infrequent itemset (if u ∈ I and |RI | ≤ τ then |RS | = |RI | ≯ τ
for S = I \ {u}). Further, the set of τ -infrequent individual items rA,τ can be readily
identified by direct search. The remaining set of non-uniform and non-τ -infrequent
items I ′A,τ = IA \UA \ rA,τ can be partitioned into sets LA,τ and L̄A,τ = I ′A,τ \LA,τ such
that (i) Ra 6= Rb ∀a, b ∈ LA,τ , (ii) ∀c ∈ L̄A,τ there exists d ∈ LA,τ with Rc = Rd. That is,
within set LA,τ no items share the same set of rows. This partitioning can be achieved
in the obvious way. Namely, for any set of items in I ′A,τ which share the same set of
rows, add one of these items to LA,τ and the rest to L̄A,τ . Revisiting Example 3.6, we
have LA,τ = {(1, 1, {1, 2, 3}), (2, 2, {1, 2, 4}), (3, 3, {1, 3, 4})} for 0 < τ < 3.

The partitioning into LA,τ and I ′A,τ \ LA,τ possesses the following useful property:

PROPOSITION 4.1. Let W ⊆ LA,τ be a minimal τ -infrequent itemset. Let w′ ∈ IA \
LA,τ with Rw = Rw′ for some w ∈W . Then W \{w}∪{w′} is also a minimal τ -infrequent
itemset.

PROOF. Since W is minimal and τ -infrequent, |RW | ≤ τ and |RS | > τ for all subsets
S ⊂ W such that |S| = |W | − 1, S 6= ∅. Let W ′ = W \ {w} ∪ {w′}. We have RW ′ =
RW\{w} ∩ Rw′ = RW\{w} ∩ Rw = RW since Rw = Rw′ . Hence, |RW ′ | = |RW | ≤ τ . Now
consider any subset S′ ⊂ W ′ such that |S′| = |W ′| − 1. We have |W ′| − 1 = |W | − 1 and
either (i) S′ = S when w /∈ S or (ii) S′ = S \ {w} ∪ {w′} when w ∈ S, where S ⊂ W ,
|S| = |W | − 1. Thus, either (i) RS′ = RS or (ii) RS′ = RS\{w} ∩Rw′ = RS\{w} ∩Rw = RS ,
respectively. That is, |RS′ | = |RS | > τ and we are done.

It follows that the importance of the partitioning into LA,τ and I ′A,τ \ LA,τ is that
after finding the set of τ -infrequent and minimal itemsets LA,τ ⊂ 2LA,τ of LA,τ , the set
of τ -infrequent and minimal itemsets IA,τ ⊂ 2IA of IA can be obtained immediately.
Namely,

PROPOSITION 4.2. For any partition (LA,τ , I
′
A,τ \ LA,τ ) the following holds: IA,τ =

LA,τ ∪ L̄A,τ ∪ rA,τ , where L̄A,τ = {I \ {a} ∪ {b} : I ∈ LA,τ , a ∈ I, b ∈ L̄A,τ , Ra = Rb}.

PROOF. The proposition states that itemset I ∈ IA,τ ⇐⇒ I ∈ LA,τ ∪ L̄A,τ ∪ rA,τ .
“⇐” If itemset I ∈ LA,τ or I ∈ rA,τ then I is minimal and τ -infrequent and so I ∈ IA,τ ;
if I ∈ L̄A,τ then, by Proposition 4.1, I is minimal and τ -infrequent and so I ∈ IA,τ .
“⇒” Suppose I ∈ IA,τ . First of all observe that ĨA,τ = IA,τ , where ĨA = IA \UA and ĨA,τ
is the set of minimal and τ -infrequent itemsets in 2ĨA . This holds because I ∩ UA = ∅
for any I ∈ IA,τ (suppose u ∈ I, u ∈ UA and I is minimal and τ -infrequent, then
RI = RI\{u} ∩ Ru = RI\{u} since Ru contains all rows of A; thus |RI\{u}| = |RI | ≤ τ

which contradicts the minimality of I). Further, we have ĨA,τ = ÎA,τ ∪ rA,τ where
ÎA,τ = IA \ UA \ rA,τ and ÎA,τ is the set of minimal and τ -infrequent itemsets in 2ÎA,τ .
This is because the elements of rA,τ are minimal and τ -infrequent individual items
and so if I ∈ ĨA,τ then either (i) I ∩ rA,τ = ∅ or (ii) |I| = 1, I ∈ rA,τ (if |I ∩ rA,τ | > 1 then
|I| > 1 and |Ra| ≤ τ ∀a ∈ I ∩ rA,τ and so I is not minimal; if |I ∩ rA,τ | = 1 and |I| > 1

then I is not minimal). Hence, we have that IA,τ = ÎA,τ ∪ rA,τ . Now ÎA,τ = LA,τ ∪ L̄A,τ

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A Fast Minimal Infrequent Itemset Mining Algorithm A:7

with LA,τ ∩ L̄A,τ = ∅. Hence, if I ∈ ÎA,τ and I ∩ L̄A,τ = ∅ (so I ⊆ LA,τ ) then I ∈ LA,τ . If
I ∈ ÎA,τ and I ∩ L̄A,τ 6= ∅ then I ∈ L̄A,τ and we are done. Notice that this proof works
for any partition (LA,τ , I

′
A,τ \ LA,τ ).

In light of Proposition 4.2, our goal can therefore be simplified to finding all τ -
infrequent and minimal k-itemsets of LA,τ , 1 ≤ k ≤ kmax.

Example 4.3. For τ = 1 and the dataset

A =

1 2 3 4 8
1 2 7 4 8
1 6 3 4 8
5 2 3 4 9


we have

IA = {(1, 1, {1, 2, 3}), (2, 2, {1, 2, 4}), (3, 3, {1, 3, 4}), (4, 4, {1, 2, 3, 4}),
(5, 1, {4}), (6, 2, {3}), (7, 3, {2}), (8, 5, {1, 2, 3}), (9, 5, {4})}.

δA = {(5, 1, {4}), (6, 2, {3}), (7, 3, {2}), (9, 5, {4})}.
UA = {(4, 4, {1, 2, 3, 4})}.
rA,τ = δA.

The remaining set of non-uniform and non-unique items is
I ′A,τ = IA \ UA \ rA,τ = {(1, 1, {1, 2, 3}), (2, 2, {1, 2, 4}), (3, 3, {1, 3, 4}), (8, 5, {1, 2, 3})}.

The set I ′A,τ can be partitioned into sets LA,τ = {(1, 1, {1, 2, 3}), (2, 2, {1, 2, 4}), (3, 3,
{1, 3, 4})} and L̄A,τ = I ′A,τ \ LA,τ = {(8, 5, {1, 2, 3})} such that (i) Ra 6= Rb ∀a, b ∈ LA,τ
({1, 2, 3} 6= {1, 2, 4} 6= {1, 3, 4} and {1, 2, 3} 6= {1, 3, 4}), (ii) ∀c ∈ L̄A,τ there exists d ∈ LA,τ
with Rc = Rd (for (8, 5, {1, 2, 3}) there is (1, 1, {1, 2, 3}) in LA,τ ).

Let a = (1, 1, {1, 2, 3}), b = (2, 2, {1, 2, 4}), c = (3, 3, {1, 3, 4}) and d = (8, 5, {1, 2, 3}).
Proposition 4.1 says that if {a, b, c} ⊆ LA,τ is a minimal τ -infrequent itemset (which
it is when τ = 1) and d ∈ IA \ LA,τ with Rd = Ra then {d, b, c} is also a minimal τ -
infrequent itemset. Proposition 4.2 says that for our chosen partition (LA,τ , I

′
A,τ \LA,τ )

the set of all minimal τ -infrequent itemsets IA,τ can be obtained from the sets LA,τ ,
L̄A,τ and rA,τ .

4.2. Pruning the Search Space
Considering the items in LA,τ to be an alphabet, all of the possible words in the

form of ordered sequences that can be built from LA,τ can be represented by a prefix
tree. For example, when LA,τ = {a, b, c, d, e}, the associated prefix tree is shown in the
Figure 1. By starting at the root and traversing the branches of the tree, every possible
ordered sequence of letters can be obtained.

In principle, the τ -infrequent and minimal k-itemsets of LA,τ can be found by
traversing every branch of the tree to depth kmax and testing each sequence of items
obtained for τ -infrequency and minimality. However, efficiency can be increased if it
is possible to avoid fully traversing every branch i.e. the tree can be pruned. Basic
pruning can be achieved using following fundamental property of itemsets:

PROPOSITION 4.4 (MONOTONICITY). Let I be an itemset. If I is not minimal then
no superset of I can be minimal.

PROOF. Since I is non-minimal there exists S ⊂ I, S 6= ∅ such that |RS | ≤ τ . It
follows that ∀J ⊃ I there exists S ⊂ J , S 6= ∅ such that |RS | ≤ τ and so J is also
non-minimal.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 Demchuk et al.

e

d e

e

c

d

e

b

edc

a

e

d

ed

b

edc

e

e

e

c

ed

eeed

e

Fig. 1: Prefix tree for the alphabet LA,τ = {a, b, c, d, e}. By starting at the root and
traversing the branches of the tree, every possible ordered sequence of letters can be
obtained e.g. traversing the far left-hand branch yields the sequence abcde.

Hence, as soon as we determine that the sequence of items in an itemset is non-
minimal, we can terminate traversal of that branch of the tree. Note that similar
pruning is not possible based on τ -infrequency since a superset of an itemset I can
be τ -infrequent even if I is not τ -infrequent due to the decrease in frequency as more
and more items are added to an itemset.

Importantly, the prefix tree associated with itemset LA,τ is not unique since the tree
depends on how we choose to order the items in LA,τ . In general, it is challenging to
determine an ordering of items in LA,τ which minimises the number of vertices which
need to be traversed in the prefix tree in order to find the set LA,τ of τ -infrequent and
minimal itemsets of LA,τ . We revisit this question later, in Section 5.2.4, but note here
that sorting the items of LA,τ into ascending order using the following item ordering is
efficient for a wide range of datasets.

Definition 4.5 (Ascending Order). We order items a < b if (i) |Ra| < |Rb| or (ii)
|Ra| = |Rb| and ja < jb or (iii) |Ra| = |Rb|, ja = jb and minRa < minRb.

Note that due to the pre-processing and partitioning used to obtain LA,τ , for any
items a ∈ LA,τ , b ∈ LA,τ \ {a} we must have either a < b or b < a i.e. strict total order
(if ja = jb, minRa = minRb then items a and b are both in the same column ja and
row minRa of the dataset and so we must have a = b, but this contradicts the fact that
b ∈ LA,τ \ {a}). We let L<A,τ denote a list of the items in LA,τ sorted in ascending order.
Note that L<A,τ is simply a permutation of LA,τ .

4.3. Potential Performance Bottlenecks
To evaluate whether an itemset I is minimal or not we use the support itemset test to

verify Definition 3.7(2). To evaluate whether an itemset I is τ -infrequent, we intersect
the rows of the elements in I to obtain RI = ∩a∈IRa and test whether |RI | ≤ τ to verify
Definition 3.7(1). Both of these tests are potentially expensive.

The support itemset test requires enumerating the subsets S ⊂ I, |S| = |I| − 1, and
calculating RS = ∩a∈SRa for each subset. As already noted, testing for τ -infrequency
requires calculating RI = ∩a∈IRa. For large tables, the row sets Ra may be large and
so time consuming to obtain, e.g. if the approach taken is to scan the dataset for item a
and record the rows in which a appears, plus additionally the complexity of calculating
RI in the obvious manner scales as O(|I|mina∈I |Ra|).

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A Fast Minimal Infrequent Itemset Mining Algorithm A:9

4.4. Kyiv Algorithm
The Kyiv algorithm performs a breadth first search of the prefix tree defined by

ordered list L<A,τ . Branches are pruned using Proposition 4.4 – if an itemset I fails
the support itemset test in Definition 3.7(2) then it must be non-minimal and so the
subtree with itemset I at the root can be pruned. The key advantage of the breadth-
first approach is that the support row test can be performed extremely efficiently, as
discussed in more detail in Section 4.4.1. Pseudo-code for the Kyiv algorithm is given
in Algorithm 1.

In Algorithm 1 the collection of sets {Pi}ti=1 holds the vertices of level k − 1 of the
pruned prefix graph, and the vertices of level k are stored in {P ′i}t

′

i=1. Note that there
is never any need to store more than two levels of the pruned prefix tree – we discuss
these memory requirements in more detail below. The algorithm visits each vertex in
level k and takes one of three actions: (i) finds that the vertex is a non-minimal itemset
and so prunes it (it is not added to P ′ and its children are not traversed), (ii) finds that
the vertex is a minimal τ -infrequent itemset and so prints it (it is not added to P ′ and
its children are not traversed), (iii) finds that the vertex is not τ -infrequent and its
children must be traversed.

In our implementation of Algorithm 1, we use a recursive data structure called
Graph to hold the prefix tree levels. Graph stores an array of references to its chil-
dren of type Graph and other useful data such as the rows associated with the current
node. Each child is an item (v, ja, Ra) and is identified by index value mv + ja. Fast
access to the children is achieved by use of a hash table, which is also stored among
the properties of the Graph class.

4.4.1. Highly Efficient Support Itemset Testing. One of the key benefits of adopting a
breadth-first approach in Algorithm 1 is that the computational cost of the support
itemset test at line 23 can be reduced to essentially zero. This is because the itemsets
S ⊂W of size |S| = |W |−1, together with the associated row setsRS , have already been
pre-calculated and stored in data structure P := {Pi}ti=1. Hence, evaluating whether
there exists an S such that |RS | ≤ τ simply involves lookups from P, which can be
carried out efficiently using an appropriate data structure for P.

Observe that acceleration of the support itemset test at line 23 is achieved in Al-
gorithm 1 at the cost of increased memory usage to store data structure P. As τ in-
creases, the number of prefix tree vertices decreases and the arrays stored at each
vertex occupy less memory. Nevertheless, this memory cost remains potentially sig-
nificant, particularly when τ is small and in the middle of the prefix tree where the
number of vertices in each level of the tree is largest. However, in view of the fact
that the amount of RAM available is growing at a much faster rate than CPU clock
speed, this trade-off between of increased memory consumption for a much reduced
computational burden can be a favourable one.

4.4.2. Reducing Number of Row Intersections. The remaining computational bottleneck of
Algorithm 1 is at line 31. We present performance measurements in Section 5 that
confirm line 31 accounts for the vast majority of the execution time of Algorithm 1.
However, we leave as future work the development of more efficient techniques for
computing the intersection operation at line 31.

The potential exists to reduce the number of row intersections at the kmax level of
the prefix tree using the following properties:

LEMMA 4.6. Let I ⊆ IA be an itemset and a, b ∈ IA any items in IA. If

|RI ∩Ra|+ |RI ∩Rb| > |RI |+ τ (1)

then I ∪ {a, b} is not a τ -infrequent itemset.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 Demchuk et al.

Algorithm 1 Kyiv
1: Input: dataset A, τ , threshold kmax
2: Output: all minimal τ -infrequent k-itemsets, k ≤ kmax
3: compute IA = I ′A,τ ∪ UA ∪ rA,τ
4: compute LA,τ for chosen partition (LA,τ , I

′
A,τ \ LA,τ )

5: print τ -infrequent items in rA,τ . k = 1 case
6: sort LA,τ to obtain L<A,τ
7: t← 0, k ← 2
8: foreach a ∈ L<A,τ do t← t+ 1, Pt ← {a}
9: while k ≤ kmax do

10: t′ ← 0
11: foreach i ∈ {1, . . . , t− 1} do
12: I ← Pi
13: foreach j ∈ {i+ 1, . . . , t} do
14: J ← Pj
15: . get the highest order items in I and J
16: a← max(I), b← max(J)
17: if I \ {a} 6= J \ {b} then
18: break . itemsets do not share a common prefix
19: . itemsets I and J differ exactly by one item now
20: W ← I ∪ J
21: if k > 2 then
22: . support itemset test, Definition 3.7(2)
23: if ∃S ⊂W, |S| = |W | − 1 : |RS | ≤ τ then
24: continue . non-minimal, prune this branch
25: if k = kmax then
26: . Lemma 4.6 and Corollary 4.7
27: if |RI |+ |RJ | > |RI\{a}|+ τ then continue
28: c← max(J \ {b})
29: if min(|RI\{c}| − |RI |, |RJ\{c}| − |RJ |) + τ < |RI\{c} ∩Rb| then
30: continue
31: RW ← RI ∩RJ . intersect rows
32: if |RW | = 0 or |RW | = min(|RI |, |RJ |) then
33: continue . skip absent and uniform itemsets
34: if |RW | ≤ τ then
35: print W . minimal τ -infrequent itemset found
36: foreach w ∈W do . apply Proposition 4.1
37: if ∃w′ ∈ I ′A,τ \ LA,τ : Rw = Rw′ then
38: print W \ {w} ∪ {w′}
39: else . need to store non-τ -infrequent minimal itemset
40: if k < kmax then
41: t′ ← t′ + 1, P ′t′ ←W

42: foreach t ∈ {1, . . . , t′} do Pt ← P ′t
43: k ← k + 1, t← t′

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A Fast Minimal Infrequent Itemset Mining Algorithm A:11

PROOF. We proceed by contradiction. Suppose |RI ∩ Ra| + |RI ∩ Rb| > |RI | + τ and
itemset I ∪ {a, b} is τ -infrequent (so |RI ∩ Ra ∩ Rb| ≤ τ ). By the distributivity of set
intersection, RI ∩ (Ra ∪Rb) = (RI ∩Ra) ∪ (RI ∩Rb). Hence,

|RI ∩ (Ra ∪Rb)|
= |(RI ∩Ra) ∪ (RI ∩Rb)|
= |RI ∩Ra|+ |RI ∩Rb| − |(RI ∩Ra) ∩ (RI ∩Rb)|
= |RI ∩Ra|+ |RI ∩Rb| − |RI ∩Ra ∩Rb|.

Now |RI | ≥ |RI ∩ (Ra ∪ Rb)| and by assumption |RI ∩ Ra ∩ Rb| ≤ τ . Hence, |RI | ≥
|RI ∩Ra|+ |RI ∩Rb| − τ , yielding the desired contradiction.

COROLLARY 4.7. Let a1, . . . , ak ∈ IA be any items from IA, with k > 2. If

Γ0 > min{Γ1,Γ2}+ τ (2)

then {a1, . . . , ak} is not a τ -infrequent itemset, where

Γ0 := | ∩k−3i=1 Rai ∩Rak−1
∩Rak |,

Γ1 := | ∩k−3i=1 Rai ∩Rak−1
| − | ∩k−3i=1 Rai ∩Rak−2

∩Rak−1
|,

Γ2 := | ∩k−3i=1 Rai ∩Rak | − | ∩
k−3
i=1 Rai ∩Rak−2

∩Rak |.

PROOF. There are two cases to consider.
Case (i): Γ0 > min{Γ1,Γ2}+ τ = Γ1 + τ . Then,

| ∩k−3i=1 Rai ∩Rak−1
∩Rak−2

|+ | ∩k−3i=1 Rai ∩Rak−1
∩Rak |

> | ∩k−3i=1 Rai ∩Rak−1
|+ τ.

Let I = ∪k−3i=1 ai∪{ak−1}, a = ak−2, b = ak. By Lemma 4.6 {a1, . . . , ak} is not τ -infrequent.
Case (ii): Γ0 > min{Γ1,Γ2}+ τ = Γ2 + τ . Then,

| ∩k−3i=1 Rai ∩Rak ∩Rak−2
|+ | ∩k−3i=1 Rai ∩Rak ∩Rak−1

|
> | ∩k−3i=1 Rai ∩Rak |+ τ.

Let I = ∪k−3i=1 ai ∪ {ak}, a = ak−2, b = ak−1. By Lemma 4.6 {a1, . . . , ak} is not τ -
infrequent.

In the final iteration (when k = kmax) we can use Lemma 4.6 and Corollary 4.7
to test for τ -infrequency before carrying out the intersection at line 31. If either test
concludes that the itemset is not τ -infrequent, then there is no need to perform the
row intersection.

Example 4.8. To illustrate the operation of Algorithm 1, suppose kmax = 3, τ = 1
and consider the dataset:

A =



∗ ∗ ∗ 4 ∗
1 2 ∗ 4 ∗
1 2 3 4 ∗
1 2 3 4 5
1 ∗ 3 ∗ 5
∗ 2 3 ∗ 5
∗ ∗ ∗ ∗ 5

 , where ∗ denotes a unique item.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 Demchuk et al.

The set rA,τ contains the unique items marked by ∗. There are no uniform items, so
UA = ∅. There exists single partition of I ′A,τ – (LA,τ , ∅), where it can be verified that

L<A,τ = {(1, 1, {2, 3, 4, 5}), (2, 2, {2, 3, 4, 6}), (3, 3, {3, 4, 5, 6}), (4, 4, {1, 2, 3, 4}), (5, 5, {4, 5, 6, 7})}
:= {a, b, c, d, e}.

The prefix tree of L<A,τ is shown schematically in Figure 1. After line 8 is executed
(P1 = {a}, P2 = {b}, P3 = {c}, P4 = {d}, P5 = {e}) and the first level of the prefix tree is
built. The first iteration of the main loop at line 9 (when k = 2 < 3 = kmax and t = 5) is
reproduced step-by-step below. Here, 1 ≤ i ≤ 4 = t− 1, i < j ≤ t and for each (I, J) the
highest order items are the items contained in I and J (which never share a common
prefix). The condition at line 21 is false and there are no absent or uniform itemsets
(0 < |RW | < min(|RI |, |RJ |) for each (I, J)) after intersection at line 31:

I = P1 = {a} : J = P2 = {b}, W = {a, b}, RW = {2, 3, 4} ⇒ P ′
1 = {a, b}

J = P3 = {c}, W = {a, c}, RW = {3, 4, 5} ⇒ P ′
2 = {a, c}

J = P4 = {d}, W = {a, d}, RW = {2, 3, 4} ⇒ P ′
3 = {a, d}

J = P5 = {e}, W = {a, e}, RW = {4, 5} ⇒ P ′
4 = {a, e}

I = P2 = {b} : J = P3 = {c}, W = {b, c}, RW = {3, 4, 6} ⇒ P ′
5 = {b, c}

J = P4 = {d}, W = {b, d}, RW = {2, 3, 4} ⇒ P ′
6 = {b, d}

J = P5 = {e}, W = {b, e}, RW = {4, 6} ⇒ P ′
7 = {b, e}

I = P3 = {c} : J = P4 = {d}, W = {c, d}, RW = {3, 4} ⇒ P ′
8 = {c, d}

J = P5 = {e}, W = {c, e}, RW = {4, 5, 6} ⇒ P ′
9 = {c, e}

I = P4 = {d} : J = P5 = {e}, W = {d, e}, RW = {4} ⇒ print {d, e}

The second level of the prefix tree is now built: P1 = {a, b}, P2 = {a, c}, P3 = {a, d},
P4 = {a, e}, P5 = {b, c}, P6 = {b, d}, P7 = {b, e}, P8 = {c, d}, P9 = {c, e}.

The second iteration of the main loop (when k = 3 = kmax and t = 9) is reproduced
step-by-step below. Here, 1 ≤ i ≤ 8 = t− 1, i < j ≤ t:

I = P1 = {a, b} : J = P2 = {a, c}, W = {a, b, c}
J = P3 = {a, d}, W = {a, b, d}
J = P4 = {a, e}, W = {a, b, e}, RW = {4} ⇒ print {a, b, e}

I = P2 = {a, c} : J = P3 = {a, d}, W = {a, c, d}
J = P4 = {a, e}, W = {a, c, e}

I = P3 = {a, d} : J = P4 = {a, e}, W = {a, d, e}
I = P5 = {b, c} : J = P6 = {b, d}, W = {b, c, d}

J = P7 = {b, e}, W = {b, c, e}
I = P6 = {b, d} : J = P7 = {b, e}, W = {b, d, e}
I = P8 = {c, d} : J = P9 = {c, e}, W = {c, d, e}

At the ultimate level kmax, the support itemset test for minimality (line 23), Lemma 4.6 (line
27) and Corollary 4.7 (line 29) are applied in that order to pairs of 2-itemsets from P which share
a common prefix. Pairs ({a, d}, {a, e}), ({b, d}, {b, e}), ({c, d}, {c, e}) are pruned by the support
itemset test. Pairs ({a, b}, {a, c}), ({a, b}, {a, d}), ({a, c}, {a, d}), ({b, c}, {b, d}) are pruned by
the lemma. Pairs ({a, c}, {a, e}), ({b, c}, {b, e}) are pruned by the corollary. Leaving only ({a, b},
{a, e}) as minimal unique itemset.

4.4.3. Correctness

THEOREM 4.9. Algorithm 1 terminates in finite time and finds all minimal τ -
infrequent itemsets of IA up to size kmax.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A Fast Minimal Infrequent Itemset Mining Algorithm A:13

PROOF. Pre-processing from the beginning to the main loop (line 9) is done in finite
time: to compute IA and LA,τ algorithm goes through the A elements and counts their
frequencies while the size of A is finite (n,m < +∞); printing rA,τ , sorting LA,τ and
iterating |L<A,τ | times the loop at line 8 all take finite time as |rA,τ |, |LA,τ | = |L<A,τ | <
+∞. The search space of the algorithm is the prefix tree which is finite as IA is finite.
If there is no pruning then Algorithm 1 goes through every branch of maximum length
kmax of the tree, otherwise it processes even less number of branches. It takes finite
time to process a single branch, that is: navigate it, intersect itemset rows of finite size
and either print (Proposition 4.1 takes finite time because |W |, |I ′A,τ \ LA,τ | < +∞) or
store the appropriate itemset. Consequently the algorithm terminates in finite time
processing all the itemsets of maximum size kmax that have not been thrown out by
the support itemset test (line 23), Lemma 4.6 (line 27) and Corollary 4.6 (line 29).

Suppose there is a minimal τ -infrequent itemset I ∈ 2IA that is not found by the
algorithm. Proposition 4.2 means that the set of all τ -infrequent and minimal itemsets
IA,τ ⊂ 2IA can be described by any chosen partition (LA,τ , L̄A,τ ). Thus, either I contains
item which does not belong to LA,τ or |I| > kmax. The former is impossible while the
latter does not contradict the theorem.

4.4.4. Parallelisation. Algorithm 1 can be readily parallelised using shared-memory
threads. Namely, at level k within the prefix tree assign all vertices sharing the same
parent at level k− 1 within the prefix tree to the same thread and then in each thread
execute the loop starting at line 13 in Algorithm 1. The shared memory allows each
thread access to the prefix tree information stored in Pj , j ∈ {i+ 1, · · · , t}, but there is
otherwise no need for inter-thread communication.

When the number of available threads is less than the number of parent vertices at
level k − 1 in the prefix tree, work must be allocated amongst the threads. As already
discussed, the work associated with each parent vertex is dominated by the number of
row intersections to be carried out. This number can be accurately estimated based on
the number of children of the parent vertex, and so the work associated with each par-
ent vertex estimated in advance. Using these work estimates, load-balanced schedul-
ing of work amongst the threads can then be efficiently realised. As discussed in more
detail in Section 5, in this way we can ensure that the running time of all threads is
similar thereby enhancing the performance gain from parallelisation – we note that
imbalanced thread run times is known to be a key bottleneck in the parallelisation of
state-of-the-art depth-first approaches such as SUDA2 and MINIT [Haglin et al. 2009].

Example 4.10. Recall Example 4.8. Let t = 3 be the number of threads. When k = 2,
Algorithm 1 allocates jobs between the 3 threads: first an empty array T of size t is
created; then for each item in L<A,τ the number of higher order items is stored in T at
the cell which has the minimum value (if there are several such cells, the left-most is
chosen). As soon as T is filled in, all threads start work. In our example T = {4, 3, 3}
and the first thread is assigned itemsets, {a, b}, {a, c}, {a, d}, {a, e}, the second {b, c},
{b, d}, {b, e} and the third {c, d}, {c, e}, {d, e}. Row intersection of each ordered pair
reveals the unique 2-itemsets and these itemsets are stored in P ′: {a, b}, {a, c}, {a, d},
{a, e}, {b, c}, {b, d}, {b, e}, {c, d} and {c, e}; at the next iteration they will be copied into
P for the k = 3 analysis. Only {d, e} will be printed out as unique and minimal.

When k = 3 (the ultimate level kmax), T = {6, 3, 1} and the first thread is assigned
itemsets ({a, b}, {a, c}), ({a, b}, {a, d}), ({a, b}, {a, e}), ({a, c}, {a, d}), ({a, c}, {a, e}),
({a, d}, {a, e}), the second ({b, c}, {b, d}), ({b, c}, {b, e}), ({b, d}, {b, e}) and the third
({c, d}, {c, e}). As in Example 4.8, the support itemset test, Lemma 4.6 and Corollary
4.7 eliminates all pairs inside the threads except for ({a, b}, {a, e}).

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 Demchuk et al.

138-152
153-167

168-182
183-197

198-212
213-227

228-242
243-257

258-272
273-287

288-302
303-317

318-332

0

2

4

6

8

10

12

14
 execution time

 intersection time

time intervals in seconds

fr
e

q
u

e
n

c y
Fig. 2: Distribution of execution and intersection time for randomised datasets, kmax =
5, τ = 1.

5. EXPERIMENTS
Unless otherwise stated, all experiments in this section were carried out using as-

cending itemlist order, Lemma 4.6 and Corollary 4.7.

5.1. Hardware and Software Setup
We implemented Algorithm 1 in Java (version 1.7.0 25) using the hppc (version

0.5.2) library, which can be found at http://labs.carrotsearch.com/hppc.html. For com-
parison with the serial version of Algorithm 1, we also implemented a state-of-the-art
algorithm MINIT [Haglin and Manning 2007] in Java (using the C++ implementation
kindly provided by the developers of MINIT) and used the C++ implementation of the
MIWI algorithm [Cagliero and Garza 2013], kindly provided by its developers.

For testing we used an Amazon cr1.8xlarge instance with an Intel Xeon CPU E5-
2670 0 @ 2.60GHz 32 processor (up to 32 hyperthreads), 244Gb of memory, 64-bit Linux
operating system (kernel version 3.4.62-53.42. amzn1.x86 64 of Red Hat 4.6.3-2 Linux
distribution (Amazon Linux AMI release 2013.09)).

5.2. Domain-Agnostic Performance
5.2.1. Randomised Datasets. We begin by investigating performance in a domain-

agnostic manner using randomised datasets. Each randomised dataset consists of
50, 000 rows with each row having 25 columns. For each column, the size D of the do-
main of element values is selected i.i.d. uniformly at random from the set {10, · · · , 100}.
The elements within each column are then selected i.i.d. uniformly at random from do-
main {1, · · · , D}. On average, for these datasets LA contained 1352 items.

5.2.2. Execution Time. Figure 2 shows the measured distribution of execution times
for Algorithm 1 over 50 randomised datasets when kmax = 5, τ = 1. It can be seen
that the execution times are relatively tightly bunched around the mean value of 280
seconds. Also shown in Figure 2 is the corresponding time expended on calculating
row intersections at line 31 of Algorithm 1. The mean intersection time is 190 seconds,
so 68% of the execution time is expended on row intersections, confirming that these
are indeed the primary bottleneck in Algorithm 1. Note that the fraction of execution
time expended on row intersections depends on kmax and tends to increase as kmax
decreases e.g. when kmax = 3 row intersections absorb 80% of the execution time.

5.2.3. Prefix Tree Pruning. Algorithm 1 carries out online pruning of the prefix tree so
as to avoid walking the full prefix tree. Importantly, it also tries to avoid carrying out
unnecessary row intersections. We can evaluate the efficiency of the latter by distin-
guishing between three types of vertices visited: vertices that correspond to minimal
τ -infrequent itemsets (A), vertices which are visited but for which a row intersection is

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://labs.carrotsearch.com/hppc.html


A Fast Minimal Infrequent Itemset Mining Algorithm A:15

8-10
11-12

13-14
15-16

17-18
19-20

21-22
23-24

25-26
27-28

29-30
31-32

33-34
35-36

37-38
39-40

41-42
43-44

45-46

0
2
4
6
8

10
12
14
16
18

ratio of type A vertices to 
all vertices visited
ratio of type B vertices to 
all vertices visited

ratio intervals in percentages

fr
e

q
u

e
n

c y
Fig. 3: Distribution of prefix tree vertices traversed for randomised datasets, kmax = 5,
τ = 1.

ascending randomized descending
0

500

1000

1500

2000

2500

3000

3500

124 119 114175

970

2445

700

1484

2961

119 117 113162

950

2353

684

1429

2890
number of traversed vertices

order

ve
rt

i c
e

s 
in

 m
ill

io
n

s

Fig. 4: Prefix tree vertices traversed vs ordering used for LA,τ , average over 10 ran-
domised datasets, kmax = 5, τ = 1. For each ordering 6 values are shown: in the first
three Lemma 4.6 and Corollary 4.7 are used, in the second three these are not used; in
each group of three values the first value represents the number of vertices of type A,
the second the number of vertices of type B and the third the total number of vertices
traversed (that is of type A, B and C).

not performed (B) and the rest of the vertices visited (C). Figure 3 shows the distribu-
tion of the ratios of the number of vertices of types A and B to the total number of prefix
tree vertices visited by the algorithm over 50 randomised datasets when kmax = 5. On
average 17.5% of the vertices visited are type A vertices and 23% type B vertices, al-
though sometimes up to 45% of the vertices visited are of type B.

5.2.4. Impact of Ordering Used for LA,τ . As already noted in Section 4.2, the ordering
used to sort set LA,τ to obtain L<A,τ can be expected to have an impact on the amount
of pruning of the prefix tree achieved, and so on the execution time of Algorithm 1.
To investigate this further, we collected performance measurements for three different
choices of ordering: (i) ascending order, (ii) descending order (iii) random order (i.e. we
draw a permutation uniformly at random from the set of permutations mapping from
{1, · · · , |LA,τ |} to itself and apply this permutation to obtain L<A,τ ).

Figure 4 plots the numbers of prefix tree vertices of types A, B and C visited by Al-
gorithm 1 vs the ordering of LA,τ used. In this figure data is presented for each of the
three orderings (ascending, randomised, descending) and for when Lemma 4.6/Corol-
lary 4.7 are used or not. That is, 6 experiment variants are compared.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 Demchuk et al.

ascending randomized descending
0

50
100
150
200
250
300
350
400
450
500

277

344

458

269

355

451

183
219 220

190
215 224

order

tim
e

, 
se

c

 execution time

 intersection time

Fig. 5: Intersection and execution time vs ordering used for LA,τ , average over 10 ran-
domised datasets, kmax = 5, τ = 2 (in the left bar Lemma 4.6/Corollary 4.7 are used, in
the right bar they are not used).

0 2 4 6 8 10 12
0

2000

4000

6000

8000

1696
2433

3486

5358

6957

n (× 10 )⁵

tim
e

, 
se

c

(a) m = 40

0 10 20 30 40 50
0

2000

4000

6000

8000

105
824 2242

6957

m

tim
e

, 
se

c

(b) n = 1, 000, 000

Fig. 6: Execution time vs number of rows n and columns m for a randomised dataset,
kmax = 3, τ = 1.

It can be seen that use of ascending order significantly reduces the total number
of vertices visited, yielding a reduction of roughly a factor of 2 compared to use of a
randomised ordering and a factor of 4 compared to descending order. The number of
type A vertices visited is, as expected, essentially constant across the tests. However,
the number of type B vertices changes significantly and varies such that the number
of vertices of type C remains roughly constant. Observe that use of Lemma 4.6 and
Corollary 4.7 has little impact on performance in these tests. We will revisit this in
Section 5.3.2 where we find that they can speed the runtime up by more than 50%.

Figure 5 plots the corresponding intersection and execution time vs the ordering of
LA,τ used. It can be seen that the execution time is more sensitive to the ordering than
the intersection time. When combined with Figure 4 this allows us to conclude that it is
the number of type B vertices that varies strongly with ordering (the number of type A
and type C vertices stays nearly constant) and that ascending order reduces execution
time primarily by reducing the number of type B vertices i.e. by more effective pruning
of the search tree which reduces the overall number of vertices visited.

5.2.5. Impact of Dataset Parameters. To investigate the scaling behaviour of Algorithm
1 to larger datasets we generated a randomised dataset with 1, 000, 000 rows and 40
columns yielding an itemlist of size 2, 179.

Taking the first n rows, Figure 6a plots the execution time of Algorithm 1 versus n
for kmax = 3, τ = 1. It can be seen that the execution time is approximately linear
in n, and so scales well to larger datasets. Although not plotted, memory usage also
increased only gradually from 5.6Gb when n = 200, 000 to 6Gb when n = 1, 000, 000.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A Fast Minimal Infrequent Itemset Mining Algorithm A:17

Taking the first m columns of the dataset, Figure 6b plots the execution time versus
m for kmax = 3, τ = 1. It can be seen that the execution time is approximately expo-
nential in m, and so the algorithm scales less well to datasets with a large number of
columns (the size of corresponding itemlist increased from 520 to 2, 179). Note that the
memory usage also increases quite rapidly with m, from 0.9Gb when m = 10 to 6Gb
when m = 40.

5.3. Domain-Specific Performance
5.3.1. Datasets. In this section we present performance measurements for four

domain-specific datasets:

(1) The Connect dataset is available from http://fimi.ua.ac.be/data and contains all
legal 8-ply positions in the game of connect-4 in which neither player has won yet,
and in which the next move is not forced. There are 67, 557 rows, 43 columns (one
for each of the 42 connect-4 squares together with an outcome column - win, draw
or lose) and 129 items. It was one of the most computationally challenging datasets
for which MINIT was evaluated in [Haglin and Manning 2007].

(2) The Pumsb dataset is census data for population and housing from the PUMS
(Public Use Microdata Sample). This dataset is available from http://fimi.ua.ac.be/
data. There are 49, 046 rows, 74 columns and 1, 958 items.

(3) The Poker dataset is available from http://archive.ics.uci.edu/ml/datasets.html.
Each record is an example of a hand consisting of five playing cards drawn from
a standard deck of 52 cards. Each card is described using two attributes (suit and
rank), for a total of 10 predictive attributes. There is one Class attribute that de-
scribes the ”Poker Hand”. We removed the last attribute to form a new dataset
with 1, 000, 000 rows, 10 columns and 117 items.

(4) The USCensus1990 dataset, available from http://archive.ics.uci.edu/ml/datasets.
html, was collected as part of the 1990 census. We considered a subset of this
dataset consisting of the first 200, 000 rows and 68 columns, which contained 8, 009
items.

5.3.2. Execution Time vs kmax. All measurements in the current section are averaged
over three consecutive runs of each algorithm.

Figures 7, 8, 9 and 10 show the measured execution times of Algorithm 1, MINIT and
MIWI Miner measured for the Connect, Pumsb, Poker and USCensus1990 datasets vs
kmax when τ = 1, 5, 10 and 100.

It can be seen that Algorithm 1 consistently outperforms MINIT for all values of
kmax and τ and for all datasets. For the Connect dataset it can be seen that Algorithm
1 achieves runtimes between 3 and 9 times faster than MINIT. For the Pumsb dataset
Algorithm 1 is between 2 and 11 times faster. For the Poker dataset Algorithm 1 is
between 2 and 33 times faster (for kmax = 7, τ = 1 MINIT was terminated after 7, 800
seconds without completing). Data is not shown for the USCensus1990 dataset since
both the C++ and Java implementations of MINIT ran out of memory on this demand-
ing dataset (which has 8, 009 items).

For the Connect and Poker datasets MIWI is 2 − 7 times faster than Algorithm 1
when kmax > 4, but MIWI is 2−9 times slower than Algorithm 1 when kmax ≤ 4. MIWI
is also 5 − 13 times slower than Algorithm 1 for the Pumsb dataset for all values of
kmax (and also slower than MINIT for this dataset). For the demanding USCensus1990
dataset MIWI’s execution time is 220 minutes when kmax = 3, τ = 1 and it did not
complete within a reasonable time for kmax = 4. In comparison, Algorithm 1 finds
minimal sample uniques for kmax = 4 in 8 minutes while for kmax = 3 the execution
time reduces to 3 minutes.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://fimi.ua.ac.be/data
http://fimi.ua.ac.be/data
http://fimi.ua.ac.be/data
http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html


A:18 Demchuk et al.

0 1 2 3 4 5 6 7 8
0.1

1

10

100

1000

10000

1.1 1.5
4.5

34

222

1097
2853

1

2.2
4.9 11 23

46 83

0.3 0.5
1.4

5

23

130 548

kyiv

miwi

minit

kₘₐₓ

tim
e

, 
se

c

(a) τ = 1

0 1 2 3 4 5 6 7 8
0.1

1

10

100

1000

10000

1.3 2
3.8

27.6

181

924
3059

0.6
1.4

3.4
8.4 21

51
102

0.2 0.4
1.2

4.7

23

129 581

kyiv

miwi

minit

kₘₐₓ

tim
e

, 
se

c

(b) τ = 5

0 1 2 3 4 5 6 7 8
0.1

1

10

100

1000

10000

1.3 2
3.8

27

187

934
3092

0.6
1.4

3.5
8.6 22

54
110

0.2 0.4
1.1

4.3

23

130 582

kyiv

miwi

minit

kₘₐₓ

tim
e

, 
se

c

(c) τ = 10

0 1 2 3 4 5 6 7 8
0.1

1

10

100

1000

10000

1.3 2
4

27.2

186

968
3234

0.6
1.4

3.2
7.6 19

42
120

0.2 0.4
1.2

4.3

22

121
542

kyiv

miwi

minit

kₘₐₓ

tim
e

, 
se

c

(d) τ = 100

Fig. 7: Execution time vs kmax for Connect dataset.

0 1 2 3 4 5 6
0.1

1

10

100

1000

10000

100000

7.8 12

54
600

6061

5.8

40

361

3033

19762

0.7
3

30

273

2709

kyiv

miwi

minit

kₘₐₓ

tim
e

, 
se

c

(a) τ = 1

0 1 2 3 4 5 6
0.1

1

10

100

1000

10000

100000

9.1
27 51

460

4033

2.9
23

204

1643

11398

0.6
2.8

27

204

1958

kyiv

miwi

minit

kₘₐₓ

tim
e

, 
se

c

(b) τ = 5

0 1 2 3 4 5 6
0.1

1

10

100

1000

10000

100000

9.1
24 50

350

3275

3
22.7

186

1398

9791

0.6
2.7

22

169

1615

kyiv

miwi

minit

kₘₐₓ

tim
e

, 
se

c

(c) τ = 10

0 1 2 3 4 5 6
0.1

1

10

100

1000

10000

100000

9.1
17

39

257

2440

2.8

17.9

115
664

3942

0.6
2.1

9

65

664

kyiv

miwi

minit

kₘₐₓ

tim
e

, 
se

c

(d) τ = 100

Fig. 8: Execution time vs kmax for Pumsb dataset.

Revisiting the order analysis in Section 5.2.4, we point out that when Algorithm 1
is run without using Lemma 4.6 and Corollary 4.7 then the execution time rises to
269 seconds (from 130 seconds) for the Connect dataset, kmax = 6 and to 410 (from 273
seconds) seconds for the Pumsb dataset, kmax = 4 for example.

5.3.3. Execution Time vs τ . From Figures 7, 8, 9 and 10 it can be seen that the execution
time of all algorithms tends to fall with increasing τ . That is, finding minimal unique
itemsets is more demanding that finding infrequent itemsets, as might be expected.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A Fast Minimal Infrequent Itemset Mining Algorithm A:19

0 1 2 3 4 5 6 7 8 9
1

10

100

1000

10000

12.8

20 27.9
51

131

3492 7800

13
18.5

24 32.4 51 69 70 70

1
2 12.2

28.5

60

111
231 305

kyiv

miwi

minit

kₘₐₓ

tim
e

, 
se

c
>

(a) τ = 1

0 1 2 3 4 5 6 7 8 9
0.1

1

10

100

1000

10000

100000

17.5 23 28.2 52

356

9505 12235

7.7 10.8
14 21 35 33 33 33

0.9
1.9

12.7

29
54 94 141 174

kyiv
miwi
minit

kₘₐₓ

tim
e

, 
se

c

(b) τ = 5

0 1 2 3 4 5 6 7 8 9
0.1

1

10

100

1000

10000

100000

17.8 22 27 52

861

6907 7623

7.4 10.7
13.9

19 27 27 27 27

0.9
1.9

11.8

30
53 80 100 100

kyiv
miwi
minit

kₘₐₓ

tim
e

, 
se

c

(c) τ = 10

0 1 2 3 4 5 6 7 8
0.1

1

10

100

1000

10000

18.1 23 27.8
123

1171 1207 1227

7.5 10.9
13.9

16 16 16 16

0.9
2

12.8

29 43 47 46

kyiv
miwi
minit

kₘₐₓ

tim
e

, 
se

c

(d) τ = 100

Fig. 9: Execution time vs kmax for Poker dataset.

0 1 2 3 4 5
1

10

100

1000

10000

100000

636 936

13220
36000

182 195 223
487

kyiv

miwi

kₘₐₓ

tim
e

, 
se

c

>

(a) τ = 1

0 1 2 3 4 5
1

10

100

1000

10000

100000

313 434

5193
36000

231 210 208
477

kyiv

miwi

kₘₐₓ

tim
e

, 
se

c

>

(b) τ = 5

0 1 2 3 4 5
1

10

100

1000

10000

100000

315 442

4563
36000

201 179 228
465

kyiv

miwi

kₘₐₓ

tim
e

, 
se

c

>

(c) τ = 10

0 1 2 3 4 5
1

10

100

1000

10000

100000

312 407

2870

36000

178 178 199
386

kyiv

miwi

kₘₐₓ

tim
e

, 
se

c

>

(d) τ = 100

Fig. 10: Execution time vs kmax for USCensus1990 dataset.

This is studied in more detail in Figure 11 which plots the measured execution times
vs τ .

It can be seen from Figure 11a that MINIT’s execution time initially increases with τ
(see [Haglin and Manning 2007] where similar behaviour is reported), and then later
falls as τ is increased further. Similarly, the execution time of MIWI also increases
initially. We think that these initial increases are caused by the design of the algorithm
and not by the dataset complexity since it is not present for Algorithm 1.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 Demchuk et al.

0 250 500 750 1000 1250
1

10

100

1000

10000

2853
3234 3128 3065 3147 3006

83 120
57 38 28 22

548 542 511 451 354 324

kyiv

miwi

minit

�

tim
e

, 
se

c

(a) Connect, kmax = 7

0 500 1000 1500 2000 2500
1

10

100

1000

10000

100000

6061 1701 1727 1678 1549

19762

1391 804 565 435

2709

252
137 81 50

kyiv

miwi

minit

�

tim
e

, 
se

c

(b) Pumsb, kmax = 5

1 10 100 1000 10000 100000
1

10

100

1000

10000

100000

13220
2274
1836

1630
14471027

773 591
222 226

194

215
243

236
204

178

�

tim
e

, 
se

c

kyiv

miwi

(c) USCensus1990, kmax = 3, τ ∈ {1, 250, 500, 750, 1000, 2500,
5000, 10000}

Fig. 11: Execution time vs τ .

0 1 2 3 4 5 6 7 8 9
0.01

0.1

1

10

100

1000

0.1

2.2 3

22

0.5 0.7
2

4
10

38 65

0.04
0.4 0.53

11.3

150

0.020.06 0.08

0.73

8.3

42.7
190

connect
pumsb
poker
uscensus

kₘₐₓ

m
e

m
o

ry
,  

G
b

Fig. 12: Memory consumption of Algorithm 1 vs kmax, τ = 1.

For this relatively simple dataset MIWI offers the shortest execution time. However,
for the more complex Pumsb and USCensus1990 datasets it can be seen that Algorithm
1 offers the shortest execution time, although the performance gap between MIWI and
Algorithm 1 narrows for large τ with the USCensus1990 dataset.

To summarise, we conclude that Algorithm 1’s execution time tends to decrease
with τ , its comparative performance with the MIWI and MINIT algorithms is approx-
imately τ -invariant and Algorithm 1 performs best when the input dataset is compu-
tationally expensive (such as the Pumsb or USCensus1990 datasets).

5.3.4. Memory Usage. Algorithm 1 intentionally trades increased memory for faster
execution times via its use of a breadth-first approach. This is reasonable in view of
the favourable scaling of memory size vs CPU speed on modern hardware. Figure 12
shows the memory consumption of Algorithm 1 for the Connect, Pumsb, Poker and
USCensus1990 datasets vs kmax. These plots indicate the maximum memory needed
during algorithm execution and so this amount of memory ensures the fastest execu-
tion time since garbage collection is not required. For smaller amounts of memory the

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A Fast Minimal Infrequent Itemset Mining Algorithm A:21

0 4 8 12 16 20 24 28 32 36
0

20

40

60

80

100

120

140
124

52
42 40 43 43 41 42 42

threads

tim
e

, 
se

c

(a) Connect, kmax = 6, τ = 1

0 4 8 12 16 20 24 28 32 36
0

500

1000

1500

2000

2500

3000
2688

950
654 624 580 635 549 631 533

threads

tim
e

, 
se

c

(b) Pumsb, kmax = 5, τ = 1

Fig. 13: Parallel algorithm execution time vs number of threads.

T thread 1 thread 2 thread 3 thread 4

k = 3

871 24 24 24 24
k = 4

871 340 344 343 342
k = 5 = kmax

871 468 501 470 482

Table II: Granularity of 4 threads for Pumsb, kmax = 5, τ = 1. Time is given in seconds,
levelwise. T column shows the whole execution time.

algorithm is observed to become somewhat slower as the Java Virtual Machine needs
to start garbage collection.

The memory requirement is dominated by storage of itemset rows to perform inter-
section. When 1 < k < kmax, two levels of the prefix tree must be stored, but when
k = kmax (last level), then only one level needs to be stored (for example, the 190Gb
in Figure 12 is mostly occupied by the 6-itemset rows). Note that there is a level in
the prefix tree that requires the largest amount of memory, a sort of equator. Above
this value Algorithm 1 can compute all minimal unique itemsets without additional
memory.

5.4. Parallel Algorithm Performance
Figures 13a and 13b show execution time versus the number of threads used for the

Connect and Pumsb datasets respectively. It can be seen that at around 8 threads the
performance saturates and additional threads yielding little further performance gain.

In more detail, tables II, III and IV show the per thread execution times together
with the overall execution time. Data is shown for 4, 8 and 16 threads measured for the
Pumsb dataset, kmax = 5, τ = 1. It can be seen that the thread execution times consis-
tently have a narrow spread, indicating that the workload is divided evenly amongst
the threads. That is, there is not one slow thread which dominates parallel execu-
tion time. Observe also that the execution times in the last row of each table (when
k = 5 = kmax) decrease as the number of threads is increased but that the maximum
thread execution times when k = 3 and k = 4 do not show a similar decrease. This
may be due to the communication overhead when transitioning between layers in the
search tree, although we leave detailed analysis of this to future work.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 Demchuk et al.

T t1 t2 t3 t4 t5 t6 t7 t8

k = 3

674 21 17 19 21 21 21 19 21
k = 4

674 352 284 354 352 285 291 351 352
kmax

674 297 281 293 293 294 282 289 282

Table III: Granularity of 8 threads for Pumsb, kmax = 5, τ = 1. Time is given in seconds,
levelwise. T column shows the whole execution time.

T t1 t2 t3 t4 t5 t6 t7 t8

k = 3

567 20 19 19 20 19 19 20 20
k = 4

567 342 345 258 345 342 333 260 346
kmax

567 178 171 177 171 170 170 179 179

T t9 t10 t11 t12 t13 t14 t15 t16

k = 3

567 20 19 19 19 20 19 19 19
k = 4

567 270 272 272 345 271 272 342 345
kmax

567 178 177 171 172 172 177 177 177

Table IV: Granularity of 16 threads for Pumsb, kmax = 5, τ = 1. Time is given in
seconds, levelwise. T column shows the whole execution time.

6. SUMMARY AND CONCLUSIONS
A new algorithm for finding quasi-identifiers within a data set is introduced, where

a quasi-identifier is a subset of attributes that can uniquely identify data set records
(or identify that a record lied within a small group of τ records). This algorithm is
demonstrated to be substantially faster than the state of the art, to scale well to large
data sets and to be amenable to parallelisation with well-balanced thread execution
times.

6.1. Further Improvements and Optimisation
We briefly highlight areas where further efficiency gains may be possible, although

we leave these as future work.
Regarding memory usage, suppose Kyiv that is able to compute the k∗-itemsets by

intersecting the (k∗ − 1)-itemsets but that the algorithm goes out of memory at the

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A Fast Minimal Infrequent Itemset Mining Algorithm A:23

k∗ + 1 level. We might keep intersecting the (k∗ − 1)-itemsets in order to find not only
the k∗-itemsets, but also the (k∗+ δ)-itemsets, where δ ∈ N at each consecutive level of
the prefix tree. This would allow us to halt growth in memory usage as this is mainly
used for itemset storage. Related technical refinements could be to implement the cor-
responding itemset test using the (k∗ − 1)-itemsets and to use data compression for
the array storage to decrease the memory consumption, albeit at the cost of increased
execution time.

Regarding data structures, it would be useful to get a better understanding of the
most efficient structures for storing the prefix tree and handling the search space op-
erations. The insights gained might improve the parallel form of the algorithm. One
possible direction would be to look at an array implementation of a tree structure rep-
resentation, e.g. similar to the work in [Grahne and Zhu 2005].

The main computational bottleneck, the intersection operation, could potentially be
improved by making use of the specialised SSE (Streaming SIMD Extensions) instruc-
tions available on Intel processors. There exists performance analysis [Katsov 2012]
indicating that use of these instructions might produce a 4× speed up.

REFERENCES
M. Barbaro and T. Zeller. 2006. A face is exposed for AOL searcher No. 4417749, In New York Times. (August

2006).
L. Cagliero and P. Garza. 2013. Infrequent weighted itemset mining using frequent pattern growth. Trans.

Knowledge and Data Engineering (2013).
X. Dong, Z. Zheng, Z. Niu, and Q. Jia. 2007. Mining infrequent itemsets based on multiple level minimum

supports. Proc. ICICIC (2007).
M. Elliot. 2007. Using targeted perturbation of microdata to protect against intelligent linkage, In EURO-

STAT Work Session on statistical data confidentiality. (December 2007).
M. J. Elliot, A. M. Manning, and R. W. Ford. 2002. A computational algorithm for handling the special

uniques problem. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10, 5
(2002), 493–509.

G. Grahne and J. Zhu. 2005. Fast algorithms for frequent itemset mining using FP-trees. IEEE Transactions
on Knowledge and Data Engineering 17, 10 (2005), 1347–1362.

W. Gross, P. Guiblin, and K. Merrett. 2004. Risk assessment of the individual sample of anonymised records
(SAR) from the 2001 census, In UK Office of National Statistics. (2004).

A. Gupta, A. Mittal, and A. Bhattachrya. 2011. Minimally infrequent itemset mining using pattern-growth
paradigm and residual trees. Proc. COMAD 21 (2011), 1131–1158.

D. J. Haglin and A. M. Manning. 2007. On minimal infrequent itemset mining. Proc. Int. Conf. on Data
Mining, DMIN (2007), 141–147.

D. J. Haglin, K. R. Mayes, A. M. Manning, J. Feo, J. R. Gurd, M. Elliot, and J. A. Keane. 2009. Factors
affecting the performance of parallel mining of minimal unique itemsets on diverse architectures. Con-
currency and Computation: Practice and Experience 21, 9 (2009), 1131–1158.

S. Hommes, R. State, and T. Engel. 2012. Detecting stealthy backdoors with association rule mining, In Proc
Networking. 7290 (2012), 161–171.

Y. Ji, H. Ying, J. Tran, P. Drews, A. Mansour, and R. M. Massanari. 2013. A method for mining infrequent
causal associations and its application in finding adverse drug reaction signal pairs. IEEE Transactions
on Knowledge and Data Engineering 25, 4 (2013), 721–733.

I. Katsov. 2012. Fast intersection of sorted lists using SSE instructions.
http://highlyscalable.wordpress.com/2012/06/05/fast-intersection-sorted-lists-sse. (2012).

Y. S. Koh and N. Rountree. 2005. Finding sporadic rules using apriori-inverse, In Proc 9th Pacific-Asia
conference on Advances in Knowledge Discovery and Data Mining. 3518 (2005), 97–106.

K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. 2005. Incognito: efficient full-domain K-anonymity, In Proc
SIGMOD. (2005), 49–60.

J. M. Luna, A. Ramirez, J. R. Romero, and S. Ventura. 2010. An intruder detection approach based on
infrequent rating pattern mining, In Intelligent Systems Design and Applications (ISDA). (2010), 682–
688.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://highlyscalable.wordpress.com/2012/06/05/fast-intersection-sorted-lists-sse


A:24 Demchuk et al.

A. M. Manning and D. J. Haglin. 2005. A new algorithm for finding minimal sample uniques for use in
statistical disclosure assessment. IEEE International Conference on Data Mining (ICDM05) (2005),
290–297.

A. M. Manning, D. J. Haglin, and J. A. Keane. 2008. A recursive search algorithm for statistical disclosure
assessment. Data Mining and Knowledge Discovery 16, 2 (2008), 165–196.

A. Rahman, C. I. Ezeife, and A. K. Aggarwal. 2008. WiFi miner: an online apriori-infrequent based wireless
intrusion detection system. Proc. Sensor-KDD (2008).

L. Sweeney. 2002. k-Anonymity: a model for protecting privacy. International Journal on Uncertainty, Fuzzi-
ness and Knowledge-based Systems 10, 5 (2002), 557–570.

L. Szathmary, A. Napoli, and P. Valtchev. 2007. Towards rare itemset mining. Proc. Int. Conf. on Tools with
Artificial Intelligence (2007), 305–312.

L. Szathmary, P. Valtchev, and A. Napoli. 2010. Generating rare association rules using the minimal rare
itemsets family. Int. J. Software Informatics 4, 3 (2010), 219–238.

L. Szathmary, P. Valtchev, A. Napoli, and R. Godin. 2012. Efficient vertical mining of minimal rare itemsets.
Proc. Conf. on Concept Lattices and Their Applications (2012), 269–280.

M. Templ, B. Meindl, and A. Kowarik. 2013. IHSN SDC Introduction.
http://ec.europa.eu/eurostat/ramon/statmanuals/files/SDC Handbook.pdf. (2013).

M. Templ, B. Meindl, and A. Kowarik. 2014. Introduction to Statistical Disclosure Control (SDC), In CRAN
SDCMicro Documentation. (2014).

L. Troiano and G. Scibelli. 2013. A time-efficient breadth-first level-wise lattice-traversal algorithm to dis-
cover rare itemsets. Data Mining and Knowlege Discovery (2013), 1–35.

L. Troiano, G. Scibelli, and C. Birtolo. 2009. A fast algorithm for mining rare itemsets. Proc. Int. Conf. on
Intelligent Systems Design and Applications (2009).

S. Tsang, Y. S. Koh, and G. Dobbie. 2011. RP-tree: rare pattern tree mining, In Data Warehousing and
Knowledge Discovery. 6862 (2011), 277–288.

S. Tsang, Y. S. Koh, and G. Dobbie. 2013. Finding interesting rare association rules using rare pattern tree,
In Special Issue on Advances in Data Warehousing and Knowledge Discovery. 7790 (2013), 157–173.

L. Zhou and S. Yau. 2007. Efficient association rule mining among both frequent and infrequent items.
Computers and Mathematics with Applications 54, 6 (2007), 737–749.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://ec.europa.eu/eurostat/ramon/statmanuals/files/SDC_Handbook.pdf

	arxiv.org
	Kostyantyn Demchuk and Douglas J. Leith - A Fast Minimal Infrequent Itemset Mining Algorithm
	1 Introduction
	1.1 Motivating Example

	2 Related Work
	3 Preliminaries
	4 Minimal Infrequent Itemset Mining
	4.1 Pre-processing
	4.2 Pruning the Search Space
	4.3 Potential Performance Bottlenecks
	4.4 Kyiv Algorithm
	4.4.1 Highly Efficient Support Itemset Testing
	4.4.2 Reducing Number of Row Intersections
	4.4.3 Correctness
	4.4.4 Parallelisation


	5 Experiments
	5.1 Hardware and Software Setup
	5.2 Domain-Agnostic Performance
	5.2.1 Randomised Datasets
	5.2.2 Execution Time
	5.2.3 Prefix Tree Pruning
	5.2.4 Impact of Ordering Used for Itemlist
	5.2.5 Impact of Dataset Parameters

	5.3 Domain-Specific Performance
	5.3.1 Datasets
	5.3.2 Execution Time vs Maximum Itemset Size
	5.3.3 Execution Time vs Frequency Threshold
	5.3.4 Memory Usage

	5.4 Parallel Algorithm Performance

	6 Summary and Conclusions
	6.1 Further Improvements and Optimisation




