arXiv:1410.2087v1 [cs.NI] 8 Oct 2014

A Successful Web Traffic Analysis Attack Using
Only Timing Information

Saman Feghhi, Douglas J. Leith
Hamilton Institute, NUI Maynooth

Abstract—We introduce an attack against encrypted web * sniffer
traffic that makes use only of packet timing information on the (attacker)
uplink. This attack is therefore impervious to existing padet |

padding defences. In addition, unlike existing approacheshis O_ _ _|:|_ —_ _O_O

timing-only attack does not require knowledge of the starténd

of web fetches and so is effective against traffic streams. We ; encrypted gateway

demonstrate the effectiveness of the attack against both weid tunnel

and wireless traffic, achieving mean success rates in excesb L . i

90%. In addition to being of interest in its own right, this timing- F19. 1: Schematic illustrating attacker of the type consde
only attack serves to highlight deficiencies in existing dehces A client machine is connected to an external network via

and so to areas where it would be beneficial for VPN designers an encrypted tunnel (ssh, SSL, IPsetc). The attacker can
to focus further attention. detect the time when packets traverse the tunnel in the kuplin
direction, but has no other information about the clients
activity.

web server

I. INTRODUCTION

In this paper we consider an attacker of the type illustrated
in Figure[1. The attacker can detect the time when packetsThe main contributions of the present paper are as follows:
traverse the encrypted tunnel in the uplink direction, bag h(i) we describe an attack against encrypted web traffic that
no other information about the clients activity. The atextk uses packet timing information alone, (ii) we demonstras t
objective is to use this information to guess, with higkhis attack is highly effective against both wired and wass
probability of success, the web sites which the client sisittraffic, achieving mean success rates in excess of 90% over
What is distinctive about the attack considered here is thethernet and wireless tunnels and a success rate of 68%shgain
attacker relies solely on packet timestamp informationreheTor traffic, (iii) we also demonstrate that the attack is etffee
the previously reported attacks against encrypted weficrafagainst traffic streanise. back to back web page fetches where
have mainly made use of observations of packet size andtloe packet boundaries between fetches are unknown.
packet count information. In addition to being of interest in its own right, particliar

Our interest in timing-only attacks is twofold. Firstly,gha®t in view of the powerful nature of the attack, this timing-pnl
padding is a relatively straightforward defence againsicks attack also serves to highlight deficiencies in existingedeés
that rely primarily on packet size, and indeed is currentignd so to areas where it would be beneficial for VPN designers
either already available or being implemented in a numbtr focus further attention. We note that, complementarhio t
of popular VPNs[[2]. Secondly, alternative attacks based @nesent work, in[[3] it is demonstrated that when the webhfetc
packet counting[]2],[I3] are insensitive to packet paddingoundaries within a packet stream are known then an NGRAM
defences but require partitioning of a packet stream ingpproach using packet count together with uplink/downlink
individual web fetches in order for the number of packedirection information is also sufficient to construct areefive
associated with each web fetch to be determined, which maitgack against encrypted web traffic despite packet padding
be highly challenging in practice on links where there are rtidence, we can conclude that (i) uplink/downlink packet orde
clear pauses between web fetches. In contrast, packetgtimiing plus web fetch boundaries and (i) uplink/downlink petk
based attacks are not only largely unaffected by packetipgddtiming information are both sensitive quantities that ouigh
defences but also, as we will show, do not require partitigni be protected by a secure encrypted tunnel. Packet padding
of the packet stream. Hence, they are potentially a prdisticadoes not protect these quantities. Directing defencesaiai
important class of attack against current and future VPNese two sets of packet stream features therefore seems an
While some work has been carried out using inter-arrivaktimimportant direction for future work.
information to classify the application (HTTP, IMA&Q [[7],
to our knowledge, there is no previous work reporting Us€ Related Work
of timing information alone to construct a successful &tac

against encrypted web traffic. The general topic of traffic analysis has been the subject of

much interest, and a large body of literature exists. Some of
This work was supported by Science Foundation Ireland udant No. the earliest work speC|f|caIIy focussed on attaCk.S and mn
11/P1/1177. for encrypted web traffic appears to be that of Hiniz [6], vhic
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considers the SafeWeb encrypting proxy. In this setup (B we

page fetches occur sequentially with the start and end df eac et com

web page fetch known, and for each packet (ii) the client- o peomaa e o

side port number, (iii) the direction (incoming/outgoiray)d ;L wewhseie

(iv) the size is observed. A web page signature is constiucte . :

consisting of the aggregate bytes received on each port (cal > ‘_; X

culated by summing packet sizes), effectively correspugdi E - R

to the number and size of each object within the web page. s .

In [13] it is similarly assumed that the number and size of

the objects in a web page can be observed and using this ———" g

information a classification success rate of 75% is reported - ‘ ‘ ‘
Subsequently, Bissiast al [1] considered an encrypted 0 200 400 600 800

. . Packet number
tunnel setup where (i) web page fetches occur sequentially

with the start and end of each web page fetch known, and fo- 2: Time traces of uplink traffic from 5 different Irish
each packet (ii) the size, (iii) the direction (incominggoing) health-related web sites are shown. It can be seen that the
and (iv) the time (and so also the packet ordering) is observéveb site time traces exhibit distinct patterns. The trages a
The sequence of packet inter-arrival times and packet siZdifted vertically to avoid overlap and facilitate comsan.
from a web page fetch is used to create a profile for each
web page in a target set and the cross correlation between an
observed traffic sequence and the stored profiles is then useligurel2 plots the timestamgs;. } of the uplink packets sent
as a measure of similarity. A classification accuracy of 238#ring the course of fetching five different health-relatesb
is observed when using a set of 100 web pages, rising to 49@ges (see below for details of the measurement setup):-The
when restricted to a smaller set of web pages. axis indicates the packet numbewithin the stream and thg-
Most later work has adopted essentially the same model@4s the corresponding timestarpin seconds. It can be seen
[1], making use of packet direction and size information arffjat these timestamp traces are distinctly different fehemeb
assuming that the packet stream has already been parttiofi€; and itis this observation that motivates interestfiether
into individual web page fetches. 1n][9],[5] Bayes classifie fiming analysis may by itself (without additional inforri
based on the direction and size of packets are considefé§h as packet size, uplink/downlink packet ordertg be
while in [12] an SVM classifier is proposed. In[10] classifiSufficient to successfully de-anomymise encrypted welfidraf
cation based on direction and size of packets is studiedjusin TO gain insight into the differences between the packet
Levenshtein distance as the similarity metric, in1[11] gsintimestamp sequences in Figure 2 and, importantly, whether
a Gaussian Bag-of-Words approach and[inl [14] using KNigey are genuinely related to characteristics of each wele pa
classification. In[[2] using a SVM approach a classificatioffither than to other factors, it is helpful to consider thecess
accuracy of over 80% is reported for both SSH and T&f fetching a web page in more detail. To fetch a web page
traffic and the defences considered were generally foune tothe client browser starts by opening a TCP connection with
ineffective. Similarly, [3] considers Bayes and SVM cléisss the server indicated by the URL and issues an HTTP GET or
and finds that a range of proposed defences are ineffeativePOST request to which the server then replies. As the client

studied. requests to fetch embedded objects (images, css, setipts

These additional requests may be to different servers from
the original requeste(g. when the object to be fetched is an
Il. ANATOMY OF A WEB PAGE FETCH advert or is hosted in a separate content-delivery network)

When traffic is carried over an encrypted tunnel, such asta which case the client opens a TCP connection to each
VPN, the packet source and destination addresses and pBR¥ server in order to issue the requests. Fetching of these
and the packet payload are hidden. We also assume here @f@cts may in turn trigger the fetching of further objects.
the tunnel pads the packets to be of equal size, so that padtete that asynchronous fetching of dynamic content using,
size information is also concealed, and that the start adaén €.9.AJAX, can lead to a complex sequence of server requests
an individual web fetch may also be conceated.when the and responses even after the page has been rendered by the
web fetch is embedded in a larger traffic stream. An attackefowser. Also, typically the TCP connections to the various
sniffing traffic on the encrypted tunnel is therefore ableyanl servers are held open until the page is fully loaded so that
observe the direction and timing of packets through theeynnthey can be reused for later requests (request pipelining in
i.e. to observe a sequence of paif&y,d;)}, k = 1,2,--- this way is almost universally used by modern browsers).
wheret,, is the time at which thé'th packet is observed and  This web fetch process is illustrated schematically in[Rig 3
di, € {—1,1} indicates whether the packet is travelling in th&Ve make the following more detailed observations:
uplink or downlink direction. Since it will provide suffia 1) Connection to third-party serversFetching an object
to mount an effective attack, we will assume a weaker attacke located on a third-party server requires the opening of a
that can only observe the timestamigs }, k € K., :={x € new TCP connection to that server, over which the HTTP
{1,2,---}:d, = —1} associated with uplink traffic . request is then sent. The TCP connection handshake



SYNpacket A  GET packet hxd Uplink traffic N
FINpacket V  ACKpacket(s) O/CD Downlinktraffic — ------
Data packets 3

Pipelines

Time (s)

Fig. 3: This figure represent a typical web site query. Ittstay requesting the index page. Then as the browser parsegth
this page more objects are fetched in parallel. Some objeatsalso be outsourced to 3rd party web sites which have their
own pipelines. Dynamic content may be updated at interesdndicated in the last two lines of the figure, and connastio
tend to close in groups.

introduces a delay (of at least one RTT) and since the

pattern of these delays is related to the web page content ' ﬁ‘;gT”'a’ packet

it can potentially assist in identifying the web page. TCP Retranmission
2) Pipelining of requestsMultiple objects located on the " Duphck R

same server lead to several GET/POST requests being -

sent to that server, one after another. Due to the dynamics

of TCP congestion control, this burst of back-to-back

> ¥

N

requests can affect the timing of the response packets “"“
in a predictable manner that once again can potentially
assist in identifying the web page. e

3) Asynchronous requestsDynamic content, e.g. pre- .- ‘ ‘ ‘ ‘
fetching via AJAX, can lead to update requests to a server 1920 1940 %%iget}]%?gbefow 2020 2040
with large inter-arrival times that can potentially act as a

web page signature. Fig. 4: lllustrating impact of changes in packet loss on the

4) Connection closingWhen a web page fetch is com-packet timestamp sequence. The bottom sequence shows the
pleted, the associated TCP connections are closed.PAcket sequence at connection closing of a loss-free web, fet
FIN/FINACK/ACK exchange closes each connection an#hile the top sequence shows the corresponding section from
this burst of packets can have quite distinctive timing different fetch of the same web page that was subject to
which allows it to be identified. Since the number oPacket loss and exhibits TCP retransmissions and DupACKs.
connections is related to the number of distinct locations
where objects in the web page are stored, it changes
between web pages.

Our aim is to use timing features such as these, which V&lwnload rate €.9.due to flows starting/finishing within the

dgpendlng upon the web page .fetchgd, to create a tIrr.“rqgtwork) tend to stretch/compress the times between packet
signature which allows us to identify which web page is bein . . L .
. (%ueuelng within the network also affects packet timing hwit
fetched based on timing data only. S )
gueued packets experiencing both greater delay and tetaling
I1l. COMPARING SEQUENCES OFPACKET TIMESTAMPS D€ more bunche(_j t(_)gether. Link—Iayer. retrapsmission oB-wir
less links has a similar effect to queueing. Similarly torues
in download rate, the effect is primarily to stretch/congsre
the times between packets.

Suppose we have two sequences of packet timestamps
{ti}, i =1,2,--- ,n andt’ := {t}}, j = 1,2,--- ,m. Note
that for simplicity we re-label the uplink packet indicesstart
from 1 and to increase consecutively since none of our analysispacket loss introduces a “hole” in the packet stream where
will depend on this. Note also that the sequence lengthed  the packet ought to have arrived and also affects the timing
m are not assumed to be the same. To proceed we needdplater packets due to the action of TCP congestion control
define an appropriate measure of the distance between syghich reduces the send rate on packet loss) and retransmis-

sequences. sion of the lost packets. For example, Figlite 4 shows uplink
) ) ) measurements of packet retransmissions and duplicate ACKs
A. Network Distortion of Timestamp Sequences at the end of two fetches of the same web page where it can

The packet stream observed during a web page fetchbis seen that these have the effect of stretching the packet
affected by network events during the fetch. Changes sequence.



B. Derivative Dynamic Time Warping

Our interest is in a measure of the distance between packet
sequences which is insensitive to the types of distortion
introduced by the network, so that the distance betweengback
streams andt’ associated with fetches of the same web page m S ’
at different times is measured as being small, and ideadly th .
distance between fetches of different web pages is measured %
to be large. To this end we use a variant of Dynamic Time >
Warping (DTW) [8]. DTW aims to be insensitive to differences
between sequences which are due to stretching/comprexfsing j
time and so can be expected to at least partly accommodate
the effects of changes in download rate, queueing detay il

We define a warping patlp to be a sequence of pairs,
{(p}lwp]]c)}v k=1,2,--- 1 with (p}lwp?c) eV:= {17 T ,n}x i
{1,---,m} satisfying boundary conditiong; = 1 = p], -—
p; = n, pi = m and step-wise constraintp;, ,,p;,,) € I i n

. Pp— . 3 Y3
Viiol = {(wv) = u € {plopi + 13N {1"_"’n}’U .e Fig. 5: lllustrating a warping path. The dashed lines intlica
{re,p+130{1,...,n}}, k=1,--- ,I1-1.Thatis, awarping o warping window.
path maps points from one timestamp sequence to another
such that the start and end points of the sequences match (due

to the boundary conditions) and the points are monotowicall

50

increasing (due to the step-wise constraints). This istitated - sanple 1
v, 4 sample
K —matching lines|

40|

schematically in Figurgl5, where the two timestamp sequence
to be compared are indicated to the left and above the matrix
and the bold line indicates an example warping path.

Let P C V! denote the set of all warping paths of
length [ associated with two timestamp sequences of length .
n and m respectively, and leCy 4 (-) : P, — R be a R R e 0 0 2 a0 s

30

f(t)

20|

10§

cost function so thatCy .+ (p) is the cost of warping path (a) Euclidean cost
€ P! .. Our interest is in the minimum cost warping path,
p*(t,t') € argmingcpr  Cye(p). IN DTW the cost function s *
has the separable for@; . (p) = Y. _, ct.e(pL, pl) where  atthing lines 40
ceer V. — R, in which case optimal pathp*(t,t') be s y 30
efficiently found using the backward recursion, /mm 20
A - 10

(i) €arg min  Cas +ew(P'p) (D)
B k

0 10 20 30 40 50 0
t

Cr = Cry1 + co.e (D), 7,) (2) (b) Derivative cost

where Vi, = (pi,p’) € {(u,v) : (i 1,1} 1) € Vuw} k = Fig. 6: Example DTW alignment and warping paths between
I —1,1—2,--- and initial conditionC; = ¢ (n,m). When two sequences vs cost functiep,, used, windoww = 0.1.
there is more than one optimal solution at stelp (1), we seleatthis example the lengthof the warping path is 73 when a

(pk,p),) uniformly at random from amongst them. Euclidean cost is used and 54 with the derivative cost.
A common choice of element-wise cost is the Euclidean

norm ce v (p',p?) = (t,: — t,,)?. However, to improve ro-
bustness to noise on the timestamp values (in addition to

misalignment of their indices), followind [8] we insteadeus Figure[Bb illustrates the alignment of points between two

the following element-wise cost sequences obtained using this approach and for comparison
cew(p',p7) = (Dy(p') — Dy (p7))? (3) Figure[6a shows the corresponding result when using Eu-

clidean cost. The figure shows the warping paths on the right-

where Dy (i) = e e max{i — 1,1} and hand side and an alternative visualisation of the mapping

it = min{i + 1, [¢|}. 2Observe thatD, (i) is akin to the between points in the sequences on the left-hand side. @Gbser
derivative of sequenceé at indexi. Further, we constrain that when Euclidean cost is used the warping path tends to
the warping path to remain within windowing distanee assign many points on one curve to a single point on the
of the diagonal i(e. within the dashed lines indicated onother curve. As noted iri_[8] this is known to be a feature of
Figure[3) by settingC(p) = +oo for pathsp € P!, for Euclidean cost. In comparison, use of the derivative destan
which [pi — pi| > max{wmin{n,m},|m — n|} for any tends to mitigate this effect and select a warping path with
ke{l,--- 1} fewer horizontal and vertical sections.




IV. DE-ANONYMISING WEB FETCHESOVER AN

3_1/3/3 ’ ETHERNET TUNNEL
2 AT In this section we present measurements of web page
l/ A A » gueries carried out over an ethernet tunnel and evaluatecthe
; - curacy with which the web page being fetched can be inferred
/ ../g/ using only packet timing data. The first dataset consist96f 1
o« 2 3 4 5 ] fetches of the home pages of each of the top 20 Irish health and
1 1 7 the top 20 Irish finance web sites as ranked by www.alexa.com
(a) Sequence alignment. (b) Warping path under its Regional/Europe/lreland category in October3201

Fig. 7: lllustrating method for calculating thé-distance yielding a total of 4000 individual web page fetches. In this
between two timestamp sequences. dataset the browser cache is flushed between each fetch so

that the browser always starts in a fresh state. In addition,
a second dataset was collected consisting of the same 4000
web fetches but now without flushing of the browser cache
C. F-Distance Measure between fetches. The web pages were fetched over a period
) ) ) . spanning October 2013 to May 2014 wat i r - webdri ver
Given two timestamp sequences, the warping path iSggrint on Firefox 21.0 was used to perform the web page
mapping between them. With reference to Fidure 5, sectibnsigiches andcpdumpto record the timestamps and direction
the warping path which lie parallel to the diagonal corregbo (,yjink/downlink) of all packets traversing the tunnehatigh

to intervals over which the two sequences are well matchqqﬂy packet timestamps on the uplink were actually used.
Sections of the warping path that are parallel to the x- or y-

axes correspond to intervals over which the two sequenees ar

poorly matched. This suggests using the fraction of theaiverA- Hardware/Software Setup

warping path which is parallel to the x- or y-axes as a distanc The network setup consists of a client that routes traffi@via

measure, which we refer to as tlhedistance. tunnel to the gateway server. The gateway server forwaisls th
In more detall, letp = {(p};,pi)}, kE = 1,---,1 be a client traffic to the Internet and routes responses backhea t

derivative DTW warping path relating timestamp sequencéignel to the client. The tunnel is carried over a gigabieatlet

t and t/, obtained as described in the previous section. WEN and the gateway server also has a gigabit connection to

partition the warping path into a sequence of subpaths mittthe Internet. The client machine is a 3.00 GHz Core 2 Duo

each of which eithepi or p; remain constant and we countCPU with 2GB of RAM and the gateway server a 2.66 GHz

the subpaths which are longer than one. For example, feon CPU with 1GB of RAM Both machines are running

the setup shown in Figullg 7 there are five subpathst); Ubuntu Linux 12.04 LTS precise. The tunnel was implemented

(2,2),(2,3); (3,4),(4,4),(5,4); (6,5); (7,6). Two of these using custom software and netlink.

subpaths consist of more than one pair of points, namely

(2,2),(2,3) and (3,4), (4,4),(5,4), and these correspond

respectively, to the vertical section and the horizontatiea

on the corresponding warping path shown in Figure 7b. We use theF-distance meas_ur@(-_, -) described in Section .
Formally, definer; := 0 < ko < -~ < Koy < Ry i= 1 [Mto compare measured uplink timestamp sequences, with

such that for eacts = 1,---,r — 1 () either pi, — pi wmdowmg parametetw = 0.1 unless otherwise _stated. _ _
— 1 or o — szl i 2 Figure[8 shows example scatter plots obtained using this
Lok € {fs + 1,00 Kspr} OF pp = py, ki, ke € distance measure. In more detail, from the Bebf measured

'B. Classifying Measured Timestamp Sequences

i{il)ﬁsi:v}c’)ia.\t'e’ dﬁ?ﬁ, ;}sggdek(") ke|th€er{ns+ 1= Lo io?sltil(;n timestamp sequences for tfith web site we select a sequence
ouch Subsealence. is mla{xirzal Ngié tb?le J tor a1 which minimisesy_, . ¢(t,t;) and then uset; as the

q . : .g Py 0 exemplar for thei'th web page. In Figuré¢]8 we then plot
k=1,---,l (due to warping path step-wise constraints) an

(t,t;) for each of the timestamp sequendeseasured for
web page; and also for timestamp sequences measured for
another web page. In the example in Figlré 8a it can be
seen that the distance measure is indeed effective at siegara
the measured timestamp sequences of the two web pages

so in condition (i) it is not possible for both, andp], to be
constant. We are now is a position to define thalistance
measure between timestamp sequerticasdt’, namely:

b(t.t) = S (kg1 — (ks + 1) @ considered into distinct clusters, so potentially provigia
’ n+m basis for accurately classifying timestamp sequences by we
page. Figuré 8b shows an example of a scatter plot where the
where k,, s = 1,---,r are the constant subsequences iseparation between the two web pages is less distinct and so

minimal warping pathp*(t,t'). It can be seen thai(p) takes classification can be expected to be less reliable. As we will
values in interval0, 1], and isO when sequencesandt’ are see, examples of this latter sort turn out to be fairly rare.
identical (in which case the warping pathies on the diagonal =~ We considered two approaches for usitg, -) to classify

in Figure[®). For the example in Figuré 7 thhedistancep(p) timestamp sequenceki-Nearest Neighbours and Naive Bayes
is (2+3)/13 = 0.385. Classification.
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Fig. 8: Scatter plots for 4 different web pages usihg
distance measure. In (a) two relatively distinct web pages
are compared while the web pages in (b) are relatively simila

1) K-Nearest Neighboursin this method, for each web
pagei we sort the measured timestamp sequeicesT; used
for training in ascending order of sum-distarcg .. ¢(t, t')
and select the top to use as exemplars to represent this web
page. When presented with a new timestamp sequence, its
distance to the exemplars for all of the training web pages is
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calculated and these distances are sorted in ascending orde (b) Minimum Variance

Classification is then carried out by majority vote amongst t Fig. 10: Naive Bayes classification performance, no browser
top K matches. caching.
2) Naive Bayes ClassifierFor each web pageé from
the measured timestamp sequenggsused for training we
selectt; € argminger, Y ,cp, ¢(t,t') (in addition we also . _
consider selecting; to minimise the variance of the distancd®. Standard vs. Cached: Different Versions of Same Web Page
¢, see below) and then fit a Beta distribution to the empirical
distribution of ¢(¢,t;) for t € T,. Let p;(-) denote the  On first visiting a new web page a browser requests all of
probability distribution obtained in this way. When preszh the objects that form the web page. However, on subsequent
with a new timestamp sequentewe calculate the probability Visits many objects may be cacheg).images, css and js files,
pi(t) of this sequence belonging to web pagand select the etc In the Mozilla browser, when the address of a web page
web page for which this probability is greatest. is simply entered again shortly after the full page is fetthe
since the cached copy of an object has not yet expired the
C. Experimental Results cached copy will be used when rendering the web page and it
We begin by presenting results for the dataset where tWél not be fetched over the network by the browser. Bu.t the
browser cache is flushed between fetches. Fighre 9 details iowser can be forced to reload the web page by pressing F5
measured classification accuracy using fieNN approach, Where it then sends a request for the objects and the server
for various values ofK. We use10-fold cross validation, May either return an abbreviated NOT MODIFIED response if
where the 100 samples of each web site are divided into 41§ cached object is in fact still fresh or return the full etij
random subsets and for each subset we use the remainindfgb has changed. Uliimately a full refresh can be induced
samples as the training data to find the exemplars and (e Pressing Ctrl+FS which requests for the full version of
the 10 samples in the subset as the validation data. The rdft& Web page as if no object is cached before. Hence, the
for these 10 subsets for each web site are summarized &§@vork traffic generated by a visit to a web page may differ
displayed in the figure. Each of the boxes indicate 256, considerably d_ependlng on whether it has been visited tlycen
50% and 75% quartiles and the lines indicate the maximunkSC the cache is fresh) or not.
and minimum values. The mean success ratesiKoe 1, Classification of cached web pages can be expected to be
K =3 andK =5 are93.5%, 93.9% and93.8% respectively. more challenging than for non-cached pages since there is
Figure[10 plots the corresponding results obtained usiag tless network traffic and so less data upon which to base
Naive Bayes approach. Performance is calculated when the classification decision. Figufel1l1l presents the medsure
exemplar for each web page is selected to minimise the meaassification accuracy when browser caching is enabled. We
and the variance of the distance. The mean success ratesuarsl the first version where the address is simply re-entered
80.3% and79.2% respectively. to consider the worst case in terms of traffic length. It can
Since the performance is consistently worse than that of the seen that, as expected, the classification accuracydednd
K-NN classifier we do not consider the Naive Bayes approactduced compared to Figuié 9. However, the overall success
further in the rest of the paper. rate for identifying web pages remains in excesS&.
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Fig. 11: K-Nearest Neighbour classification performance, withig. 12: MeanF'-distance between the measured packet times-
browser caching using exemplars for each sitd{ = 5. tamp sequences in the training data set and the exemplagtpack
sequences for each web page, no browser caching.

E. False Positives . . . o
are incorrectly classified as belonging to the reduceditrgin

The experiments in the previous two sections are conductsst. It can be seen that the false positive rate is less tif&a 2.
with the assumption that the adversary knows that the wedr all web pages.
page that the user has visited is among the set of web pageShis maximum rate of 2.5% is lower than the complement
for which training data has been collected. of the success rate in Figuré 9. This is to be expected as the

When this assumption does not hold. the user might classification task in Figufe L3 is a coarser one. Namele her
have fetched a web page outside of the adversary’s trainwg ask whether the measured packet sequence belongs to any
database, then we estimate the rate of false positivegfor web page within the training set or not, as opposed to the finer
Nearest Neighbour classification as follows. For each wejuestion in Figuré]9 which asks to which specific web page
pagei in the training set we hav&exemplar packet timestampwithin the training set does the packet sequence belong. Tha
sequences as discussed in Sedfion 1V-B1. For every web pagal, the false positive rate data in Figlré 13 is necegsanil
(including page) in the training set, for each measured timesainderestimate of the true false positive rate as it is deteth
tamp sequence we calculate the mdasdistance from the from a small subset of all web pages on the Internet. However,
exemplar sequences for web pag&igure[12 shows examplethis is unavoidable and we argue that the data is nevertheles
measurements. Using this data we determine a threskiold sufficient to indicate that false positive rate is unlikety ke
distance¢; (indicated by the dashed line in Figurel 12) andxcessive in practice.
classify packet timestamp sequences for which the miéan

distance from the exemplars of web pagis greater tham; V. MEASUREMENTRESULTS FOROTHER CHANNELS

as not coming from web page In our study, we choose; In this section we extend consideration from ethernet to a
to be the 3rd quartile76%) of the F-distance values of the number of different network channels. Namely, we consider
target web page. packet timestamp measurements taken from a commercial

Using this classification approach Figlird 13 plots the meBemtocell carrying cellular wireless traffic, from a timetsed
sured false positive rates. This data is obtained by rengoviwired UDP channel (of interest as a potential defence agains
the measurement data for each web page in turn from ttiming analysis) and from the first hopd. between the client
training set, the measured packet timestamp sequencdsdor &nd the Tor gateway) of a Tor channel. Similarly to before, in
web page are then classified using this reduced training sath case we collected packet timestamp data for 100 fetches
and the false positive rate calculated as the fraction oflflie of the home pages of each of the top 20 Irish health web sites
packet timestamp sequences measured for each web pageakatnked by www.alexa.com.
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A. Femtocell Traffic i T TTT - 1
= 80
i’ 70
A Femtocell is an eNodeB cellular base station with a small g ol
physical footprint (similar to a WiFi access point) and lied § sl
cell size (typically about 30m radius). It is intended to noye 7 el
cellular coverage indoors, filling in coverage holes and im- .

proving download rates, while also offloading traffic frone th 2 - ~ Mef; rate - -

macrocell network. Wired backhaul to the cellular opermtor
network is via a user supplied network connectiog.a home
DSL line. Since Femtocells are usually user installed, fpays

Website index

(a) Slot Time: 1ms

access to the backhaul connection is straightforward arsd it 100 F e :
a simple matter to route backhaul traffic via a sniffer. Mebil 90 | T T l T U T DD = D agu H D
operators are, of course, aware of this and backhaul traffic 80 | || H | ‘ |
is therefore secured via use of an IPsec encrypted tunnel. In § 70} H
the setup considered here, the Femtocell backhaul is over a .

university gigabit ethernet connection and we usguump § 50

to log packets passing over this link. a0l

1) Hardware/Software Setugthe client computer is a 3.00 .l | | Veanrate
GHz Core 2 Duo CPU with 2GB of RAM. It uses a Huawei 2 5 0o 20
K3770 HSPA USB Broadband Dongle to connect wirelessly to Webstie ndex

the internet via the Femotcell. The Femtocell is a commeércia (b) Slot Time: 10ms

Alcatel-Lucent 9361 Home Cell V2-V device. The Femtocelig. 15: Time-slotted tunnek-Nearest Neighbours classifica-
wired backhaul is connected to the campus network viatian performance, no browser caching,= 5.

NetGear EN 108 TP Ethernet hub. A monitor computer is

also connected to this hub and logs all packets. The clietht an

monitor computers both run Ubuntu Linux 12.04 LTS precis®. Time Slotted UDP Tunnel

2) Results:In contrast to the relatively clean ethernet chan- We developed a custom tunnel usingpt abl es,
nel considered in Sectidn IViC, we found that traffic passingetfilter and netfilter-queue. The tunnel trans-
over the wireless femtocell link is often distorted by fasto ports packets over a UDP channel in a time slotted fashion
such as wireless and cellular noise, encoding/decodiraysgel and the slot size is a configurable parameter.
cellular control plane traffietc These distortions typically 1) Hardware/Software SetupThe experimenal setup is
appear as shifts along the-axis of the packet timestampidentical to that used in Sectidn ]IV apart from the use of a
patterns and/or as delays in theaxis. To compensate wecustomised tunnel. On the client computer all web traffic is
increased the dynamic time warping window frém to 0.2. captured using the OUTPUTet fi | t er hook, encapsulated
The measured performance using<aNN classifier usingd into UDP packets and sent to a server at the other side of
exemplars for each site ard = 5 is shown in Figur€1l4. The the tunnel. The server fetches these UDP packets using the
mean success rate #.3%, which compares with the meanPREROUTING hook, extracts the payload and sends them by
success rate df2.7% observed in Section TVAC when using avia the FORWARD hook to the outgoing ethernet interface.
clean ethernet channel. It can be seen that use of the vérel8anilarly, incoming packets from the internet are encagisa
channel tends to reduce the classification accuracy, astmigitto UDP packets via FORWARD hook on the server and sent
be expected due to the additional loss/delay over the vgseldo the client which captures them using the PREROUTING
hop. However, the reduction in accuracy is minor. hook, extracts the payload and forwards this to the apjiicat



layer. . ‘ e

2) Results: Figure[I5 shows the measured performance . ' -'.} .‘,."".‘.-.gs} s
using aK-NN classifier where3 exemplars are chosen from 2 001 % ° l;'.""; ‘l ¢ s
each site andK = 5. The overall success rate #2.5% & o v, Y .4‘ . | '. |
when the tunnel slot size isms and88.8% when the tunnel 50005l e 0y %o s & vt
slot size is increased tbOms. We also considered slot sizes = e ‘e 'T Le ! LAY
larger than 10ms, but since we found such that large slot o ‘ oo o ;
sizes tended adversely affect browser performance (and so 0 20 St?mple mggx 80 100
would likely be problematic in practice) we do not include
them here. This performance compares with a success rate of (@) Mean RTT for packets of each sample
92.7% over a plain ethernet tunnel. As might be expected,
time-slotting decreases the classification success rate $f W ey -~
adds timing “noise”. However, even with a relatively large 20 SR j j
slot size of 10ms the impact on performance is minor and 2 15] T P j j
so appears to be largely ineffective as a defence against our & e ! !
. . . . = lO, | | | | | |
timing-based attack. Of course more sophisticated types of S 1o oreem ; !

. . : o ®e 4
defence may be more effective, but we leave consideration of 5e o8 Lo ! ! - ! .
those to future work as they likely involve complex tradésof ol L meme % iy |
0 20 40 60 80 100

between network performance and resistance to attack tat w

Sample index
lack space to address here.

(b) Max RTT for packets of each sample

Fig. 16: Mean and max RTTs measured during 100 fetches
C. Tor Network : L
of the web page www.medicalcouncil.ie. Changes due to Tor

In this section we consider measurements of web pagfouting are evident. The max RTT in (b) is in fact the idle
queries over the Tor network. Tor is an overlay network afme between when the last packet is received until the beows
tunnels that aims to improve privacy and security on the closed, hence why it is significantly larger than the mean
internet. RTT plotted in (a).

1) Hardware/Software Setuf:he experimental setup is the
same as in Sectidn 1V except that the traffic from the client
browser, Mozilla Firefox 21.0, is proxified over Tor v0.23.

As before, the browser cache is flushed between fetches. + Vanilla Firefox

2) Randomised RoutingTor uses randomised routing of © Firefox over Tor :
traffic over its overlay network in an attempt to make linkofg o
network activity between source and destination more diffic )
It can be expected that rerouting will have a significant iotpa °§’ §
on the timestamp sequence measured during a web fetch = y
since changes in path propagation have a direct impact on ’__._r
the time between an outgoing request and receipt of the 7 L
corresponding server response, and also impact TCP dysamic ‘ ‘ )
since congestion window growth slows with increasing RTT. 0 Z%Oacket numbi?o 600

Differences in loss rate, queueing delatc along different

routes are also likely to impact measured timestamp se@senig. 17: Time traces of uplink traffic measured when fetching
The impact of Tor rerouting on measured RTT is illustrateghyw.medicalcouncil.ie . Measurements are shown both when

in Figure[16, which plots the mean and max delay betwe@ging vanilla Firefox and when using Firefox with the Tor
sending of a TCP data packet and receipt of the correspondiiggin.

TCP ACK for repeated fetches of the same web page (although

this information is not available to an attacker, in our gest

it is of course available for validation purposes). Abrupt,

substantial changes in the mean RTT are evident, especially

in Figure[16b. These changes persist for a period of time sgccess rate a93.0% when using a clean ethernet channel.

Tor only performs rerouting periodically. As might be expected, use of the Tor network significantly
Figure [IT illustrates the impact of Tor on the packetduces classification accuracy. However, the succesofate
timestamps measured during a web page fetch. 67.7% compares with a baseline success rat&% for a

3) Results: Figure[I8 details the measured classificatiorandom classifier over 20 web sites and so still is likely to
accuracy using thé{-NN approach, where 3 exemplars areepresent a significant compromise in privacy. We note also
chosen from each site and a window sizewf= 0.2 is that this compares favourable with th¢.6% rate reported by
used to accommodate the warping between samples. Henchenkaet al in [12] against Tor traffic using packet size
mean success rate #.7% which compares with the meanand direction information.
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Channel Number of w Dat_abase K
Exemplars size 1 3 5 7
5 0.1 40 93.52% | 93.87% | 93.75% | 93.97%
Ethernet 3 0.1 40 93.03% | 92.33% | 91.85% -
1 0.1 40 90.35% - -
3 0.1 20 93.75% | 93.15% | 92.65%
Cached 3 0.1 40 86.53% | 86.27% | 85.33%
Slotted Ims 3 0.1 20 94.15% 93.2% | 92.55%
10ms 3 0.1 20 90.25% | 90.05% | 88.75%
Femtocell 3 0.2 20 92 % | 90.65 % | 90.3 %
3 0.2 40 67.67 % | 64.55 % 63 %
Tor 3 0.2 20 68% 64.7% | 63.3%
3 0.1 20 68% | 67.15% | 64.55%

TABLE I: Summary of the measured success rate of the propattadk reported here. Data is shown for different numbers
of identifiers, different population sizes and differentues of K in the K-nearest neighbours method.

target web page within the stream. While this process assume
‘ ‘ that the target web page is present within the packet stream,
60 | ! ? H HJ | T using a similar approach to that in Sectibn IV-E we could

80 -

100 7] H}é J ¢ é [ﬁ - A} least distance from the exemplars as the likely locatiorhef t
R TI

extend this approach to decide whether the web page is presen
by appropriately thresholding the distance (when the nredsu

20l ] least distance is above the threshold, the page is judgedtto n
be present in the stream).

40

Success rate (%)

0 . H egn rate -
0 5 10 15 20
Website index
. . .. .. A. Results
Fig. 18: Tor network K-Nearest Neighbours classification
performance, no browser cachink, = 1. We constructed a test data set as follows. We selected a

subset of 5 web pages from those used previously. Namely:
1) medicalcouncil.ie 2) blueinsurance.ie 3) finfacts.ierigh-
V1. FINDING A WEB PAGE WITHIN A SEQUENCE OF WEB heglth.com 5) firstireland.ie_. We then selected 3 web pages
REQUESTS uniformly at random from this set of 5, selected a permutatio
of these web pages uniformly at random and proceeded to
In the experiments presented so far we have assumed a#th the pages in that order over an ethernet tunnel. We
within the observed packet timestamp stream the boundarigpeated this 100 times, so generating a dataset consiting
between different web fetches are known. This is probably1@o measured packet timestamp streams.
reasonable assumption on lightly loaded links where theiéin Using the classification approach described above we at-
frequently idle between web fetches. However, not only mighempted to identify the location within each packet stredm o
this assumption be less appropriate on more heavily loadgge of the web pages (selected uniformly at random from the
links but it also allows for a relatively straightforward eves get of 3 web pages present in each measured packet stream).
of defence, namely insertion of dummy packets to obscure thgyure 19 presents three examples of this, showing theiposit
boundaries between web fetches. In this section we therefQjithin a stream with least distance from the exemplars of a
extend consideration to links where web fetches are caoti¢d target web page. With this approach we achieved a success
in a back to back fashion such that the boundaries betwegie of 80% for locating the target web page within each
web fetches cannot be easily identified. packet stream to within a position error665 packets. Given
The basic idea is to sweep through a measured streamyf |imited information being used, this is a remarkablyhhig
packet timestamps trying to match sections of it against tBficcess rate and indicates the power of the timing-onlglatta
timing signature of a web page of interest. This exploits theyrther, of the20% of cases where incorrect choices are made,

fact that our timing-only attack does not fundamentallyetep in 7% the next best choice is the correct location of the target
on knowledge of the start/end times of the web fetch (unlikgep page.

previous approaches which use packet counts to classify web
pages).

In more detail, to locate a target web page within a stream
of packet timestamps we first select three measured packeiVe introduce an attack against encrypted web traffic that
timestamp sequences for that web page to act as exemplarsfakes use only of packet timing information on the uplink.
previously). Then, we sweep through the stream of timessanmip addition, unlike existing approaches this timing-ontiaak
in steps of 10 packets, extract a section of the stream ddes not require knowledge of the start/end of web fetches
the same length as each exemplar and calculate the distasiee so is effective against traffic streams. We demonsthnate t
between the section and the exemplar. After sweeping tirougffectiveness of the attack against both wired and wireless
the full stream we select the location within the stream wittnaffic, consistently achieving mean success rates in exaes

VIl. SUMMARY AND CONCLUSIONS
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Fig. 19: lllustrating locating of a web page within a packet
stream. The target web site in our case study, shown with red
triangles, is web site www.firstireland.ie. The verticalds [11]
show the location of the first GET request for each web page.
Following the order of the web sites in the text, the order gf2]
fetches in (a), (b) and (c) a5, 4,1}, {1,5,2} and{3,2,5}
respectively.

[10]

[13]

90%. Tablelll summarises our measurements of the success
rate of the attack over a range of network conditions. [14]
Since this attack only makes use of packet timing infor-
mation it is impervious to existing packet padding defences
We show that time slotting is also insufficient to prevent
the attack from achieving a high success rate, even when
relatively large time slots are used (which might be exmkcte

to significantly distort packet timing information). Siraily,
randomised routing as used in Tor is also not effective. More
sophisticated types of defence may be more effective, but we
leave consideration of those to future work as they likely
involve complex trade-offs between network performarecg.(
increased delay and/or reduced bandwidth) and resistance t
attack that warrant more detailed study than is possible.her
In addition to being of interest in its own right, by highligh
ing deficiencies in existing defences this timing-only elta
points to areas where it would be beneficial for VPN designers
to focus further attention.
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