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Abstract—We introduce an attack against encrypted web
traffic that makes use only of packet timing information on the
uplink. This attack is therefore impervious to existing packet
padding defences. In addition, unlike existing approachesthis
timing-only attack does not require knowledge of the start/end
of web fetches and so is effective against traffic streams. We
demonstrate the effectiveness of the attack against both wired
and wireless traffic, achieving mean success rates in excessof
90%. In addition to being of interest in its own right, this ti ming-
only attack serves to highlight deficiencies in existing defences
and so to areas where it would be beneficial for VPN designers
to focus further attention.

I. I NTRODUCTION

In this paper we consider an attacker of the type illustrated
in Figure 1. The attacker can detect the time when packets
traverse the encrypted tunnel in the uplink direction, but has
no other information about the clients activity. The attacker’s
objective is to use this information to guess, with high
probability of success, the web sites which the client visits.
What is distinctive about the attack considered here is that
attacker relies solely on packet timestamp information where
the previously reported attacks against encrypted web traffic
have mainly made use of observations of packet size and/or
packet count information.

Our interest in timing-only attacks is twofold. Firstly, packet
padding is a relatively straightforward defence against attacks
that rely primarily on packet size, and indeed is currently
either already available or being implemented in a number
of popular VPNs [2]. Secondly, alternative attacks based on
packet counting [2], [3] are insensitive to packet padding
defences but require partitioning of a packet stream into
individual web fetches in order for the number of packets
associated with each web fetch to be determined, which may
be highly challenging in practice on links where there are no
clear pauses between web fetches. In contrast, packet timing-
based attacks are not only largely unaffected by packet padding
defences but also, as we will show, do not require partitioning
of the packet stream. Hence, they are potentially a practically
important class of attack against current and future VPNs.
While some work has been carried out using inter-arrival time
information to classify the application (HTTP, IMAPetc) [7],
to our knowledge, there is no previous work reporting use
of timing information alone to construct a successful attack
against encrypted web traffic.
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Fig. 1: Schematic illustrating attacker of the type considered.
A client machine is connected to an external network via
an encrypted tunnel (ssh, SSL, IPsecetc). The attacker can
detect the time when packets traverse the tunnel in the uplink
direction, but has no other information about the clients
activity.

The main contributions of the present paper are as follows:
(i) we describe an attack against encrypted web traffic that
uses packet timing information alone, (ii) we demonstrate that
this attack is highly effective against both wired and wireless
traffic, achieving mean success rates in excess of 90% over
ethernet and wireless tunnels and a success rate of 68% against
Tor traffic, (iii) we also demonstrate that the attack is effective
against traffic streamsi.e.back to back web page fetches where
the packet boundaries between fetches are unknown.

In addition to being of interest in its own right, particularly
in view of the powerful nature of the attack, this timing-only
attack also serves to highlight deficiencies in existing defences
and so to areas where it would be beneficial for VPN designers
to focus further attention. We note that, complementary to the
present work, in [3] it is demonstrated that when the web fetch
boundaries within a packet stream are known then an NGRAM
approach using packet count together with uplink/downlink
direction information is also sufficient to construct an effective
attack against encrypted web traffic despite packet padding.
Hence, we can conclude that (i) uplink/downlink packet order-
ing plus web fetch boundaries and (ii) uplink/downlink packet
timing information are both sensitive quantities that ought to
be protected by a secure encrypted tunnel. Packet padding
does not protect these quantities. Directing defences against
these two sets of packet stream features therefore seems an
important direction for future work.

A. Related Work

The general topic of traffic analysis has been the subject of
much interest, and a large body of literature exists. Some of
the earliest work specifically focussed on attacks and defences
for encrypted web traffic appears to be that of Hintz [6], which
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considers the SafeWeb encrypting proxy. In this setup (i) web
page fetches occur sequentially with the start and end of each
web page fetch known, and for each packet (ii) the client-
side port number, (iii) the direction (incoming/outgoing)and
(iv) the size is observed. A web page signature is constructed
consisting of the aggregate bytes received on each port (cal-
culated by summing packet sizes), effectively corresponding
to the number and size of each object within the web page.
In [13] it is similarly assumed that the number and size of
the objects in a web page can be observed and using this
information a classification success rate of 75% is reported.

Subsequently, Bissiaset al [1] considered an encrypted
tunnel setup where (i) web page fetches occur sequentially
with the start and end of each web page fetch known, and for
each packet (ii) the size, (iii) the direction (incoming/outgoing)
and (iv) the time (and so also the packet ordering) is observed.
The sequence of packet inter-arrival times and packet sizes
from a web page fetch is used to create a profile for each
web page in a target set and the cross correlation between an
observed traffic sequence and the stored profiles is then used
as a measure of similarity. A classification accuracy of 23%
is observed when using a set of 100 web pages, rising to 40%
when restricted to a smaller set of web pages.

Most later work has adopted essentially the same model as
[1], making use of packet direction and size information and
assuming that the packet stream has already been partitioned
into individual web page fetches. In [9], [5] Bayes classifiers
based on the direction and size of packets are considered
while in [12] an SVM classifier is proposed. In [10] classifi-
cation based on direction and size of packets is studied using
Levenshtein distance as the similarity metric, in [11] using
a Gaussian Bag-of-Words approach and in [14] using KNN
classification. In [2] using a SVM approach a classification
accuracy of over 80% is reported for both SSH and Tor
traffic and the defences considered were generally found to be
ineffective. Similarly, [3] considers Bayes and SVM classifiers
and finds that a range of proposed defences are ineffective. In
[4] remote inference of packet sizes from queueing delay is
studied.

II. A NATOMY OF A WEB PAGE FETCH

When traffic is carried over an encrypted tunnel, such as a
VPN, the packet source and destination addresses and ports
and the packet payload are hidden. We also assume here that
the tunnel pads the packets to be of equal size, so that packet
size information is also concealed, and that the start and end of
an individual web fetch may also be concealede.g.when the
web fetch is embedded in a larger traffic stream. An attacker
sniffing traffic on the encrypted tunnel is therefore able only to
observe the direction and timing of packets through the tunnel,
i.e. to observe a sequence of pairs{(tk, dk)}, k = 1, 2, · · ·
wheretk is the time at which thek’th packet is observed and
dk ∈ {−1, 1} indicates whether the packet is travelling in the
uplink or downlink direction. Since it will provide sufficient
to mount an effective attack, we will assume a weaker attacker
that can only observe the timestamps{tk}, k ∈ Kup := {κ ∈
{1, 2, · · · } : dκ = −1} associated with uplink traffic .
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Fig. 2: Time traces of uplink traffic from 5 different Irish
health-related web sites are shown. It can be seen that the
web site time traces exhibit distinct patterns. The traces are
shifted vertically to avoid overlap and facilitate comparison.

Figure 2 plots the timestamps{tk} of the uplink packets sent
during the course of fetching five different health-relatedweb
pages (see below for details of the measurement setup). Thex-
axis indicates the packet numberk within the stream and they-
axis the corresponding timestamptk in seconds. It can be seen
that these timestamp traces are distinctly different for each web
site, and it is this observation that motivates interest in whether
timing analysis may by itself (without additional information
such as packet size, uplink/downlink packet orderingetc) be
sufficient to successfully de-anomymise encrypted web traffic.

To gain insight into the differences between the packet
timestamp sequences in Figure 2 and, importantly, whether
they are genuinely related to characteristics of each web page
rather than to other factors, it is helpful to consider the process
of fetching a web page in more detail. To fetch a web page
the client browser starts by opening a TCP connection with
the server indicated by the URL and issues an HTTP GET or
POST request to which the server then replies. As the client
parses the server response it issues additional GET/POST
requests to fetch embedded objects (images, css, scriptsetc).
These additional requests may be to different servers from
the original request (e.g.when the object to be fetched is an
advert or is hosted in a separate content-delivery network),
in which case the client opens a TCP connection to each
new server in order to issue the requests. Fetching of these
objects may in turn trigger the fetching of further objects.
Note that asynchronous fetching of dynamic content using,
e.g.AJAX, can lead to a complex sequence of server requests
and responses even after the page has been rendered by the
browser. Also, typically the TCP connections to the various
servers are held open until the page is fully loaded so that
they can be reused for later requests (request pipelining in
this way is almost universally used by modern browsers).

This web fetch process is illustrated schematically in Fig 3.
We make the following more detailed observations:

1) Connection to third-party servers. Fetching an object
located on a third-party server requires the opening of a
new TCP connection to that server, over which the HTTP
request is then sent. The TCP connection handshake
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Fig. 3: This figure represent a typical web site query. It starts by requesting the index page. Then as the browser parses through
this page more objects are fetched in parallel. Some objectsmay also be outsourced to 3rd party web sites which have their
own pipelines. Dynamic content may be updated at intervals,as indicated in the last two lines of the figure, and connections
tend to close in groups.

introduces a delay (of at least one RTT) and since the
pattern of these delays is related to the web page content
it can potentially assist in identifying the web page.

2) Pipelining of requests. Multiple objects located on the
same server lead to several GET/POST requests being
sent to that server, one after another. Due to the dynamics
of TCP congestion control, this burst of back-to-back
requests can affect the timing of the response packets
in a predictable manner that once again can potentially
assist in identifying the web page.

3) Asynchronous requests. Dynamic content, e.g. pre-
fetching via AJAX, can lead to update requests to a server
with large inter-arrival times that can potentially act as a
web page signature.

4) Connection closing.When a web page fetch is com-
pleted, the associated TCP connections are closed. A
FIN/FINACK/ACK exchange closes each connection and
this burst of packets can have quite distinctive timing
which allows it to be identified. Since the number of
connections is related to the number of distinct locations
where objects in the web page are stored, it changes
between web pages.

Our aim is to use timing features such as these, which vary
depending upon the web page fetched, to create a timing
signature which allows us to identify which web page is being
fetched based on timing data only.

III. C OMPARING SEQUENCES OFPACKET TIMESTAMPS

Suppose we have two sequences of packet timestampst :=
{ti}, i = 1, 2, · · · , n and t′ := {t′j}, j = 1, 2, · · · ,m. Note
that for simplicity we re-label the uplink packet indices tostart
from 1 and to increase consecutively since none of our analysis
will depend on this. Note also that the sequence lengthsn and
m are not assumed to be the same. To proceed we need to
define an appropriate measure of the distance between such
sequences.

A. Network Distortion of Timestamp Sequences

The packet stream observed during a web page fetch is
affected by network events during the fetch. Changes in
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Fig. 4: Illustrating impact of changes in packet loss on the
packet timestamp sequence. The bottom sequence shows the
packet sequence at connection closing of a loss-free web fetch,
while the top sequence shows the corresponding section from
a different fetch of the same web page that was subject to
packet loss and exhibits TCP retransmissions and DupACKs.

download rate (e.g. due to flows starting/finishing within the
network) tend to stretch/compress the times between packets.
Queueing within the network also affects packet timing, with
queued packets experiencing both greater delay and tendingto
be more bunched together. Link-layer retransmission on wire-
less links has a similar effect to queueing. Similarly to changes
in download rate, the effect is primarily to stretch/compress
the times between packets.

Packet loss introduces a “hole” in the packet stream where
the packet ought to have arrived and also affects the timing
of later packets due to the action of TCP congestion control
(which reduces the send rate on packet loss) and retransmis-
sion of the lost packets. For example, Figure 4 shows uplink
measurements of packet retransmissions and duplicate ACKs
at the end of two fetches of the same web page where it can
be seen that these have the effect of stretching the packet
sequence.
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B. Derivative Dynamic Time Warping

Our interest is in a measure of the distance between packet
sequences which is insensitive to the types of distortion
introduced by the network, so that the distance between packet
streamst andt′ associated with fetches of the same web page
at different times is measured as being small, and ideally the
distance between fetches of different web pages is measured
to be large. To this end we use a variant of Dynamic Time
Warping (DTW) [8]. DTW aims to be insensitive to differences
between sequences which are due to stretching/compressingof
time and so can be expected to at least partly accommodate
the effects of changes in download rate, queueing delayetc.

We define a warping pathp to be a sequence of pairs,
{(pik, p

j
k)}, k = 1, 2, · · · , l with (pik, p

j
k) ∈ V := {1, · · · , n}×

{1, · · · ,m} satisfying boundary conditionspi1 = 1 = pj1,
pil = n, pjl = m and step-wise constraints(pik+1, p

j
k+1) ∈

V
pi
k
,p

j

k

:= {(u, v) : u ∈ {pik, p
i
k + 1} ∩ {1, . . . , n}, v ∈

{pjk, p
j
k+1}∩{1, . . . , n}}, k = 1, · · · , l−1. That is, a warping

path maps points from one timestamp sequence to another
such that the start and end points of the sequences match (due
to the boundary conditions) and the points are monotonically
increasing (due to the step-wise constraints). This is illustrated
schematically in Figure 5, where the two timestamp sequences
to be compared are indicated to the left and above the matrix
and the bold line indicates an example warping path.

Let P l
mn ⊂ V l denote the set of all warping paths of

length l associated with two timestamp sequences of length
n and m respectively, and letCt,t′(·) : P l

mn → R be a
cost function so thatCt,t′(p) is the cost of warping path
p ∈ P l

mn. Our interest is in the minimum cost warping path,
p∗(t, t′) ∈ argminp∈P l

mn
Ct,t′(p). In DTW the cost function

has the separable formCt,t′(p) =
∑l

k=1 ct,t′(p
i
k, p

j
k) where

ct,t′ : V → R, in which case optimal pathp∗(t, t′) be
efficiently found using the backward recursion,

(pik, p
j
k) ∈ arg min

(pi,pj)∈Vk

Ck+1 + ct,t′(p
i, pj) (1)

Ck = Ck+1 + ct,t′(p
i
k, p

j
k) (2)

whereVk = (pi, pj) ∈ {(u, v) : (pik+1, p
j
k+1) ∈ Vu,v}, k =

l − 1, l − 2, · · · and initial conditionCl = ct,t′(n,m). When
there is more than one optimal solution at step (1), we select
(pik, p

j
k) uniformly at random from amongst them.

A common choice of element-wise cost is the Euclidean
norm ct,t′(p

i, pj) = (tpi − t′
pj )2. However, to improve ro-

bustness to noise on the timestamp values (in addition to
misalignment of their indices), following [8] we instead use
the following element-wise cost

ct,t′(p
i, pj) = (Dt(p

i)−Dt′(p
j))2 (3)

whereDt(i) =
(ti−t

i−
)+(t

i+
−t

i−
)

2 , i− = max{i − 1, 1} and
i+ = min{i + 1, |t|}. Observe thatDt(i) is akin to the
derivative of sequencet at index i. Further, we constrain
the warping path to remain within windowing distancew
of the diagonal (i.e. within the dashed lines indicated on
Figure 5) by settingC(p) = +∞ for pathsp ∈ P l

mn for
which |pik − pjk| > max{wmin{n,m}, |m − n|} for any
k ∈ {1, · · · , l}.

n

m

j

i
1

1

Fig. 5: Illustrating a warping path. The dashed lines indicate
the warping window.
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Fig. 6: Example DTW alignment and warping paths between
two sequences vs cost functionct,t′ used, windoww = 0.1.
In this example the lengthl of the warping path is 73 when a
Euclidean cost is used and 54 with the derivative cost.

Figure 6b illustrates the alignment of points between two
sequences obtained using this approach and for comparison
Figure 6a shows the corresponding result when using Eu-
clidean cost. The figure shows the warping paths on the right-
hand side and an alternative visualisation of the mapping
between points in the sequences on the left-hand side. Observe
that when Euclidean cost is used the warping path tends to
assign many points on one curve to a single point on the
other curve. As noted in [8] this is known to be a feature of
Euclidean cost. In comparison, use of the derivative distance
tends to mitigate this effect and select a warping path with
fewer horizontal and vertical sections.
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Fig. 7: Illustrating method for calculating theF -distance
between two timestamp sequences.

C. F -Distance Measure

Given two timestamp sequences, the warping path is a
mapping between them. With reference to Figure 5, sections of
the warping path which lie parallel to the diagonal correspond
to intervals over which the two sequences are well matched.
Sections of the warping path that are parallel to the x- or y-
axes correspond to intervals over which the two sequences are
poorly matched. This suggests using the fraction of the overall
warping path which is parallel to the x- or y-axes as a distance
measure, which we refer to as theF -distance.

In more detail, letp = {(pik, p
j
k)}, k = 1, · · · , l be a

derivative DTW warping path relating timestamp sequences
t and t′, obtained as described in the previous section. We
partition the warping path into a sequence of subpaths within
each of which eitherpik or pjk remain constant and we count
the subpaths which are longer than one. For example, for
the setup shown in Figure 7 there are five subpaths:(1, 1);
(2, 2), (2, 3); (3, 4), (4, 4), (5, 4); (6, 5); (7, 6). Two of these
subpaths consist of more than one pair of points, namely
(2, 2), (2, 3) and (3, 4), (4, 4), (5, 4), and these correspond,
respectively, to the vertical section and the horizontal section
on the corresponding warping path shown in Figure 7b.

Formally, defineκ1 := 0 < κ2 < · · · < κr−1 < κr := l
such that for eachs = 1, · · · , r − 1 (i) either pik1

= pik2

∀k1, k2 ∈ {κs + 1, · · · , κs+1} or pjk1
= pjk2

∀k1, k2 ∈
{κs + 1, · · · , κs+1} and (ii) eitherκs+1 = l or condition
(i) is violated for somek1, k2 ∈ {κs, · · · , κs+1 + 1} i.e.
each subsequence is maximal. Note thatpik 6= pjk for all
k = 1, · · · , l (due to warping path step-wise constraints) and
so in condition (i) it is not possible for bothpik andpjk to be
constant. We are now is a position to define theF -distance
measure between timestamp sequencest andt′, namely:

φ(t, t′) :=

∑r−1
s=1(κs+1 − (κs + 1)

n+m
(4)

where κs, s = 1, · · · , r are the constant subsequences in
minimal warping pathp∗(t, t′). It can be seen thatφ(p) takes
values in interval[0, 1], and is0 when sequencest andt′ are
identical (in which case the warping pathp lies on the diagonal
in Figure 5). For the example in Figure 7 theF -distanceφ(p)
is (2 + 3)/13 = 0.385.

IV. D E-ANONYMISING WEB FETCHESOVER AN

ETHERNET TUNNEL

In this section we present measurements of web page
queries carried out over an ethernet tunnel and evaluate theac-
curacy with which the web page being fetched can be inferred
using only packet timing data. The first dataset consists of 100
fetches of the home pages of each of the top 20 Irish health and
the top 20 Irish finance web sites as ranked by www.alexa.com
under its Regional/Europe/Ireland category in October 2013,
yielding a total of 4000 individual web page fetches. In this
dataset the browser cache is flushed between each fetch so
that the browser always starts in a fresh state. In addition,
a second dataset was collected consisting of the same 4000
web fetches but now without flushing of the browser cache
between fetches. The web pages were fetched over a period
spanning October 2013 to May 2014. Awatir-webdriver
script on Firefox 21.0 was used to perform the web page
fetches andtcpdumpto record the timestamps and direction
(uplink/downlink) of all packets traversing the tunnel although
only packet timestamps on the uplink were actually used.

A. Hardware/Software Setup

The network setup consists of a client that routes traffic viaa
tunnel to the gateway server. The gateway server forwards this
client traffic to the Internet and routes responses back via the
tunnel to the client. The tunnel is carried over a gigabit ethernet
LAN and the gateway server also has a gigabit connection to
the Internet. The client machine is a 3.00 GHz Core 2 Duo
CPU with 2GB of RAM and the gateway server a 2.66 GHz
Xeon CPU with 1GB of RAM Both machines are running
Ubuntu Linux 12.04 LTS precise. The tunnel was implemented
using custom software and netlink.

B. Classifying Measured Timestamp Sequences

We use theF -distance measureφ(·, ·) described in Section
III to compare measured uplink timestamp sequences, with
windowing parameterw = 0.1 unless otherwise stated.

Figure 8 shows example scatter plots obtained using this
distance measure. In more detail, from the setTi of measured
timestamp sequences for thei’th web site we select a sequence
ti which minimises

∑
t∈Ti

φ(t, ti) and then useti as the
exemplar for thei’th web page. In Figure 8 we then plot
φ(t, ti) for each of the timestamp sequencest measured for
web pagei and also for timestamp sequences measured for
another web page. In the example in Figure 8a it can be
seen that the distance measure is indeed effective at separating
the measured timestamp sequences of the two web pages
considered into distinct clusters, so potentially providing a
basis for accurately classifying timestamp sequences by web
page. Figure 8b shows an example of a scatter plot where the
separation between the two web pages is less distinct and so
classification can be expected to be less reliable. As we will
see, examples of this latter sort turn out to be fairly rare.

We considered two approaches for usingφ(·, ·) to classify
timestamp sequences:K-Nearest Neighbours and Naive Bayes
Classification.
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Fig. 8: Scatter plots for 4 different web pages usingF -
distance measureφ. In (a) two relatively distinct web pages
are compared while the web pages in (b) are relatively similar.

1) K-Nearest Neighbours:In this method, for each web
pagei we sort the measured timestamp sequencest′ ∈ Ti used
for training in ascending order of sum-distance

∑
t∈Ti

φ(t, t′)
and select the top5 to use as exemplars to represent this web
page. When presented with a new timestamp sequence, its
distance to the exemplars for all of the training web pages is
calculated and these distances are sorted in ascending order.
Classification is then carried out by majority vote amongst the
top K matches.

2) Naive Bayes Classifier:For each web pagei from
the measured timestamp sequencesTi used for training we
selectti ∈ argmint′∈Ti

∑
t∈Ti

φ(t, t′) (in addition we also
consider selectingti to minimise the variance of the distance
φ, see below) and then fit a Beta distribution to the empirical
distribution of φ(t, ti) for t ∈ Ti. Let pi(·) denote the
probability distribution obtained in this way. When presented
with a new timestamp sequencet, we calculate the probability
pi(t) of this sequence belonging to web pagei and select the
web page for which this probability is greatest.

C. Experimental Results

We begin by presenting results for the dataset where the
browser cache is flushed between fetches. Figure 9 details the
measured classification accuracy using theK-NN approach,
for various values ofK. We use10-fold cross validation,
where the 100 samples of each web site are divided into 10
random subsets and for each subset we use the remaining 90
samples as the training data to find the exemplars and use
the 10 samples in the subset as the validation data. The rates
for these 10 subsets for each web site are summarized and
displayed in the figure. Each of the boxes indicate the25%,
50% and 75% quartiles and the lines indicate the maximum
and minimum values. The mean success rates forK = 1,
K = 3 andK = 5 are93.5%, 93.9% and93.8% respectively.

Figure 10 plots the corresponding results obtained using the
Naive Bayes approach. Performance is calculated when the
exemplar for each web page is selected to minimise the mean
and the variance of the distance. The mean success rates are
80.3% and79.2% respectively.

Since the performance is consistently worse than that of the
K-NN classifier we do not consider the Naive Bayes approach
further in the rest of the paper.
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Fig. 10: Naive Bayes classification performance, no browser
caching.

D. Standard vs. Cached: Different Versions of Same Web Page

On first visiting a new web page a browser requests all of
the objects that form the web page. However, on subsequent
visits many objects may be cachede.g.images, css and js files,
etc. In the Mozilla browser, when the address of a web page
is simply entered again shortly after the full page is fetched,
since the cached copy of an object has not yet expired the
cached copy will be used when rendering the web page and it
will not be fetched over the network by the browser. But the
browser can be forced to reload the web page by pressing F5
where it then sends a request for the objects and the server
may either return an abbreviated NOT MODIFIED response if
the cached object is in fact still fresh or return the full object
if it has changed. Ultimately a full refresh can be induced
by pressing Ctrl+F5 which requests for the full version of
the web page as if no object is cached before. Hence, the
network traffic generated by a visit to a web page may differ
considerably depending on whether it has been visited recently
(so the cache is fresh) or not.

Classification of cached web pages can be expected to be
more challenging than for non-cached pages since there is
less network traffic and so less data upon which to base
the classification decision. Figure 11 presents the measured
classification accuracy when browser caching is enabled. We
used the first version where the address is simply re-entered,
to consider the worst case in terms of traffic length. It can
be seen that, as expected, the classification accuracy is indeed
reduced compared to Figure 9. However, the overall success
rate for identifying web pages remains in excess of85%.
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(a) K = 1
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(b) K = 3
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(c) K = 5

Fig. 9: K-Nearest Neighbours classification performance, no browser caching.
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Fig. 11:K-Nearest Neighbour classification performance, with
browser caching using3 exemplars for each site.K = 5.

E. False Positives

The experiments in the previous two sections are conducted
with the assumption that the adversary knows that the web
page that the user has visited is among the set of web pages
for which training data has been collected.

When this assumption does not hold,i.e. the user might
have fetched a web page outside of the adversary’s training
database, then we estimate the rate of false positives forK-
Nearest Neighbour classification as follows. For each web
pagei in the training set we have3 exemplar packet timestamp
sequences as discussed in Section IV-B1. For every web page
(including pagei) in the training set, for each measured times-
tamp sequence we calculate the meanF -distance from the
exemplar sequences for web pagei. Figure 12 shows example
measurements. Using this data we determine a thresholdF -
distanceφi (indicated by the dashed line in Figure 12) and
classify packet timestamp sequences for which the meanF -
distance from the exemplars of web pagei is greater thanφi

as not coming from web pagei. In our study, we chooseφi

to be the 3rd quartile (75%) of the F -distance values of the
target web page.

Using this classification approach Figure 13 plots the mea-
sured false positive rates. This data is obtained by removing
the measurement data for each web page in turn from the
training set, the measured packet timestamp sequences for this
web page are then classified using this reduced training set
and the false positive rate calculated as the fraction of the100
packet timestamp sequences measured for each web page that
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Fig. 12: MeanF -distance between the measured packet times-
tamp sequences in the training data set and the exemplar packet
sequences for each web page, no browser caching.

are incorrectly classified as belonging to the reduced training
set. It can be seen that the false positive rate is less than 2.5%
for all web pages.

This maximum rate of 2.5% is lower than the complement
of the success rate in Figure 9. This is to be expected as the
classification task in Figure 13 is a coarser one. Namely, here
we ask whether the measured packet sequence belongs to any
web page within the training set or not, as opposed to the finer
question in Figure 9 which asks to which specific web page
within the training set does the packet sequence belong. That
said, the false positive rate data in Figure 13 is necessarily an
underestimate of the true false positive rate as it is determined
from a small subset of all web pages on the Internet. However,
this is unavoidable and we argue that the data is nevertheless
sufficient to indicate that false positive rate is unlikely to be
excessive in practice.

V. M EASUREMENTRESULTS FOROTHER CHANNELS

In this section we extend consideration from ethernet to a
number of different network channels. Namely, we consider
packet timestamp measurements taken from a commercial
Femtocell carrying cellular wireless traffic, from a time-slotted
wired UDP channel (of interest as a potential defence against
timing analysis) and from the first hop (i.e. between the client
and the Tor gateway) of a Tor channel. Similarly to before, in
each case we collected packet timestamp data for 100 fetches
of the home pages of each of the top 20 Irish health web sites
as ranked by www.alexa.com.
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Fig. 13: Measured false positive rate, no browser caching.

A. Femtocell Traffic

A Femtocell is an eNodeB cellular base station with a small
physical footprint (similar to a WiFi access point) and limited
cell size (typically about 30m radius). It is intended to improve
cellular coverage indoors, filling in coverage holes and im-
proving download rates, while also offloading traffic from the
macrocell network. Wired backhaul to the cellular operators
network is via a user supplied network connectione.g.a home
DSL line. Since Femtocells are usually user installed, physical
access to the backhaul connection is straightforward and itis
a simple matter to route backhaul traffic via a sniffer. Mobile
operators are, of course, aware of this and backhaul traffic
is therefore secured via use of an IPsec encrypted tunnel. In
the setup considered here, the Femtocell backhaul is over a
university gigabit ethernet connection and we usedtcpdump
to log packets passing over this link.

1) Hardware/Software Setup:The client computer is a 3.00
GHz Core 2 Duo CPU with 2GB of RAM. It uses a Huawei
K3770 HSPA USB Broadband Dongle to connect wirelessly to
the internet via the Femotcell. The Femtocell is a commercial
Alcatel-Lucent 9361 Home Cell V2-V device. The Femtocell
wired backhaul is connected to the campus network via a
NetGear EN 108 TP Ethernet hub. A monitor computer is
also connected to this hub and logs all packets. The client and
monitor computers both run Ubuntu Linux 12.04 LTS precise.

2) Results:In contrast to the relatively clean ethernet chan-
nel considered in Section IV-C, we found that traffic passing
over the wireless femtocell link is often distorted by factors
such as wireless and cellular noise, encoding/decoding delays,
cellular control plane trafficetc. These distortions typically
appear as shifts along thex-axis of the packet timestamp
patterns and/or as delays in they-axis. To compensate we
increased the dynamic time warping window from0.1 to 0.2.
The measured performance using aK-NN classifier using3
exemplars for each site andK = 5 is shown in Figure 14. The
mean success rate is90.3%, which compares with the mean
success rate of92.7% observed in Section IV-C when using a
clean ethernet channel. It can be seen that use of the wireless
channel tends to reduce the classification accuracy, as might
be expected due to the additional loss/delay over the wireless
hop. However, the reduction in accuracy is minor.
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Fig. 14: FemtocellK-Nearest Neighbours classification per-
formance, no browser caching,K = 5.
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(a) Slot Time: 1ms

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20

S
uc

ce
ss

 r
at

e 
(%

)

Website index

Mean rate

(b) Slot Time: 10ms

Fig. 15: Time-slotted tunnelK-Nearest Neighbours classifica-
tion performance, no browser caching,K = 5.

B. Time Slotted UDP Tunnel

We developed a custom tunnel usingiptables,
netfilter and netfilter-queue. The tunnel trans-
ports packets over a UDP channel in a time slotted fashion
and the slot size is a configurable parameter.

1) Hardware/Software Setup:The experimenal setup is
identical to that used in Section IV apart from the use of a
customised tunnel. On the client computer all web traffic is
captured using the OUTPUTnetfilter hook, encapsulated
into UDP packets and sent to a server at the other side of
the tunnel. The server fetches these UDP packets using the
PREROUTING hook, extracts the payload and sends them by
via the FORWARD hook to the outgoing ethernet interface.
Similarly, incoming packets from the internet are encapsulated
into UDP packets via FORWARD hook on the server and sent
to the client which captures them using the PREROUTING
hook, extracts the payload and forwards this to the application
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layer.
2) Results: Figure 15 shows the measured performance

using aK-NN classifier where3 exemplars are chosen from
each site andK = 5. The overall success rate is92.5%
when the tunnel slot size is1ms and88.8% when the tunnel
slot size is increased to10ms. We also considered slot sizes
larger than 10ms, but since we found such that large slot
sizes tended adversely affect browser performance (and so
would likely be problematic in practice) we do not include
them here. This performance compares with a success rate of
92.7% over a plain ethernet tunnel. As might be expected,
time-slotting decreases the classification success rate since it
adds timing “noise”. However, even with a relatively large
slot size of 10ms the impact on performance is minor and
so appears to be largely ineffective as a defence against our
timing-based attack. Of course more sophisticated types of
defence may be more effective, but we leave consideration of
those to future work as they likely involve complex trade-offs
between network performance and resistance to attack that we
lack space to address here.

C. Tor Network

In this section we consider measurements of web page
queries over the Tor network. Tor is an overlay network of
tunnels that aims to improve privacy and security on the
internet.

1) Hardware/Software Setup:The experimental setup is the
same as in Section IV except that the traffic from the client
browser, Mozilla Firefox 21.0, is proxified over Tor v0.2.4.23.
As before, the browser cache is flushed between fetches.

2) Randomised Routing:Tor uses randomised routing of
traffic over its overlay network in an attempt to make linkingof
network activity between source and destination more difficult.
It can be expected that rerouting will have a significant impact
on the timestamp sequence measured during a web fetch
since changes in path propagation have a direct impact on
the time between an outgoing request and receipt of the
corresponding server response, and also impact TCP dynamics
since congestion window growth slows with increasing RTT.
Differences in loss rate, queueing delayetc along different
routes are also likely to impact measured timestamp sequences.

The impact of Tor rerouting on measured RTT is illustrated
in Figure 16, which plots the mean and max delay between
sending of a TCP data packet and receipt of the corresponding
TCP ACK for repeated fetches of the same web page (although
this information is not available to an attacker, in our tests
it is of course available for validation purposes). Abrupt,
substantial changes in the mean RTT are evident, especially
in Figure 16b. These changes persist for a period of time as
Tor only performs rerouting periodically.

Figure 17 illustrates the impact of Tor on the packet
timestamps measured during a web page fetch.

3) Results: Figure 18 details the measured classification
accuracy using theK-NN approach, where 3 exemplars are
chosen from each site and a window size ofw = 0.2 is
used to accommodate the warping between samples. The
mean success rate is67.7% which compares with the mean
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Fig. 16: Mean and max RTTs measured during 100 fetches
of the web page www.medicalcouncil.ie. Changes due to Tor
rerouting are evident. The max RTT in (b) is in fact the idle
time between when the last packet is received until the browser
is closed, hence why it is significantly larger than the mean
RTT plotted in (a).
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Fig. 17: Time traces of uplink traffic measured when fetching
www.medicalcouncil.ie . Measurements are shown both when
using vanilla Firefox and when using Firefox with the Tor
plugin.

success rate of93.0% when using a clean ethernet channel.
As might be expected, use of the Tor network significantly
reduces classification accuracy. However, the success rateof
67.7% compares with a baseline success rate if5% for a
random classifier over 20 web sites and so still is likely to
represent a significant compromise in privacy. We note also
that this compares favourable with the54.6% rate reported by
Panchenkoet al in [12] against Tor traffic using packet size
and direction information.
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Channel
Number of
Exemplars w

Database
size

K
1 3 5 7

Ethernet
5 0.1 40 93.52% 93.87% 93.75% 93.97%
3 0.1 40 93.03% 92.33% 91.85% -
1 0.1 40 90.35% - - -
3 0.1 20 93.75% 93.15% 92.65% -

Cached 3 0.1 40 86.53% 86.27% 85.33% -

Slotted
1ms 3 0.1 20 94.15% 93.2% 92.55% -
10ms 3 0.1 20 90.25% 90.05% 88.75% -

Femtocell 3 0.2 20 92 % 90.65 % 90.3 % -

Tor
3 0.2 40 67.67 % 64.55 % 63 % -
3 0.2 20 68% 64.7% 63.3% -
3 0.1 20 68% 67.15% 64.55% -

TABLE I: Summary of the measured success rate of the proposedattack reported here. Data is shown for different numbers
of identifiers, different population sizes and different values of K in the K-nearest neighbours method.
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Fig. 18: Tor networkK-Nearest Neighbours classification
performance, no browser caching,K = 1.

VI. F INDING A WEB PAGE WITHIN A SEQUENCE OF WEB

REQUESTS

In the experiments presented so far we have assumed that
within the observed packet timestamp stream the boundaries
between different web fetches are known. This is probably a
reasonable assumption on lightly loaded links where the link is
frequently idle between web fetches. However, not only might
this assumption be less appropriate on more heavily loaded
links but it also allows for a relatively straightforward means
of defence, namely insertion of dummy packets to obscure the
boundaries between web fetches. In this section we therefore
extend consideration to links where web fetches are carriedout
in a back to back fashion such that the boundaries between
web fetches cannot be easily identified.

The basic idea is to sweep through a measured stream of
packet timestamps trying to match sections of it against the
timing signature of a web page of interest. This exploits the
fact that our timing-only attack does not fundamentally depend
on knowledge of the start/end times of the web fetch (unlike
previous approaches which use packet counts to classify web
pages).

In more detail, to locate a target web page within a stream
of packet timestamps we first select three measured packet
timestamp sequences for that web page to act as exemplars (as
previously). Then, we sweep through the stream of timestamps
in steps of 10 packets, extract a section of the stream of
the same length as each exemplar and calculate the distance
between the section and the exemplar. After sweeping through
the full stream we select the location within the stream with

least distance from the exemplars as the likely location of the
target web page within the stream. While this process assumes
that the target web page is present within the packet stream,
using a similar approach to that in Section IV-E we could
extend this approach to decide whether the web page is present
by appropriately thresholding the distance (when the measured
least distance is above the threshold, the page is judged to not
be present in the stream).

A. Results

We constructed a test data set as follows. We selected a
subset of 5 web pages from those used previously. Namely:
1) medicalcouncil.ie 2) blueinsurance.ie 3) finfacts.ie 4)irish-
health.com 5) firstireland.ie . We then selected 3 web pages
uniformly at random from this set of 5, selected a permutation
of these web pages uniformly at random and proceeded to
fetch the pages in that order over an ethernet tunnel. We
repeated this 100 times, so generating a dataset consistingof
100 measured packet timestamp streams.

Using the classification approach described above we at-
tempted to identify the location within each packet stream of
one of the web pages (selected uniformly at random from the
set of 3 web pages present in each measured packet stream).
Figure 19 presents three examples of this, showing the position
within a stream with least distance from the exemplars of a
target web page. With this approach we achieved a success
rate of 80% for locating the target web page within each
packet stream to within a position error of±65 packets. Given
the limited information being used, this is a remarkably high
success rate and indicates the power of the timing-only attack.
Further, of the20% of cases where incorrect choices are made,
in 7% the next best choice is the correct location of the target
web page.

VII. SUMMARY AND CONCLUSIONS

We introduce an attack against encrypted web traffic that
makes use only of packet timing information on the uplink.
In addition, unlike existing approaches this timing-only attack
does not require knowledge of the start/end of web fetches
and so is effective against traffic streams. We demonstrate the
effectiveness of the attack against both wired and wireless
traffic, consistently achieving mean success rates in excess of
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Fig. 19: Illustrating locating of a web page within a packet
stream. The target web site in our case study, shown with red
triangles, is web site www.firstireland.ie. The vertical lines
show the location of the first GET request for each web page.
Following the order of the web sites in the text, the order of
fetches in (a), (b) and (c) are{5, 4, 1}, {1, 5, 2} and{3, 2, 5}
respectively.

90%. Table I summarises our measurements of the success
rate of the attack over a range of network conditions.

Since this attack only makes use of packet timing infor-
mation it is impervious to existing packet padding defences.
We show that time slotting is also insufficient to prevent
the attack from achieving a high success rate, even when
relatively large time slots are used (which might be expected
to significantly distort packet timing information). Similarly,
randomised routing as used in Tor is also not effective. More
sophisticated types of defence may be more effective, but we
leave consideration of those to future work as they likely
involve complex trade-offs between network performance (e.g.
increased delay and/or reduced bandwidth) and resistance to
attack that warrant more detailed study than is possible here.

In addition to being of interest in its own right, by highlight-
ing deficiencies in existing defences this timing-only attack
points to areas where it would be beneficial for VPN designers
to focus further attention.
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