
ar
X

iv
:1

31
1.

62
80

v1
  [

cs
.N

I] 
 2

5 
N

ov
 2

01
3

1

Thwarting Selfish Behavior in 802.11 WLANs
Albert Banchs, Jorge Ortin, Andres Garcia-Saavedra, Douglas J. Leith and Pablo Serrano

Abstract—The 802.11e standard enables user configuration of
several MAC parameters, making WLANs vulnerable to users
that selfishly configure these parameters to gain throughput. In
this paper we propose a novel distributed algorithm to thwart
such selfish behavior. The key idea of the algorithm is for honest
stations to react, upon detecting a selfish station, by usinga
more aggressive configuration that penalizes this station.We show
that the proposed algorithm guarantees global stability while
providing good response times. By conducting a game theoretic
analysis of the algorithm based onrepeated games, we also show
its effectiveness against selfish stations. Simulation results confirm
that the proposed algorithm optimizes throughput performance
while discouraging selfish behavior. We also present an experi-
mental prototype of the proposed algorithm demonstrating that
it can be implementated on commodity hardware.

I. I NTRODUCTION

The mechanisms defined in 802.11e, which have been
incorporated into the revised version of the 802.11 standard,
rely on a number of configurable parameters that can be
modified by a simple command. This gives users total control
of the contention parameters used by their wireless adapterand
allows them to modify the behavior of the wireless interface.
In this framework,selfishbehavior is particularly tempting:
users can very easily configure the 802.11e parameters of their
station with aggressive values that increase their share ofthe
medium at the expense of the other users. Such selfish behavior
can lead to severe unfairness in throughput distribution.

A number of works in the literature have addressed the
above selfishness problem. The approaches proposed can be
classified in centralized [1]–[4] and distributed [5]–[7].The
advantage of distributed approaches is that they do not relyon
a central authority and thus can be used both in infrastructure
and ad-hoc modes, in contrast to centralized approaches which
can only be used in infrastructure mode. In this paper, we
propose a noveldistributedapproach based on game theory to
address the selfishness problem.

Game theory is a discipline aimed at modeling situations
in which decision-makers or players have to choose specific
actions and obtain a gain that depends on the actions taken by
all the players in the game. In our problem, the players are
the 802.11e stations striving to obtain as much throughput as
possible from the WLAN. Previous game theoretic analyses
of WLAN [7] have shown that, if selfish stations are not
penalized, the WLAN naturally tends to either great unfairness
or network collapse. Following this result, in this paper we
focus on the design of a penalizing mechanism in which any
player who misbehaves will be punished by other players and
thus will have no incentive to misbehave.
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A key challenge when designing such a penalizing scheme
is to carefully adjust the punishment inflicted to a misbe-
having station. Indeed, if the punishment is not severe, a
selfish station could benefit from misbehaving. However, an
overreaction could trigger the punishment of other stations
leading to an endless loop of punishments. Our design makes
use of Lyapunov stability theory to address this challenge.In
particular, one of the key novelties of the approach proposed
in this paper is the combination of Lyapunov stability theory
techniques (which guarantee the stability and convergenceof
the algorithm) and game theory techniques (which guarantee
protection against selfish behavior). The main contributions of
our paper are as follows:

• We propose a novel distributed algorithm that penalizes
selfish stations by making use of a more aggressive
configuration of the 802.11e parameters upon detecting
a misbehaving station.

• We conduct a stability analysis of the algorithm to
show that when all stations implement our algorithm, the
WLAN converges to the optimal point of operation.

• We conduct a game theoretic analysis based on repeated
games that shows that a station cannot benefit by deviat-
ing from the algorithm.

• We extensively evaluate the performance of the proposed
algorithm via simulation under a wide variety of condi-
tions that confirm its good properties.

• We show the feasibility of implementing the algorithm
by deploying a prototype and evaluating it in a small
experimental testbed.

The rest of the paper is structured as follows. In Section II
we expose the selfishness problem in 802.11 and model it
from a game theoretic standpoint. Section III presents the
algorithm proposed. The algorithm is evaluated analytically in
Section IV: we first analyze its performance when all stations
implement the algorithm and then conduct a game theoretic
analysis for the case when stations may deviate from the
algorithm. The performance of the algorithm is exhaustively
evaluated via simulation in Section V and its feasibility of
implementation is validated in Section VI by means of a
prototype. Finally, Section VII closes the paper with some
concluding remarks.

II. SELFISHNESS IN802.11

In this section, we briefly summarize the EDCA mechanism
of 802.11e and identify the selfishness problem. Then, we
present a game theoretic model of this problem.

A. 802.11e EDCA

The 802.11e EDCA mechanism works as follows. When a
station has a new frame to transmit, it senses the channel.

http://arxiv.org/abs/1311.6280v1


2

If the channel remains idle for a period of time equal to
the AIFS parameter, the station transmits. Otherwise, if the
channel is detected busy, the station monitors the channel until
it is measured idle for anAIFS time and then executes a
backoff process.

When the backoff process starts, the station computes a ran-
dom number uniformly distributed in the range(0, CW − 1),
and initializes its backoff time counter with this value.CW
is called the contention window and for the first transmission
attempt the minimum value is used (i.e.,CW = CWmin) . In
case of a collisionCW is doubled, up to a maximum value
CWmax.

As long as the channel is sensed idle, the backoff time
counter is decremented once every time slotTe, and “frozen”
when a transmission is detected on the channel. When the
backoff time counter reaches zero, the station accesses the
channel in the next time slot. Upon accessing the channel, a
station can transmit several consecutive frames for a duration
given by theTXOP parameter.

A collision occurs when two or more stations start trans-
mitting simultaneously. An acknowledgment (Ack) frame is
used to notify the transmitting station that the frame has been
successfully received. If the Ack is not received within a given
timeout, the station reschedules the transmission by reentering
the backoff process. If the number of failed attempts reaches
a predetermined retry limit, the frame is discarded. Once the
backoff process is completed,CW is set again toCWmin.

As it can be seen from the above description, the behavior of
a station depends on a number of parameters, namelyCWmin,
CWmax, AIFS and TXOP . As these are (according to
the standard) configurable parameters whose setting can be
modified by means of simple commands, a user can easily
configure these parameters selfishly to gain extra throughput.
We refer to this as theproblem of selfishness in 802.11.

B. Game theoretic model

The above problem of selfishness in 802.11 can be modeled
using game theory. Indeed, game theory is a discipline aimed
at modeling situations like the above in which players have to
choose specific actions that have mutual, possibly conflicting,
consequences. In our case, the players are the wireless stations
which configure their 802.11e parameters to obtain as much
throughput as possible.

The simplest way to model the interaction between players
is by means of a static game. In a static game, each player
makes a single move and all moves are made simultaneously.
In our problem, this means that each station chooses its config-
uration at the beginning of the game, without any knowledge
of the configuration chosen by the other stations, and keeps
this configuration for the entire duration of the game.

The modeling of the selfishness problem in 802.11 based
on static games [5], [6] leads to the following two families
of Nash equilibria: in the first family, there is one player that
receives a non-null throughput while the rest of the players
receive a null throughput, and in the second family, all players
receive a null throughput (the latter is known as thetragedy
of the commons: the selfish behavior of each player leads to
a tremendous misuse of the public good).

Both of the above families of solutions are highly unde-
sirable, as they lead either to extreme unfairness or network
collapse. One alternative to avoid these undesirable solutions
is to allow that users make new moves (i.e., change their
802.11e configuration) during the game. This can be modeled
by making use of the theory ofrepeated games[8]. With
repeated games, time is divided in stages and a player can take
new decisions at each stage based on the observed behavior of
the other players in the previous stages. Therefore, if a selfish
station is detected to misbehave, the other stations canpunish
this station and thus discourage such behavior.

C. Related work

Making use of repeated games, [5] and [6] have proposed
two approaches to address the problem of selfishness in
802.11. The approach proposed by [5] is based onselective
jamming: if a station detects that another station is misbe-
having, thereafter it listens to its transmitted packets and
switches to transmission mode,jammingenough bits so that
the packets cannot be properly recovered at the receiver. While
the use of jamming punishes misbehaving stations, it has the
main drawback of relying on functionality not available in
current wireless devices. Indeed, the implementation of such
a jamming mechanism would need to be performed at the
hardware level and entails substantial complexity.

The approach proposed by [6] does not suffer from the
above drawback but addresses only two types of misbehaving
stations: the so-called selfish stations, withCW = 2, and the
so-called greedy stations, withCW = 1. While the scheme
proposed is effective when dealing with these two particular
configurations, otherCW configurations that may greatly
benefit selfish stations are neither detected nor punished by
this mechanism, as we show in the simulation results of
Section V-E. Additionally, the algorithm of [6] is based on
heuristics that do not guarantee quick convergence, and indeed
we show in a further simulation result in Section V-F that this
approach may suffer from convergence issues.

In this paper, we propose a novel approach based on
repeated games that, in contrast to the previous two ap-
proaches, relies exclusively on functionality readily available
in current wireless devices and is effective against any selfish
configuration. Additionally, by relying on Lyapunov stability
techniques, our approach is guaranteed to quickly convergeto
the desired point of operation.

In addition to [5], [6], a number of additional works have
been devoted to address selfishness in wireless networks from
a game theoretic point of view [9]–[12]. Besides focusing on
a different MAC protocol, these studies differ from ours in
that they consider some kind of transmission cost or pricing
mechanism that plays a key role in the resulting equilibria.In
contrast to these approaches, we achieve the desired equilib-
rium by means of a penalizing mechanism only.

The works in [1]–[4] address, like ours, the issue of selfish
stations in 802.11 WLANs. However, in contrast to our dis-
tributed algorithm, these works propose a centralized approach
and therefore can only be applied to a WLAN operating in
infrastructure mode. Additionally, many of these approaches
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only address the detection of misbehaving stations while our
approach not only detects but also punishes selfish stations.

Substantial work in the literature has also focused on
the design of stable adaptive algorithms [13]–[18]. A major
difference between our algorithm and these approaches is
that they build on local stability analysis while we rely on
Lyapunov stability theory, which ensures global asymptotic
stability and hence provides stronger guarantees. Indeed,with
[13]–[18] convergence is only guaranteed as long as the initial
point is sufficiently close to the stable point of operation,while
we guarantee convergence for any initial point of operation.

Perhaps the most closely related to this paper is our previous
work of [18], which uses a similar technique to counteract self-
ish stations, based also on repeated games. However, both the
scope of the work and the algorithm design are substantially
different. Indeed, while [18] focuses on distributed opportunis-
tic scheduling, here we address the problem of selfishness in
802.11. Furthermore, [18] relies on local linearized analysis,
while here we use Lyapunov theory for the global design and
analysis of the algorithm. As a consequence, the algorithm
proposed in this paper provides much stronger guarantees on
stability and convergence than that of [18].

III. GAS A LGORITHM

In this section, we present our algorithm to address the prob-
lem of selfishness in 802.11, which we callGame-theoretic
Adaptive Stable(GAS) algorithm. In the following, we first
present the objectives pursued and then describe the algorithm
design to achieve these objectives.

A. Algorithm objectives and scope

The central objective of the GAS algorithm is to drive
the configuration of the 802.11e EDCA parameters to the
target values that maximize the overall WLAN performance.
To achieve this objective, GAS enforces that a selfish station
cannot benefit from using a different configuration, which pro-
vides stations with an incentive to use the target configuration.

Following the arguments given in [5], [19], [20], in this
paper we aim at the following setting of the four EDCA
parameters, which maximizes the throughput performance of
the WLAN (hereafter we refer to this setting as thetarget
configurationor optimal configuration):

• The AIFS parameter is set to its minimum value
(AIFS = DIFS).

• TheTXOP parameter is set such that one packet is trans-
mitted upon accessing the channel (TXOP = 1 packet).

• The maximum backoff stagem is set equal to 0.1 This
yields the same value forCWmin and CWmax (i.e.,
CWmax = CWmin); in the following, we refer to this
value simply asCW .

• The CW parameter is set equal to the value that, given
the above setting for the other parameters, maximizes the
throughput of the WLAN when all stations are saturated.
Hereafter, we refer to this value asCWopt.

1The maximum backoff stage is defined as the number of times that the
CW is doubled until reachingCWmax (i.e., CWmax = 2mCWmin).

With the above, the objective of the GAS algorithm can
be reformulated as to achieve the following two goals: (i)
when all stations implement GAS (i.e., they are well-behaved),
the system should converge to the target configuration given
above; and (ii) if a selfish station misbehaves (by using a
different configuration from the target one), this station should
not obtain any benefit from such misbehavior.

In the following, we address the design of the GAS algo-
rithm. Like the previous works of [5], [6], in the design of
the algorithm we assume that all stations are saturated (i.e.,
always have a packet ready for transmission), they are in the
transmission range of each other (i.e., no hidden nodes) and
use the same modulation-coding scheme. In the simulations
section, we show that the proposed algorithm can be extended
to effectively prevent selfish behaviors with non-saturated
stations. While the design assumes no hidden terminals, the
algorithm also works for hidden terminals as long as the
RTS/CTS mechanism is used. Furthermore, in case of different
modulation-coding schemes, the algorithm can be applied to
enforce the target configuration proposed in [21].

B. Computation ofCWopt

We use the model of [17] to compute the throughputri of
stationi as

ri(τ̂ ) =
l

Ts(τ̂ )
τ̂i
∏

j 6=i

(1− τ̂j) =
τ̂i

1− τ̂i

l

Ts(τ̂ )

n
∏

j=1

(1− τ̂j) (1)

where τ̂ = [τ̂1, · · · , τ̂n] are the probabilities that a station
transmits in a slot time,n is number of active stations in
the WLAN, l is the packet length in bits,Ts(τ̂ ) = Tt +
(Te − Tt)

∏

j (1− τ̂j) is the average duration of a slot time in
seconds,Tt the duration of a transmission andTe the duration
of an empty time slot.

By [22, Lemma 1], the rate region boundary is the set
of throughput vectors such that

∑n
i=1 Tair,i(τ̂ ) = 1 where

Tair,i(τ̂ ) = τ̂i
Tt

Ts(τ̂)
is the fraction of airtime (including

both successful and colliding transmissions) used by station
i. When all stations use the same transmission probability, it
follows immediately that the valueτopt maximising throughput
is the unique solution to

1− nτopt
(1− τopt)

n = 1−
Te

Tt
(2)

Once we haveτopt thenCWopt =
2

τopt
−1. When Te

Tt
is small,

an accurate approximation isCWopt = n
√

2Tt

Te
− 1.

The following fundamental property will also prove useful:

Theorem 1. Consider the ballC∆ = {τ̂ : τ̂ ∈ [τopt −
∆, τopt+∆]n} aroundτopt, with 0 ≤ τopt−∆ < τopt+∆ ≤ 1
andn ≥ 2. For any τ̂ ∈ C∆ the following inequality holds:

D(τ̂ ) := nropt −
∑

j

rj(τ̂ ) ≤ nρ∆ (3)

where ρ =
ropt

τopt(1−τopt)
, ropt is the maximum achievable

throughput of a station when̂τi = τ̂j ∀i, j andτopt is the value
of the transmission probability that leads to this throughput.

Proof: See Appendix.
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This theorem bounds the differenceD(τ̂ ) between the
optimum and actual WLAN sum-rate throughput.

C. Algorithm description

Following the theory of repeated games [8], GAS imple-
ments anadaptive algorithmin which each station updates
its CW at every stage, while keeping the configuration of
the other parameters fixed to the values provided in Section
III-A. 2 The central idea behind GAS is that, when a station is
detected as misbehaving, the other stations reduce theirCW in
subsequent stages to prevent this selfish station from benefiting
from misbehaving.

A key challenge in GAS is to carefully adjust the reaction
against a selfish station. Indeed, as mentioned in the intro-
duction, if the reaction is not severe enough a selfish station
may benefit from its misbehavior, but if the reaction is too
severe the system may become unstable by entering an endless
loop where all stations indefinitely reduce theirCW to punish
each other. In order to address this challenge, we design GAS
using techniques from Lyapunov theory [23] that prevent the
system from entering into a spiral of increasing punishments
that lead to throughput collapse and guarantee that theCW
of all stations converges toCWopt.

The iterative GAS update of theCW values can be modeled
as a discrete time dynamical system whose state is given by
τ = [τ1, τ2, . . . , τn], whereτi is related to the probability with
which stationi transmits in a slot time. That is:

τ (t+ 1) = f (τ (t)) (4)

wheref : Rn → R
n is a non-linear function that models the

system dynamics. The main design challenge is to determine
the functionf . To this end, we adopt a standard feedback
approach [24] and updateτi at each stage as:

τi (t+ 1) = τi (t) + γgi (τ (t)) , i = 1, · · · , n (5)

whereγ > 0 is a scalar parameter andgi : [0, 1]n → [0, 1] .
In order to allow for larger values ofγ, which reduces

the convergence time of the algorithm,3 we impose that
the probability of transmitting in a slot time does not fall
below τopt/2. Similarly, if τi(t) exceeds 1, we transmit with
probability 1. Thus,

τ̂i(t) = min(1,max(τi(t), τopt/2)) (6)

where τ̂i(t) is the probability that the stationi transmits in a
slot time after imposing the above constraints. Givenτ̂i(t), the
CW parameter of stationi at staget is CWi(t) =

2
τ̂i(t)

− 1.
We next address the design of functiongi in (5). Our

requirements when designinggi are twofold: (i) selfish stations
should not be able to obtain extra throughput from the WLAN
by following a different strategy from GAS, and (ii) as long
as there are no selfish stations that deviate from GAS, theτi

2Following the 802.11e standard, which updates the configuration of the
802.11e parameters at every beacon frame, we set the duration of a stage
equal to the duration of a beacon interval. While the beacon interval can be
set to different values, it is typically set to 100 ms.

3The fact that imposing a lower bound onτi allows for largerγ values can
be seen from the proof of Theorem 2.

of all stations should converge to the optimal valueτopt. To
meet the above requirements we selectgi as follows

gi(τ ) =
∑

j 6=i

(rj(τ )− ri(τ ))− Fi(τ ) (7)

whereFi(τ ) is a function that we design below. Observe that
gi(τ ) consists of the following two components, each of which
fulfills one of the requirements identified above:

• The first component,
∑

j 6=i rj(τ )− ri(τ ), serves to pun-
ish selfish stations: if a stationi receives less throughput
than the other stations, this component will be positive
and hence stationi will increase its transmission proba-
bility τi to punish the other stations.

• The second component,Fi(τ ), drives the system to the
target configuration in the absence of selfish behavior.

RegardingFi(τ ), to drive τi to the target valueτopt we
requireFi(τ ) to be positive whenτi > τopt, and negative
otherwise. Furthermore,Fi(τ ) should not allow selfish stations
to obtain a throughput gain over well-behaved stations. To
gain insight, we first consider steady-state operation, which
implies that selfish stations play with a static configuration,
and consider the case when all stations but a selfish one
implement GAS. (In the analysis of Section IV-B we show
that GAS is also effective against selfish strategies that change
the configuration over time.) In steady-state the LHS and RHS
of update (7) must be equal for those stations using GAS, i.e.
gi(τ

∞) = 0 ∀i 6= s and so

Fi(τ
∞) =

∑

j 6=i

(rj(τ
∞)− ri(τ

∞)) = rs(τ
∞)− r(τ∞) (8)

wheres is the selfish station,r(τ∞) is the throughput of a
well-behaved station (which, by symmetry, is the same for all
such stations in steady-state) and the∞ superscript indicates
values when the system is in steady state. We require that
the throughput of a selfish station does not exceed the target
throughput,rs(τ∞) ≤ ropt. That is,

nrs(τ
∞) = rs(τ

∞) + (n− 1)r(τ∞) + (n− 1)(rs(τ
∞)− r(τ∞))

=
n
∑

j=1

rj(τ
∞) + (n− 1)Fi(τ

∞) ≤ nropt (9)

which is satisfied when

Fi(τ ) ≤
1

n− 1
D(τ ) (10)

where
D(τ ) = nropt −

∑

j

rj(τ ) (11)

The intuition here is that when a selfish station misbehaves,
it receives more throughput than the well-behaved stations.
This, however, moves the point of operation away from
the optimal one, reducing the overall efficiency in terms of
the aggregate throughput. The bound (10) ensures that the
additional throughput received by the selfish station does not
outweigh the throughput it loses due to the overall loss of
aggregate throughput. This guarantees that in steady-state the
selfish station does not receive more throughput and hence
does not benefit from misbehaving.
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Following the above requirements, we selectFi(τ ) as:

Fi(τ ) =







D(τ )/n, τi > τopt & D(τ ) ≥ 0
−D(τ )/n, τi ≤ τopt & D(τ ) ≥ 0
D(τ )/(n− 1), D(τ ) < 0

(12)

This choice meets the design requirements set above for the
functionFi(τ ): (i) it satisfies (10), preventing selfish stations
from obtaining any gain; and (ii) for well-behaved stations
it fulfills Fi(τ ) > 0 for τi > τopt and Fi(τ ) < 0 for
τi < τopt, which drives the system to optimal operation.
The only exception is whenD(τ ) < 0: in this case (10)
imposesFi(τ ) < 0 independent of the value ofτi. However,
as we show later in Section IV-A, this does not affect the
convergence of the algorithm to the desired point of operation.

To compute update (5) with these choices ofgi and Fi,
each station only needs to measure at the end of every stage
the throughput it has received during this stage as well as the
throughput that each of the other stations has received.4

IV. A LGORITHM ANALYSIS

In this section we study analytically the performance of
the system. First, we prove that when all the stations are
well-behaved and implement the GAS algorithm, the WLAN
converges to the optimal configuration (Section IV-A). Then,
we show that a selfish station does not have any incentive to
deviate from the GAS algorithm (Section IV-B).

A. Stability Analysis

We show that when all stations implement GAS, the WLAN
is driven to the optimal configuration, i.e.,τi = τopt ∀i.

Formally, a pointτ e ∈ [0, 1]n is a said to be aglobally
asymptotically stable equilibriumof the system (4) if (i) ∀ǫ >
0 ∃δ > 0 such that‖τ (0)− τ e‖ < δ ⇒ ‖τ (t)− τ e‖ < ǫ ∀t;
and (ii) limt→∞ τ (t) = τ e ∀τ (0) ∈ [0, 1]n. These conditions
ensure that the system converges toτ e independently of its
initial state and that the equilibrium point is unique. We have
the following result:

Theorem 2(Global stability). The target configurationτ opt =
[τopt · · · τopt]

T is a globally asymptotically stable equilibrium
point under update (5) provided

γ < γmax :=

(

nl

Topt

(

1−
τopt
2

)n−2
)−1

andn ≥ 2.

Proof: See Appendix.
The proof of Theorem 2 makes use of Lyapunov’s direct

method [23]. Namely, a pointτ e is the globally asymptotically
stable equilibrium of the system if there exists a continu-
ous radially unbounded functionV : R

n → R such that
V (τ − τ e) > 0 ∀τ 6= τ e, V (τ e) = 0 and

V (τ (t+ 1)− τ e) < V (τ (t)− τ e) (13)

4Similarly to [5], [6], we rely on the broadcast nature of the wireless
medium which provides WLAN stations with the ability to measure the
throughput received by the other stations.

To apply this result we must find a Lyapunov functionV with
these properties. SelectingV (τ − τ e) = ‖τ − τ e‖∞ as a
candidate Lyapunov function, with the equilibrium pointτ e =
τ opt = [τopt · · · τopt]

T , the proof of Theorem 2 establishes that

‖τ (t+ 1)− τ opt‖∞ < ‖τ (t)− τ opt‖∞ (14)

That is, Lyapunov equation (13) is satisfied by this choice of
V and soτ opt is a globally asymptotically stable equilibrium.

It remains to select the value of the parameterγ. This
involves a tradeoff: the smallerγ, the slower the rate of
convergence is; however, ifγ is set too large the system
risks instability (as shown by Theorem 2). Following the
same rationale as theZiegler-Nicholsrules [25], which have
been proposed to address a similar tradeoff in the context of
classical control theory, we recommend settingγ to half of the
value at which the system turns unstable, i.e.,γ = γmax/2.

B. Game Theoretic Analysis

In the previous section we have seen that, when all stations
implement GAS, the system converges to the target config-
uration, i.e., all stations play withτi = τopt and receive
a throughput equal toropt. In this section we conduct a
game theoretic analysis to show that a selfish station cannot
obtain more throughput thanropt by following a different
strategy from GAS. In what follows, we say that a station is
honestor well-behaved when it implements GAS to configure
its 802.11e parameters, while we say that it isselfish or
misbehaving when it plays a different strategy from GAS to
configure its parameters with the aim of obtaining some gain.

The game theoretic analysis conducted in this section as-
sumes that users arerational and want to maximize their own
benefit orutility, which is given by the throughput. The model
is based on the theory ofrepeated games[8]. With repeated
games, time is divided into stages and a player can take new
decisions at each stage based on the observed behavior of the
other players in previous stages. This matches our algorithm,
where time is divided into intervals and stations update their
configuration at each interval. Like other previous analyses
on repeated games [5], [6], we consider an infinitely repeated
game, which is a common assumption when the players do
not know when the game will finish. Using this model, the
following theorem shows the effectiveness of GAS against a
selfish station. Note that the theorem does not impose any
restriction on the strategy followed by the selfish station,which
may play with all the four 802.11e parameters changing their
setting over time.

Theorem 3. Let us consider a selfish station that uses a
configuration that can vary over time. If all the other stations
implement the GAS algorithm, the throughput received by this
station will be no larger thanropt.

Proof: See Appendix.

Corollary 1. All-GAS is a Nash equilibrium of the game.

Proof: By Theorem 3, if all other stations play GAS, then
the best response of this station is to play GAS as well since it
cannot benefit from playing a different strategy. Thus,All-GAS
is a Nash equilibrium.
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This shows that, if all stations start playing with no previous
history, then none of them can gain by deviating from GAS.
In addition to this, in repeated games it is also important
to make sure that, if at some point the game has a given
history, a selfish station cannot take advantage of this history
to obtain any gain by playing a different strategy from GAS.
The following theorem confirms thatAll-GAS is a Nash
equilibrium of any subgame (where asubgameis defined as
the game resulting from starting to play with a certain history).
Therefore a selfish station cannot benefit by deviating from
GAS independently of the previous history of the game.

Theorem 4. All-GAS is a subgame perfect Nash equilibrium
of the game.

Proof: See Appendix.

V. PERFORMANCEEVALUATION

In this section we thoroughly evaluate GAS by conducting
an extensive set of simulations to show that(i) a selfish station
cannot benefit from following a different strategy from GAS,
and (ii) when all stations are well-behaved, GAS provides
optimal performance, is stable and reacts quickly to changes.
For the simulations, we have implemented our algorithm
in OMNET++ (www.omnetpp.org). The physical layer
parameters of IEEE 802.11g and a fixed payload size of 1500
bytes have been used in all the experiments. In the simulations
of Sections V-A to V-F, we focus on theCW parameter: we
assume that all stations (both honest and selfish) use a fixed
configuration of theirAIFS, TXOP andm parameters equal
to the target configuration and play only with theCW param-
eter. Then, in the simulations of Section V-G we study all the
four parameters and show that selfish stations cannot obtain
any benefit from any configuration of these parameters. Unless
otherwise stated, we assume that all stations are sending traffic
under saturation conditions. For all simulation results, 95%
confidence intervals are below 0.5%.

A. Selfish station behavior

In order to gain insight into the impact of the behavior
of a selfish station with the GAS algorithm, we evaluate the
resulting throughput distribution when a selfish station uses a
fixed CWi and all other stations implement GAS. Figure 1
shows the throughput obtained by the selfish station and an
honest one as a function of theCWi used by the selfish station,
CWs, when there aren = 10 stations in the WLAN. We
observe from this figure that there are someCWs values for
which the selfish station obtains a larger throughput than the
honest one, and others for which the honest stations obtain
a larger throughput. However, as long as the selfish station
plays with theCWs value that maximizes its throughput, it
does not receive more throughput than the honest station, and
hence does not have any gain over an honest station as a result
of its selfish behavior.

B. Protection against selfish stations

According to the game theoretic analysis conducted in
Section IV-B, a station cannot obtain more throughput with

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  20  40  60  80  100  120  140

T
hr

ou
gh

pu
t (

M
bp

s)

CWs

Selfish station
Honest station

Fig. 1. Throughput of a selfish and a honest station as a function of the
CWi of the selfish station.
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Fig. 2. Throughput of a station with different strategies.

a selfish strategy than by playing GAS. To validate this result,
we evaluate the throughput obtained by a selfish station with
the following strategies. In the first strategy (static), the selfish
station uses the fixed configuration ofCWi that provides the
largest throughput, obtained from performing an exhaustive
search over all possible configurations (like in Figure 1). In
the second strategy (adaptive 1), the selfish station periodically
triesCWi = 2 to gain throughput and when it realizes that its
throughput is belowropt, it assumes that it has been detected
as selfish and switches back toCWi = CWopt. The third
strategy (adaptive 2) is similar to the previous one but instead
of switching back toCWopt, the station increases itsCWi by
5. In the last strategy (adaptive 3), the selfish station decreases
its CWi by 5 as long as its throughput is larger than in
the previous stage and increases it by 5 otherwise. Figure 2
compares the throughput obtained with each of these strategies
against that obtained with GAS for differentn values. We
observe that, when all other stations play GAS, a given station
maximizes its payoff by playing GAS, as it obtains a larger
throughput with GAS than with any of the other strategies.
This confirms the result of Theorem 2.

http://arxiv.org/pdf/www.omnetpp.org
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TABLE I
THROUGHPUT PERSTATION (MBPS)

n All-GAS All-CWopt

4 7.82 7.83
8 3.85 3.86
12 2.56 2.56
16 1.91 1.92
20 1.53 1.53
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Fig. 3. System stability for differentγ settings.

C. Throughput performance

The GAS algorithm has been designed with the goal of op-
timizing throughput performance when all stations play GAS.
To verify this goal, we evaluate the throughput performanceas
a function of the number of stationsn when all stations play
GAS. As a benchmark against which to compare the through-
put performance, we consider a WLAN in which theCWi of
all stations is statically set to the optimal valueCWopt. The
results from the above experiment are illustrated in Table I.
We observe that the throughput performance resulting from
GAS follows very closely the optimal configuration. Based on
this, we conclude that the proposed algorithm is effective in
providing optimal throughput performance.

D. Stability and speed of reaction

To validate that our system guarantees a stable behavior, we
analyze the evolution over time of the parameterCWi for our
γ setting and a configuration of this parameter 10 times larger,
in a WLAN with 10 stations. We observe from Figure 3 that
with the proposed configuration (label “γ”), the CWi only
presents minor deviations around its stable point of operation,
while if a larger setting is used (label “10γ”), the CWi has a
strong unstable behavior with drastic oscillations.

To investigate the speed with which the system reacts
against a selfish station, we consider a WLAN with 10 stations
where initially all stations play GAS and then, after 50
seconds, one station changes itsCWi to 2. Figure 4 shows the
evolution of the throughput of the selfish station over time.We
observe from the figure that with our setting (label “γ”), the
system reacts quickly, and in less than a few tens of seconds
the selfish station does no longer benefit from its misbehavior.
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Fig. 4. Speed of reaction for differentγ settings.

In contrast, for a setting of this parameter 10 times smaller
(label “γ/10”), the reaction is very slow and even 5 minutes
afterwards, the selfish station is still receiving about 1 Mbps
extra throughput.

Since with a larger setting ofγ the system suffers from
instability while with a smaller one it reacts too slowly, we
conclude that the proposed setting provides a good tradeoff
between stability and speed of reaction.

E. Comparison against other approaches

In order to illustrate the advantages of GAS over other
approaches, we compare the performance of GAS against
CRISP [6] and the standard DCF configuration when there
is a selfish station in the WLAN. In particular, we consider a
WLAN with a selfish station that plays with theCWi value
that maximizes its payoff and show the throughput received
by an honest station.5

The results, depicted in Figure 5, show that GAS outper-
forms very substantially CRISP and DCF. Since CRISP has
been designed to prevent only extremely selfish users with
CWi = 2 or CWi = 1, a selfish user with a slightly larger
CWi goes undetected and can gain very significant throughput,
leaving honest stations with very low throughputs as shown
in the figure. With the standard DCF configuration, a selfish
station maximizes its gain withCWi = 1, which yields zero
throughput for the honest stations.

F. Robustness to perturbations

One of the goals in the design of GAS has been its
robustness against any kind of perturbation. Indeed, as it
has been proved by Theorem 2, our system is guaranteed to
converge to the desired point of operation independent of the
initial state. Therefore, no matter the state to which the system
is brought by a perturbation, it will always be able to recover.

In order to show the above feature, we consider the fol-
lowing experiment. In a WLAN with 15 stations, all running

5To obtain theCWi that maximizes the selfish station’s throughput, we
have evaluated all possibleCWi values and chosen the one that provides the
largest throughput to the selfish station.
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GAS, we introduce a burst of errors that affect one of the
stations during one second. Figure 6 shows the evolution of
the throughput of the affected station and one of the other
stations over time. The figure also shows the behavior provided
by CRISP under the same conditions.

We observe from the figure that GAS quickly converges to
the desired point of operation after the perturbation. Indeed,
right after the perturbation the station that suffered the burst
of errors believes that the other stations are behaving selfishly
(as they have received a larger throughput) and plays with a
smallerCWi for a while, which results in a larger throughput
for this station. However, after a short transient all stations go
back to playing with the optimalCWopt.

In contrast to the above, CRISP does not show a robust
behavior. With CRISP, the affected station playsCWi = 2
after the burst to punish the others. These react by decreasing
their CWi to 2 and eventually to 1, and from this point
on stations keep punishing each other which brings the total
throughput in the WLAN practically to 0. The WLAN remains
in this state for the rest of the simulation run, which is 300
seconds long (only the first 20 seconds are shown in the graph).
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G. Other 802.11e parameters

In the experiments so far, we have considered that selfish
users only play with theCWi parameter. However, according
to the 802.11e standard, there are a number of additional
parameters a user can play with, namely the backoff stagem,
the arbitration interframe spaceAIFS and the transmission
opportunityTXOP . In order to show that a selfish user cannot
benefit from playing with any of these parameters, we have
conducted a number of experiments in which the parameters
are set to different values from the ones given in Section III-A.
For each of the settings considered for these parameters, the
selfish station uses theCWmin that maximizes its throughput.

The results of the above experiment are given in Figure 7
for differentn values. We observe that the selfish station never
obtains any gain by deviating from GAS independent of the
parameters it plays with. We conclude that GAS is effective not
only against theCWi parameter but also against all the other
configurable parameters of the 802.11e standard. This confirms
the result of Theorem 3, according to which a station cannot
benefit from following a selfish strategy to configure (all of)
its parameters. This result is particularly relevant sincethe
previous approaches [5], [6] focus only on theCWi parameter
and are not evaluated against any other parameter.

H. Non-saturated stations

So far we have assumed that all stations are saturated,
which is the most relevant case for selfishness and the only
one considered in [5], [6]. However, GAS can be easily
extended to support non-saturated stations as follows: (i) to
avoid reacting upon other stations receiving more throughput,
a non-saturated station does not use the GAS algorithm to
compute its configuration; (ii) a saturated station only includes
in the sum of (7) those stations that are receiving more
throughput, thus excluding the non-saturated stations; and (iii)
to computeCWopt, we take into account the sending rate of
the non-saturated stations (following, e.g., [20]). To show the
performance of GAS with non-saturated stations, we consider
a WLAN with 10 stations, half of them saturated and the other
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half sending at a rate equal to half of the saturation throughput.
In this scenario, a station that behaves selfishly using theCWi

value that maximizes its gain obtains a throughput of 4.51
Mbps, while it would obtain 4.52 Mbps if it played GAS.
This confirms the effectiveness of the algorithm in thwarting
selfish behaviors in presence of non-saturated stations.

VI. EXPERIMENTAL PROTOTYPE

One of the advantages of GAS is that it relies on function-
ality readily available in standard devices and therefore can
be implemented with current off-the-shelf hardware. In order
to show this, we have implemented our algorithm on Linux-
based laptops. In this section, we report the experience gained
from this prototype.

Our implementation is based on Linux kernel 2.6.24 laptops
equipped with Atheros AR5212 cards operating in 802.11a
mode and employing the MadWifi v0.9.4 driver. The GAS
algorithm runs as a user-space application. In order to collect
information about other stations’ throughput, GAS uses a
virtual device configured in promiscuous mode and monitors
all frames that belong to the same BSS. With this information,
it computes theCW configuration by executing the algorithm
described in Section III and updates the computedCWmin

and CWmax parameters in the driver every beacon interval
by means of a privateIOCTL call.

In order to validate our implementation, we deployed a
small testbed consisting of three laptops, two of them sending
traffic to the third one. For the traffic generation, nodes ran
the iperf tool to generate 1470 byte UDP packets. The
sending rate at each station was set to 20 Mbps, ensuring
that they always had a packet ready for transmission. With
this setting, we ran the experiment and measured the resulting
throughput performance as a function of the configuration
strategy followed by each of the two sending stations. In par-
ticular, we considered the following strategies:(i) both stations
employing the GAS algorithm to compute their configuration
(ii) both stations using a fixedCW configuration (for a wide
range ofCW values), and(iii) one station executing GAS
and the other one using a fixedCW configuration.

The results of the above experiments are provided in Ta-
ble II. For each experiment, the average throughput and the
standard deviation of 5 runs of 300 seconds each is given.
From these results, we draw the following conclusions: (i)
when all stations are well-behaved, GAS not only achieves a
fair throughput allocation but also outperforms any fair static
CWi configuration, which shows that GAS is effective in
providing optimal throughput performance; and (ii) GAS is
also effective againstselfish configurations, as shown by the
fact that, when one station plays GAS, the other station is
better off playing GAS than any other configuration.

VII. C ONCLUSIONS

Following the 802.11e standard, which opens the config-
uration of a number of contention parameters of the MAC
layer, current WLAN cards allow the modification of these
parameters by means of a simple command. One of the
problems raised by this functionality offered by WLAN cards

TABLE II
EXPERIMENTAL RESULTS

Strategy Strategy Throughput Throughput
station 1 station 2 station 1 station 2
(CW1) (CW2) (Mbps) (Mbps)

GAS GAS 14.91± 0.07 14.92± 0.12
2 2 13.24± 0.07 13.21± 0.07
4 4 14.31 ± 0.1 14.31± 0.12
8 8 14.84± 0.08 14.87± 0.08
16 16 14.71± 0.03 14.68± 0.04
32 32 13.68± 0.06 13.72± 0.06
64 64 11.83± 0.05 11.82± 0.06
128 128 9.18 ± 0.03 9.18± 0.03

GAS

2 12.44± 0.01 14.51± 0.12
4 13.83± 0.11 14.78± 0.12
8 14.89± 0.06 14.82± 0.07
16 15.05 ± 0.4 14.15± 0.35
32 14.74± 0.16 12.97± 0.11
64 14.03± 0.63 10.52± 0.31
128 12.87± 0.37 7.78± 0.16

is that users can selfishly configure the parameters used by
their station to increase their share of throughput at the
expense of the other users. In order to prevent this undesirable
behavior, in this paper we design a novel adaptive algorithm
called GAS (Game-theoretic Adaptive Stable). With the GAS
algorithm, upon detecting a selfish station users react by using
a more aggressive configuration of the parameters that serves
to punish the selfish station.

A critical aspect in the design of such an adaptive algorithm
is to carefully adjust the reaction against a selfish stationto
avoid that the system turns unstable by overreacting. By con-
ducting aLyapunov stability analysisof the GAS algorithm,
we show that, when all the stations in the WLAN run GAS,
the system is globally stable and converges to the desired
configuration. Furthermore, by conducting a game theoretic
analysis based onrepeated games, we show that a selfish
station cannot benefit from playing a different strategy from
GAS (neither with a fixed configuration nor a variable one).

We exhaustively evaluate the performance of GAS by means
of simulations and show that:(i) GAS is effective in optimiz-
ing throughput performance,(ii) it is also effective against
selfish stations using a fixed or variable configurations, and
(iii) it outperforms other approaches both in terms of protec-
tion against selfish configurations and robustness. Additionally,
GAS is validated by means of an experimental prototype, con-
firming that it can be implemented on commodity hardware.
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APPENDIX

A. Proof of Theorem 1

We proceed by establishing two useful Lemmas, and then
present the proof of Theorem 1.

Lemma 1. Consider the set of pointsC(pe) = {τ̂ : τ̂ ∈
[τm, τM ]n,

∏n
j=1(1− τ̂j) = pe}, 0 ≤ τm < τM ≤ 1. Over set

C(pe), the vectorτ̂ minimising
∑n

i=1 ri(τ̂ ) has all elements
equal, i.e.τ̂i = τ̂j , i, j ∈ {1, 2, · · · , n}.

Proof: By (1),
∑n

i=1 ri = l
Tt

1∏
n
j=1

(1+xj)+a

∑n
i=1 xi

wherexi = τ̂i/(1 − τ̂i) and a = (Te − Tt)/Tt. Minimising

∑n
i=1 ri over setC(pe) then corresponds to the following

optimisation

min
xi,i=1,2,··· ,n

n
∑

i=1

xi s.t.

n
∏

j=1

(1 + xj) =
1

pe
, xm ≤ xi ≤ xM∀i

which we can rewritten equivalently as

min
zi,i=1,2,··· ,n

n
∑

i=1

ezi − 1 s.t.

n
∑

j=1

zi = log
1

pe
, zm ≤ zi ≤ zM∀i

wherezi = log(1+xi), zm = log(1+xm), zM = log(1+xM ).
It is enough to show that any optimumz∗ satisfiesz∗i = z∗j ,
i, j ∈ {1, 2, · · · , n}.

The objective is convex, the equality constraint is linear
and the inequality constraints convex, hence this is a con-
vex optimisation. Sinceτm < τM the Slater condition is
satisfied and so strong duality holds. The LagrangrianL is
n
∑

i=1

ezi − 1− λ(
n
∑

j=1

zi − log
1

pe
) +

n
∑

i=1

θi(zm − zi) +
n
∑

i=1

θ̄i(zi − zM )

and the main KKT conditions are

∂L

∂zi

∣

∣

∣

∣

zi=z∗

i

= ez
∗

i − λ− θi + θ̄i = 0, i = 1, 2, · · · , n (15)

which must be satisfied by any optimal pointz
∗. Whenθi =

0 = θ̄i, i = 1, 2, · · · , n it follows from the KKT conditions
that the minimum occurs whenz∗i = z∗j , i, j ∈ {1, 2, · · · , n}.

When θi > 0 for some i (and so by complementary
slacknessz∗i = zm), we would like to show that we must
haveθi > 0 for all i = 1, 2, · · · , n (and soz∗i = zm for all
i). Firstly, whenlog(1/pe) = nzm, sincez∗i ≥ zm it follows
immediately thatz∗i = zm for all i. Otherwise, we proceed
by contradiction. Suppose thatnzm < log(1/pe) ≤ nzM
and z∗i = zm for somei. The elements ofz∗ are therefore
not all the same value. Consider the pointyi = log(1/pe)/n,
i = 1, 2, · · · , n. This point satisfies the constraints

n
∑

i=1

yi = log
1

pe
, zm ≤ yi ≤ zM (16)

and so is feasible. By the strict convexity of the exponential
we havene

1

n

∑
n
i=1

z∗

i = nelog(1/pe)/n <
∑n

i=1 e
z∗

i (with strict
inequality since the elements ofz∗ are, by assumption, not
all the same value). Observing that

∑n
i=1 e

yi = nelog(1/pe)/n,
it follows immediately that

∑n
i=1 e

yi <
∑n

i=1 e
z∗

1 yielding a
contradiction. That is, we must either havez∗i = zm for all i
or z∗i 6= zm for all i. Since in the case we are analyzing we
havez∗i = zm for somei, this impliesz∗i = zm for all i. By
an almost identical argument, it also follows that whenθi < 0
for somei, we must havez∗i = zM for all i.

Lemma 2. Consider the set of pointsC = {τ̂ : τ̂ ∈
[τm, τM ]n}, 0 ≤ τm ≤ τM ≤ 1. Over setC, the vectorτ̂
minimising

∑n
i=1 ri(τ̂ ) satisfies either̂τi = τm for all i or

τ̂i = τM for all i.

Proof: If τm = τM the result follows trivially. Suppose
thereforeτm < τM . By Lemma 1, minimising

∑n
i=1 ri s.t.

http://secowinet.epfl.ch/
http://www.it.uc3m.es/pablo/papers/pdf/2012banchstongame.pdf
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τm ≤ τ̂i ≤ τM , i = 1, 2, · · · , n is equivalent to settinĝτi =
τ∗, i = 1, 2, · · · , n and finding aτ∗ solving

min
τm≤τ̂≤τM

nτ̂

1− τ̂

(1− τ̂)n

Tt + (Te − Tt)(1− τ̂ )n
l (17)

Taking logs and lettingx = τ̂
1−τ̂ , x̃ = log x this optimisa-

tion can be rewritten asminx̃m≤x̃≤x̃M
r̃(x̃) with r̃(x̃) = x̃ −

log((1+ex̃)n+a)+log nl
Tt

, a = (Te−Tt)/Tt, x̃m = log τm
1−τm

,
x̃M = log τM

1−τM
. Importantly, the objective functioñr(·) is

concave inx̃, since (i) the first term is linear; (ii) expanding
the (1 + ex̃)n term, it can be verified that the second term is
convex [26]; and (iii) the third term is constant. Hence, for
any x̃ = αx̃m + (1 − α)x̃M , 0 ≤ α ≤ 1 lying in the interval
[x̃m, x̃M ] we haver̃(x̃) ≥ αr̃(x̃m)+(1−α)r̃(x̃M ). It follows
immediately that the minimum of̃r(x̃) over interval[x̃m, x̃M ]
must be located at one of the boundary points.

Proof of Theorem 1:Let us denoteτm = τopt −∆ and
τM = τopt +∆. By Lemma 2,ropt − 1

n

∑

j rj is maximized
either whenτ̂i = τm ∀i or τ̂i = τM ∀i. For τ̂i = τm ∀i, we
have

1

n

∑

j

rj =
τm(1− τm)n−1l

Ts,m
≥

τm(1− τopt)
n−1l

Topt
(18)

whereTs,m andTopt are the values ofTs when τi = τm ∀i
andτi = τopt ∀i, respectively. From the above,

ropt −
1

n

∑

j

rj ≤ (τopt − τm)
(1 − τopt)

n−1l

Topt

= ∆
ropt
τopt

≤ ∆
ropt

τopt(1− τopt)

from which we have that (3) holds for this case.
We next address the caseτ̂i = τM ∀i. If τM > 2τopt, it is

easy to see that (3) holds, as in this case∆ > τopt and thus
ρn∆ > nropt. To prove that (3) also holds forτM ≤ 2τopt,
we proceed as follows. Letr(τ) be the throughput of a station
as a function ofτ when τ̂i = τ for all i. Then,

ropt − r(τM ) =

∫ τopt

τM

dr(τ)

dτ
dτ (19)

with ∂r(τ)
∂τ = l(1−τ)n−2(Ts−nτTt)

T 2
s

. We next show that the above
derivative is negative in the intervalτ ∈ [τopt, τM ]. The sign of
the derivative depends on that of the termTs−nτTt. Since the
throughput is maximized atτopt andn > 1, the derivative at
τ = τopt is 0 (when the number of stationsn > 1 the optimum
attempt probability must lie in the interior of[0, 1]n), and so
Ts−nτTt=0. The derivative ofTs−nτTt is n(1−τ)n−1(Tt−
Te) − nTt, which is negative forτ ∈ [0, 1]. Thus,Ts − nτTt

equals 0 atτ = τopt and decreases afterwards, which implies
that Ts − nτTt < 0 for τ > τopt. With this, (19) can be
rewritten as

ropt − r(τM ) = −

∫ τopt

τM

∣

∣

∣

∣

dr(τ)

dτ

∣

∣

∣

∣

dτ (20)

which can be bounded as follows:

ropt − r(τM ) ≤ −

∫ τopt

τM

∣

∣

∣

∣

dr(τ )

dτ

∣

∣

∣

∣

max

dτ =

∣

∣

∣

∣

dr(τ )

dτ

∣

∣

∣

∣

max

(τM − τopt)

(21)

where|dr(τ)/dτ |max is an upper bound for the absolute value
the derivative in the intervalτ ∈ [τopt, τM ]

To find |dr(τ)/dτ |max, we proceed as follows. Given that
τ ∈ (τopt, τM ] and τM ≤ min(2τopt, 1), we want to evaluate
dr(τ)/dτ at τ = Kτopt for 1 < K ≤ min(2, 1/τopt), which
yields

∂r(τ)

∂τ
=

l(1−Kτopt)
n−2(TK − nKτoptTt)

T 2
K

(22)

whereTK is the value ofTs for τi = Kτopt ∀i. Note that,
for K > 1, we haveTK > Topt and TK − nKτoptTt < 0
(the latter holds since we have earlier shown that the term
Ts − nτTt is negative forτ > τopt). With this, the absolute
value ofdr(τ)/dτ can be bounded by

∣

∣

∣

∣

dr(τ)

dτ

∣

∣

∣

∣

≤
l(1− τopt)

n−2(nKτoptTt − Topt)

T 2
opt

(23)

Before, we have shown that the termTs − nτTt is equal
to 0 at τ = τopt, i.e., Topt − nτoptTt = 0. Adding this
term tonKτoptTt −Topt gives(K − 1)nτoptTt. Furthermore,
sinceTopt = nτoptTt, this can be expressed as(K − 1)Topt.
Combining this with the above equation yields:
∣

∣

∣

∣

dr(τ)

dτ

∣

∣

∣

∣

≤
l(1− τopt)

n−2(K − 1)

Topt
≤

l(1− τopt)
n−2

Topt
(24)

Finally, combining the above bound on the maximum value
of the derivative with (21) leads to:

ropt −
1

n

∑

j

rj ≤
l(1− τopt)

n−2

Topt

(τM − τopt) =
ropt

τopt(1− τopt)
∆

from which (3) also holds for this case.

B. Proof of Theorem 2

Once again, we proceed by establishing a number of in-
termediate Lemmas, and then present the proof of Theorem
2.

Lemma 3.

(i)
∑

j 6=i

(rj(τ̂ )− ri(τ̂ )) ≤
(n− 1) l

Tm
(τ̂M − τ̂i)

(

1−
τopt
2

)n−2

(ii)
∑

j 6=i

(rj(τ̂ )− ri(τ̂ )) ≥
(n− 1) l

Tm
(τ̂m − τ̂i)

(

1−
τopt
2

)n−2

with n ≥ 2, τ̂M = maxi∈{1,··· ,n} τ̂i, τ̂m = mini∈{1,··· ,n} τ̂i,
τopt
2 ≤ τ̂k ≤ 1.

Proof: (i) Since ri ≤ rM we have
∑

j 6=i (rj − ri) ≤
∑

j 6=i (rM − ri) = (n − 1)(rM − ri). Substituting from (1)
and rearranging we have

(n− 1)(rM − ri) =
(n− 1) l

Ts
(τ̂M − τ̂i)

∏

k 6=i,M

(1− τ̂k)

(a)

≤
(n− 1) l

Tm
(τ̂M − τ̂i)

(

1−
τopt
2

)n−2

where(a) follows from the fact thatτopt2 ≤ τ̂k ≤ 1 andTs ≥

Tm := Tt +(Te−Tt)
(

1−
τopt
2

)n
(the latter holds sincêτj ≥

τopt
2 ).
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(ii) Since ri ≥ rm we have
∑

j 6=i (rj − ri) ≥ (n −
1)(rm − ri). The second part of the result now follows using
an identical argument to (i).

Lemma 4. (i) τ̂m − τ̂i ≥ τm − τi and (ii) τ̂M − τ̂i ≤ τM − τi,
where τm = mini∈{1,··· ,n} τi, τM = maxi∈{1,··· ,n} τi, τ̂j =
max{

τopt
2 , τj}.

Proof: (i) When τi ≥
τopt
2 then τ̂i = τi. Sinceτ̂m ≥ τm

it follows that τ̂m − τ̂i ≥ τm − τi. When τi <
τopt
2 , then

τ̂m = τ̂i =
τopt
2 , and hencêτm−τ̂i = 0, while τm−τi ≤ 0. (ii)

Whenτi ≥
τopt
2 thenτ̂i = τi, τ̂M = τM andτ̂M−τ̂i = τM−τi.

When τi <
τopt
2 we have two cases: (a) ifτM <

τopt
2 then

τ̂M − τ̂i = 0 ≤ τM − τi; (b) if τM ≥
τopt
2 then τ̂M − τ̂i =

τM − τ̂i ≤ τM − τi sinceτi ≤ τ̂i.

Lemma 5. When γ < γmax =
(

nl
Tm

(

1−
τopt
2

)n−2
)−1

,

D(τ̂ ) < 0 andn ≥ 2 then under update (5),

τi (t+ 1) < τM (t+ 1) if τi (t) < τM (t) (25)

whereτM = maxi∈{1,··· ,n} τi

Proof: It is sufficient to show that

τi + γ





∑

j 6=i

(rj − ri)− Fi



 < τM + γ





∑

j′ 6=M

(

r
′
j − rM

)

− FM





where we drop thet arguments from all quantities to stream-
line notation. SinceFi = FM , i = 1, · · · , n whenD < 0 this
simplifies toγn (rM − ri) < τM − τi. Substituting from (1)
we obtain

γ
nl

Ts
(τ̂M − τ̂i)

∏

j 6=i,M

(1− τ̂j) < τM − τi (26)

By Lemma 4,τ̂M − τ̂i ≤ τM − τi and a sufficient condition
for (26) is γ nl

Ts

∏

j 6=i,M (1− τ̂j) < 1. Since τ̂j ≥
τopt
2 , this

holds whenγ < γmax.

Lemma 6. Under the conditions of Lemma 5,τM (t+ 1) ≤
τM (t), with equality only whenτj = τopt, j = 1, · · · , n.

Proof: It is sufficient to show that

τM + γ

(

∑

i

ri − nrM −
nropt −

∑

i ri
n− 1

)

≤ τM (27)

with equality only whenτj = τopt, j = 1, · · · , n. Whenτj =
τopt, equality holds. Assume now thatτj 6= τopt for somej.
Sinceγ > 0, the above condition is satisfied when

rM +
∑

i6=M

(ri − rM )− ropt < 0 (28)

If τ̂M = 1, then (28) is satisfied sincen > 1 and ri = 0
for i 6= M . Suppose thereforêτM < 1 and define function
G = rM+

∑

i6=M (ri − rM )−ropt. The partial derivative ofG

with respect tôτi is given by ∂G
∂τ̂i

= ∂ri
∂τ̂i

+
∑

j 6=i,M
∂(rj−rM)

∂τ̂i
.

It can be verified that∂ri/∂τ̂i > 0 (sinceτ̂j ≤ τ̂M < 1). Also,

∂(rj − rM )

∂τ̂i
=−

l

T 2
s

(

τ̂j
1− τ̂j

−
τ̂M

1− τ̂M

)

×

(

∏

k 6=i

(1 − τ̂k)Ts +
∏

k

(1 − τ̂k)
∂Ts

∂τ̂i

)

≥ 0

since∂Ts/∂τ̂i > 0 and τ
1−τ is monotonically increasing inτ .

Hence∂G/∂τ̂i > 0, which implies thatG takes a maximum
for the largest possible value of̂τi, for all i 6= M . Since
τ̂i ≤ τ̂M , this means thatG is maximized when̂τi = τ̂M
for all i. In this case, (28) becomesrM − ropt < 0. Since
ropt is the maximum throughput when all stations use the
same transmission attempt probability,rM − ropt = 0 only if
τ̂M = τopt. But by assumptionτM 6= τopt and so we must
haverM − ropt < 0.

Proof of Theorem 2:To establish global asymptotically
stability we show that‖τ (t+ 1)−τ opt‖∞ < ‖τ (t)−τ opt‖∞
unless τ (t) = τ opt. By definition, ‖τ (t) − τ opt‖∞ =
max (|τM (t)− τopt| , |τm (t)− τopt|), whereτM and τm are
the maximum and minimum values of the elements of vector
τ respectively. We proceed in a case-by-case fashion.

Case 1: τM (t) > τopt, ‖τ (t) − τ opt‖∞ = τM (t) − τopt.
For ‖τ (t+ 1)− τ opt‖∞ < ‖τ (t)− τ opt‖∞ we require

|τi (t+ 1)− τopt| < τM (t)− τopt, i = 1, · · · , n (29)

Substituting from (5) and (7), (29) is satisfied provided:

τi + γ





∑

j 6=i

(rj − ri)− Fi



− τopt < τM − τopt (30)

τi + γ





∑

j 6=i

(rj − ri)− Fi



− τopt > τopt − τM (31)

where the dependency ont has been omitted to simplify
notation.

Case 1a (Fi = −D/n: τi ≤ τopt, nropt ≥
∑

j rj). Using
Lemma 3 plus Theorem 1 with∆ = τM−τopt, (30) is satisfied
provided

γ

(

(n− 1) l

Tm

(τ̂M − τ̂i)
(

1−
τopt

2

)n−2

+ ρ(τM − τopt)

)

< τM − τi

(32)

By Lemma 4,τ̂M − τ̂i ≤ τM − τi. Also, by assumptionτi ≤
τopt and soτM − τi ≥ τM − τopt. It then follows that (32)
(and so (30)) is satisfied provided

γ < γmax <

(

(n− 1) l

Tm

(

1−
τopt
2

)n−2

+ ρ

)−1

(33)

Since−Fi =
D
n ≥ 0, (31) is satisfied provided

γ
∑

j 6=i

(rj − ri) > 2τopt − τM − τi (34)

By assumption|τM − τopt| ≥ |τm − τopt| and so τm ≥
2τopt − τM . Also, by assumptionτi ≤ τopt < τM and so
τm < τM , rm < rM . If τi = 2τopt − τM then ri = rm and
(34) holds providedγ > 0 (the RHS equals 0 while the LHS
is lower bounded byγ(rM − rm) > 0). Otherwise, suppose
τi > 2τopt − τM . By Lemma 3, (34) is satisfied provided

γ
(n− 1) l

Tm
(τ̂m − τ̂i)

(

1−
τopt
2

)n−2

> 2τopt − τM − τi

By Lemma 4,̂τm−τ̂i ≥ τm−τi. And τm−τi ≥ 2τopt−τM−τi.
Hence, (34) is satisfied provided

γ <
n

n− 1
γmax =

(

(n− 1) l

Tm

(

1−
τopt
2

)n−2
)−1

(35)
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Case 1b (Fi = D
n : τi > τopt, nropt ≥

∑

j rj). From
nropt ≥

∑

j rj , it holds thatFi =
D
n = ropt −

1
n

∑

j rj ≥ 0.
If τi = τM then either (i) τj = τi for all j, in which case
Fi > 0 and

∑

j 6=i (rj − ri) = 0, or (ii) τj < τi for some
j, in which case

∑

j 6=i (rj − ri) < 0 and (as mentioned
above)Fi ≥ 0. In both cases, (30) is satisfied. Otherwise,
we haveτi < τM . SinceFi ≥ 0, (30) is satisfied provided
γ
∑

j 6=i

(rj − ri) < τM − τi. By Lemma 3, this holds provided

γ
(n− 1) l

Tm
(τ̂M − τ̂i)

(

1−
τopt
2

)n−2

< τM − τi (36)

By assumption,τi > τopt and soτ̂i = τi, τ̂M = τM . Also,
τM − τi > 0. Hence, (36) holds whenγ satisfies (35).

Using Lemma 3 plus Theorem 1 with∆ = τM − τopt, (31)
is satisfied provided

γ

(

(n− 1) l

Tm

(τ̂i − τ̂m)
(

1−
τopt

2

)n−2

+ ρ(τM − τopt)

)

< τi − (2τopt − τM ) (37)

By assumption,τm ≥ 2τopt − τM and so by Lemma 4,̂τi −
τ̂m ≤ τi − (2τopt − τM ). Also, by assumptionτi > τopt and
so τi − (2τopt − τM ) ≥ τM − τopt. It then follows that (37)
(and so (31)) is satisfied whenγ satisfies (33).

Case 1c (Fi = D/ (n− 1): nropt <
∑

j rj). By Lemmas
5 and 6,τi (t+ 1) < τM (t+ 1) < τM (t) and so (30) is
satisfied (observe that the LHS of (30) isτi (t+ 1) − τopt).
SinceFi ≤ 0, (31) is satisfied providedγ

∑

j 6=i (rj − ri) >
2τopt − τM − τi. By Lemma 3, this holds provided

γ
(n− 1) l

Tm
(τ̂i − τ̂m)

(

1−
τopt
2

)n−2

< τi − (2τopt − τM )

By assumption,τm ≥ 2τopt−τM and by Lemma 4,̂τi− τ̂m ≤
τi − (2τopt − τM ). Hence, the above holds (and so (31) is
satisfied) whenγ satisfies (35).

Case 2: τM (t) < τopt or ‖τ (t) − τ opt‖∞ 6= τM (t) −
τopt. In this case, it necessarily holds thatτm (t) < τopt and
‖τ (t)− τ opt‖∞ = τopt − τm (t). For ‖τ (t+ 1)− τ opt‖∞ <
‖τ (t)− τ opt‖∞ we require

τi + γ





∑

j 6=i

(rj − ri)− Fi



− τopt < τopt − τm (38)

τi + γ





∑

j 6=i

(rj − ri)− Fi



− τopt > τm − τopt (39)

Case 2a (Fi = −D/n: τi ≤ τopt, nropt ≥
∑

j rj ). By
Lemma 3 and Theorem 1 with∆ = τopt − τm condition (38)
is satisfied provided

γ

(

(n− 1) l

Tm

(τ̂M − τ̂i)
(

1−
τopt

2

)n−2

+ ρ(τopt − τm)

)

< 2τopt − τm − τi (40)

Sinceτi ≤ τopt then2τopt− τm − τi ≥ τopt − τm. By Lemma
4, τ̂M − τ̂i ≤ τM −τi. When‖τ (t)−τ opt‖∞ 6= τM (t)−τopt,
then |τM − τopt| < |τm − τopt| and soτm < 2τopt − τM i.e.
τM < 2τopt − τm. Hence,τM − τi < 2τopt − τm − τi. When
τM < τopt thenτM −τi ≤ τopt−τi = 2τopt−τm−τi−(τopt−
τm) ≤ 2τopt − τm − τi where the last inequality follows from

the fact thatτm ≤ τi ≤ τopt. It follows that (40) holds when
γ satisfies (33).

If τi = τm then (39) is satisfied sincerj − rm ≥ 0 and
Fi > 0 (unlessτi = τopt ∀i). Otherwise, ifτi > τm then since
Fi ≤ 0, (39) is satisfied providedγ

∑

j 6=i (rj − ri) > τm−τi.
By Lemmas 3 and 4, this holds whenγ satisfies (35).

Case 2b (Fi =
D
n : τi > τopt, nropt ≥

∑

j rj ). Note that
τM ≥ τi > τopt. Hence, to be in case 2 we must have
|τM − τopt| < |τm − τopt| and so τm < 2τopt − τM i.e.
τM < 2τopt − τm. If τi = τM then (38) is satisfied since
the LHS non-negative while the RHS is positive. Otherwise,
if τi < τM then sinceFi ≥ 0, (38) is satisfied provided
γ
∑

j 6=i (rj − ri) < 2τopt − τm − τi. By Lemma 3 this holds
when

(n− 1) l

Tm
(τ̂M − τ̂i)

(

1−
τopt
2

)n−2

< 2τopt − τm − τi (41)

As already noted,τM < 2τopt − τm and τM ≥ τi > τopt.
Hence,τ̂M − τ̂i = τM − τi < 2τopt − τm − τi. It follows that
(41) is satisfied whenγ satisfies (35).

Using Lemma 3 and Theorem 1 with∆ = τopt − τm,
condition (39) is satisfied provided

γ
(n− 1) l

Tm

(τ̂m − τ̂i)
(

1−
τopt

2

)n−2

+ γρ(τm − τopt) > τm − τi

Sinceτi > τopt, τ̂m− τ̂i ≥ τm−τi. Also, τm−τopt ≥ τm−τi.
It follows that the above holds whenγ satisfies (33).

Case 2c (Fi = D/ (n− 1): nropt <
∑

j rj). Observe that
the LHS of (38) isτi (t+ 1) − τopt. By Lemmas 5 and 6,
τi (t+ 1) < τM (t+ 1) < τM (t). By assumption,τM (t) −
τopt < τopt − τm. Therefore, (38) is satisfied.

If τi = τm then (39) is satisfied. Otherwise, ifτi > τm
then sinceFi ≤ 0 condition (39) is satisfied provided
γ
∑

j 6=i (rj − ri) > τm− τi. By Lemma 3 this holds provided

γ (n−1)l
Tm

(τ̂i − τ̂m)
(

1−
τopt
2

)n−2
< τi−τm. By Lemma 4 this

holds whenγ satisfies (35).

C. Proofs of Theorems 3 and 4

Proof of Theorem 3:The GAS algorithm computesτi at
a given staget′ according to the following expression:

τi(t
′) = τ initiali + γ

t′
∑

t=0





∑

j 6=i

(rj(t)− ri(t))− Fi(t)



 (42)

If τi exceeds 1 at any stage, then it decreases in the next
stages until it goes below 1. Indeed, forτi > 1 we havêτi = 1,
which leads torj = 0 for j 6= i andFi > −ri, and thus from
the above expressionτi decreases. This implies thatτi can
never exceed1 + δ, whereδ is the maximum distance thatτi
can cover in one stage. From (7), we have thatδ ≤ γmax(C+
ropt, n(C − ropt)/(n − 1)), whereC is the maximum total
throughput of the WLAN. Therefore,τi never exceedsτmax =
1 + γmax(C + ropt, n(C − ropt)/(n − 1)). Taking this into
account, (42) yields

∑

t





∑

j 6=i

(rj(t)− ri(t))− Fi(t)



 ≤
τmax − τ initiali

γ
(43)
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Let us consider the case in which there is a selfish station
that changes its configuration over time and receives a through-
put rs(t) while the rest of the stations are well-behaved, using
the same configuration and obtaining the same throughput
r(t). Then the above can be expressed as

∑

t

rs(t) ≤
∑

t

(r(t) + Fi(t)) +
τmax − τ initiali

γ
(44)

If we now consider the throughput of the selfish user over
an intervalT , the average throughput over this interval can be
computed as:

rs =
1

T

∑

t

rs(t)Tbeacon (45)

From (44),

rs ≤
1

T

∑

t

(r(t) + Fi(t)) Tbeacon+

(

τmax − τ initiali

γ

)

Tbeacon

T
(46)

Since we considering a very large intervalT → ∞, the term
(

τmax−τ initial
i

γ

)

Tbeacon

T tends to 0, which yields

rs ≤
1

T

∑

t

(r(t) + Fi(t)) Tbeacon (47)

Let us consider now a given staget. From (12) we have

Fi(t) ≤
1

n− 1
(nropt − rs(t)− (n− 1)r(t)) (48)

which yields

(n− 1)r(t) + rs(t) + (n− 1)Fi(t) ≤ nropt (49)

Since the above equation is satisfied for allt,
∑

t

(n− 1)r(t) + rs(t) + (n− 1)Fi(t) ≤
∑

t

nropt (50)

Furthermore, from (47),

(n− 1)
∑

t

rs(t) ≤ (n− 1)
∑

t

(r(t) + Fi(t)) (51)

Adding the above two equations yields

n
∑

t

rs(t) ≤ n
∑

t

ropt (52)

from which

rs =
1

T

∑

t

rs(t)Tbeacon ≤
1

T

∑

t

roptTbeacon = ropt (53)

which proves the theorem. Since the right hand side of the
above equation is precisely the throughput that the selfish
station would get if it always played GAS, this shows that the
selfish station cannot benefit from using a different strategy
no matter how it changes its configuration over time. As the
proof does not make any assumption on the configuration of
the selfish station, this holds for any configuration of all the
802.11e parameters.

Proof of Theorem 4: The proof of Theorem 3 is inde-
pendent of the past history, and therefore it can be applied to
any subgame. This means thatAll-GAS is a Nash equilibrium
of any subgame.
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