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Thwarting Selfish Behavior in 802.11 WLANSs
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Abstract—The 802.11e standard enables user configuration of
several MAC parameters, making WLANs vulnerable to users
that selfishly configure these parameters to gain throughputin
this paper we propose a novel distributed algorithm to thwat
such selfish behavior. The key idea of the algorithm is for hoest
stations to react, upon detecting a selfish station, by using
more aggressive configuration that penalizes this statioVe show
that the proposed algorithm guarantees global stability wilie
providing good response times. By conducting a game theoiet
analysis of the algorithm based orrepeated games, we also show

A key challenge when designing such a penalizing scheme
is to carefully adjust the punishment inflicted to a misbe-
having station. Indeed, if the punishment is not severe, a
selfish station could benefit from misbehaving. However, an
overreaction could trigger the punishment of other station
leading to an endless loop of punishments. Our design makes
use of Lyapunov stability theory to address this challerge.
particular, one of the key novelties of the approach progose

its effectiveness against selfish stations. Simulation nelés confirm
that the proposed algorithm optimizes throughput performance
while discouraging selfish behavior. We also present an expe
mental prototype of the proposed algorithm demonstrating hat

in this paper is the combination of Lyapunov stability theor
techniques (which guarantee the stability and convergehce

the algorithm) and game theory techniques (which guarantee

protection against selfish behavior). The main contrimstiof

it can be implementated on commodity hardware. our paper are as follows:

o We propose a novel distributed algorithm that penalizes
selfish stations by making use of a more aggressive
configuration of the 802.11e parameters upon detecting
a misbehaving station.

We conduct a stability analysis of the algorithm to
show that when all stations implement our algorithm, the
WLAN converges to the optimal point of operation.

We conduct a game theoretic analysis based on repeated
games that shows that a station cannot benefit by deviat-
ing from the algorithm.

We extensively evaluate the performance of the proposed

I. INTRODUCTION

The mechanisms defined in 802.11e, which have been
incorporated into the revised version of the 802.11 stahdar
rely on a number of configurable parameters that can be®
modified by a simple command. This gives users total control
of the contention parameters used by their wireless adapter
allows them to modify the behavior of the wireless interface °
In this framework,selfishbehavior is particularly tempting:
users can very easily configure the 802.11e parametersiof the
station with aggressive values that increase their shatbeof °
medium at the expense of the other users. Such selfish behavio @lgorithm via simulation under a wide variety of condi-
can lead to severe unfairness in throughput distribution. tions that confirm its good properties.

A number of works in the literature have addressed thee We show the feasibility of implementing the algorithm
above selfishness problem. The approaches proposed can beby deploying a prototype and evaluating it in a small
classified in centralized [1]9[4] and distributed [5]-[7]he experimental testbed.
advantage of distributed approaches is that they do noorely ~ The rest of the paper is structured as follows. In Sedtibn Il
a central authority and thus can be used both in infrastrectuwve expose the selfishness problem in 802.11 and model it
and ad-hoc modes, in contrast to centralized approacheswifrom a game theoretic standpoint. Sectiod Ill presents the
can only be used in infrastructure mode. In this paper, v@dgorithm proposed. The algorithm is evaluated analyltigal
propose a novalistributedapproach based on game theory t&ectioIV: we first analyze its performance when all station
address the selfishness problem. implement the algorithm and then conduct a game theoretic

Game theory is a discipline aimed at modeling situatior@alysis for the case when stations may deviate from the
in which decision-makers or players have to choose specifilgorithm. The performance of the algorithm is exhausgivel
actions and obtain a gain that depends on the actions takeregluated via simulation in Sectidn] V and its feasibility of
all the players in the game. In our problem, the players aif@plementation is validated in Sectidn]VI by means of a
the 802.11e stations striving to obtain as much throughgut grototype. Finally, Sectiol Ml closes the paper with some
possible from the WLAN. Previous game theoretic analysesncluding remarks.
of WLAN [] have shown that, if selfish stations are not
penalized, the WLAN naturally tends to either great unfaés Il. SELFISHNESS IN802.11

or network collapse. Following this result, in this paper we |n this section, we briefly summarize the EDCA mechanism
focus on the design of a penalizing mechanism in which agy 802.11e and identify the selfishness problem. Then, we

player who misbehaves will be punished by other players apgesent a game theoretic model of this problem.
thus will have no incentive to misbehave.
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The 802.11e EDCA mechanism works as follows. When a
station has a new frame to transmit, it senses the channel.
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If the channel remains idle for a period of time equal to Both of the above families of solutions are highly unde-
the AIF'S parameter, the station transmits. Otherwise, if th&rable, as they lead either to extreme unfairness or n&twor
channel is detected busy, the station monitors the chamriél ucollapse. One alternative to avoid these undesirableisnkit
it is measured idle for amIF'S time and then executes ais to allow that users make new moves (i.e., change their
backoff process. 802.11e configuration) during the game. This can be modeled
When the backoff process starts, the station computes a rep-making use of the theory akpeated game§8]. With
dom number uniformly distributed in the rang@® CW — 1), repeated games, time is divided in stages and a player can tak
and initializes its backoff time counter with this valu€l¥  new decisions at each stage based on the observed behavior of
is called the contention window and for the first transmissiahe other players in the previous stages. Therefore, iffiskel
attempt the minimum value is used (i.€)W = CW,,;,) . In  station is detected to misbehave, the other stationgoaish
case of a collisiolCV is doubled, up to a maximum valuethis station and thus discourage such behavior.
CWmam-
As long as the channel is sensed idle, the backoff time
counter is decremented once every time digtand “frozen” C. Related work
when a transmission is detected on the channel. When théMaking use of repeated games| [5] ahd [6] have proposed
backoff time counter reaches zero, the station accesses tthie approaches to address the problem of selfishness in
channel in the next time slot. Upon accessing the channel3@2.11. The approach proposed by [5] is basedselective
station can transmit several consecutive frames for a iduratjamming if a station detects that another station is misbe-
given by theT XOP parameter. having, thereafter it listens to its transmitted packets an
A collision occurs when two or more stations start transwitches to transmission mod@mmingenough bits so that
mitting simultaneously. An acknowledgment (Ack) frame ishe packets cannot be properly recovered at the receivele Wh
used to notify the transmitting station that the frame hanbethe use of jamming punishes misbehaving stations, it has the
successfully received. If the Ack is not received withinaegi main drawback of relying on functionality not available in
timeout, the station reschedules the transmission byeegagt current wireless devices. Indeed, the implementation ohsu
the backoff process. If the number of failed attempts resich@ jamming mechanism would need to be performed at the
a predetermined retry limit, the frame is discarded. Onee thardware level and entails substantial complexity.
backoff process is complete@; W is set again taC'W,,,;,,. The approach proposed by! [6] does not suffer from the
As it can be seen from the above description, the behavioraifove drawback but addresses only two types of misbehaving
a station depends on a number of parameters, na@#ély,;,,, stations: the so-called selfish stations, withl” = 2, and the
CWinaz, AIFS and TXOP. As these are (according toso-called greedy stations, with’/ = 1. While the scheme
the standard) configurable parameters whose setting canpbeposed is effective when dealing with these two particula
modified by means of simple commands, a user can easilynfigurations, othetCWW configurations that may greatly
configure these parameters selfishly to gain extra throughphenefit selfish stations are neither detected nor punished by

We refer to this as theroblem of selfishness in 802.11 this mechanism, as we show in the simulation results of
Section[V-E. Additionally, the algorithm of [6] is based on
B. Game theoretic model heuristics that do not guarantee quick convergence, arethd

The above problem of selfishness in 802.11 can be model@d show in a further simulation result in Sectlon V-F thasthi
using game theory. Indeed, game theory is a discipline aim@@proach may suffer from convergence issues.
at modeling situations like the above in which players have t In this paper, we propose a novel approach based on
choose specific actions that have mutual, possibly comiticti repeated games that, in contrast to the previous two ap-
consequences. In our case, the players are the wirelelsmstatproaches, relies exclusively on functionality readily itatzle
which configure their 802.11e parameters to obtain as mughcurrent wireless devices and is effective against arfyskel
throughput as possible. configuration. Additionally, by relying on Lyapunov statyjl
The simplest way to model the interaction between playeigchniques, our approach is guaranteed to quickly converge
is by means of a static game. In a static game, each plajlee desired point of operation.
makes a single move and all moves are made simultaneouslyn addition to [5], [6], a number of additional works have
In our problem, this means that each station chooses itsgzonfieen devoted to address selfishness in wireless networks fro
uration at the beginning of the game, without any knowledgegame theoretic point of viewl[9]=[1L2]. Besides focusing on
of the configuration chosen by the other stations, and keepglifferent MAC protocol, these studies differ from ours in
this configuration for the entire duration of the game. that they consider some kind of transmission cost or pricing
The modeling of the selfishness problem in 802.11 basetechanism that plays a key role in the resulting equilidria.
on static games [5],]6] leads to the following two familiecontrast to these approaches, we achieve the desiredkequili
of Nash equilibria: in the first family, there is one playeath rium by means of a penalizing mechanism only.
receives a non-null throughput while the rest of the players The works in[[1]-[4] address, like ours, the issue of selfish
receive a null throughput, and in the second family, all ptay stations in 802.11 WLANs. However, in contrast to our dis-
receive a null throughput (the latter is known as thegedy tributed algorithm, these works propose a centralized@gugr
of the commonsthe selfish behavior of each player leads tand therefore can only be applied to a WLAN operating in
a tremendous misuse of the public good). infrastructure mode. Additionally, many of these apprasch



only address the detection of misbehaving stations while ou With the above, the objective of the GAS algorithm can
approach not only detects but also punishes selfish stationbe reformulated as to achieve the following two goalg: (
Substantial work in the literature has also focused amhen all stations implement GAS (i.e., they are well-belywe
the design of stable adaptive algorithms][18]3{18]. A majdhe system should converge to the target configuration given
difference between our algorithm and these approachesaiove; and i) if a selfish station misbehaves (by using a
that they build on local stability analysis while we rely ordifferent configuration from the target one), this statibowsd
Lyapunov stability theory, which ensures global asymptothot obtain any benefit from such misbehavior.
stability and hence provides stronger guarantees. Indeiéd, In the following, we address the design of the GAS algo-
[13]-[18] convergence is only guaranteed as long as thialinitrithm. Like the previous works of [5][]6], in the design of
point is sufficiently close to the stable point of operatiohjle the algorithm we assume that all stations are saturated (i.e
we guarantee convergence for any initial point of operationalways have a packet ready for transmission), they are in the
Perhaps the most closely related to this paper is our previdtansmission range of each other (i.e., no hidden nodes) and
work of [18], which uses a similar technique to counteralft seuse the same modulation-coding scheme. In the simulations
ish stations, based also on repeated games. However, lethstction, we show that the proposed algorithm can be extended
scope of the work and the algorithm design are substantialty effectively prevent selfish behaviors with non-satutate
different. Indeed, while[[18] focuses on distributed ogpois- stations. While the design assumes no hidden terminals, the
tic scheduling, here we address the problem of selfishnessalgorithm also works for hidden terminals as long as the
802.11. Furthermore[ [18] relies on local linearized asialy RTS/CTS mechanism is used. Furthermore, in case of differen
while here we use Lyapunov theory for the global design amdodulation-coding schemes, the algorithm can be applied to
analysis of the algorithm. As a consequence, the algorittenforce the target configuration proposedlin [21].
proposed in this paper provides much stronger guarantees on

stability and convergence than that bf[18]. B. Computation oW,
We use the model of [17] to compute the throughpuof
[1l. GAS ALGORITHM stationi as
In this section, we present our algorithm to address the-prob .=~ 1 12— 7 I~ L_+Y (1
lem of selfishness in 802.11, which we c&hme-theoretic "*\7) = T.(7) Tll;[i( ~h) S TR TR ,_1( -n) @
Adaptive Stabl§GAS) algorithm. In the following, we first . R ! R - _]7 )
present the objectives pursued and then describe the thigoriwhere # = [71,---,7,] are the probabilities that a station
design to achieve these objectives. transmits in a slot timen is number of active stations in

the WLAN, [ is the packet length in bitsTs(7) = T; +

) L (Te. = Ty) I[; (1 — 7;) is the average duration of a slot time in

A. Algorithm objectives and scope secondsy; the duration of a transmission afigd the duration
The central objective of the GAS algorithm is to drivedof an empty time slot.

the configuration of the 802.11e EDCA parameters to theBy [22, Lemma 1], the rate region boundary is the set

target values that maximize the overall WLAN performancef throughput vectors such that!" | T,;.,(#) = 1 where

To achieve this objective, GAS enforces that a selfish statig,;, ;,(#) = TZ% is the fraction of airtime (including

cannot benefit from using a different configuration, whicb-pr both successful and colliding transmissions) used byastati

vides stations with an incentive to use the target configamat ;. When all stations use the same transmission probability, i
Following the arguments given in][5]_[19]. [20], in thisfollows immediately that the value,,; maximising throughput

paper we aim at the following setting of the four EDCAs the unique solution to

parameters, which maximizes the throughput performance of

the WLAN (hereafter we refer to this setting as ttaget

configurationor optimal configuratioi

1—TLTOpt Te
T lopt e 2
(1_Topt) Tt ( )

o The AIFS parameter is set to its minimum valueOnce we have,,; thenCW,,; = %P —1. WhenZ is small,
(AIFS = DIFS). an accurate approximation W,,, = n QT—Tt —1.

o TheT XOP parameter is set such that one packet is trans-
mitted upon accessing the chann&OP = 1 packet).

« The maximum backoff stage: is set equal to f. This Theorem 1. Consider the ballCx = {7 : # € [rop —
yields the same value fo€W,,;,, and CW,,4. (i.€., A, Tope+A]"} @aroundr,,;, With 0 < 7, — A < 75, + A < 1
CWnae = CWinin); in the following, we refer to this andn > 2. For any 7 € Cx the following inequality holds:
value simply asCV.

The following fundamental property will also prove useful:

« The CW parameter is set equal to the value that, given D(#) 1= nrop, — er (7) < npAk ©)
the above setting for the other parameters, maximizes the J
throughput of the WLAN when all stations are saturateavhere p = % ropt 1S the maximum achievable
Hereafter, we refer to this value &5V,,;. throughput of a station when = 7; Vi, j andr,,, is the value

of the transmission probability that leads to this throughp
1The maximum backoff stage is defined as the number of timdstttiea .
CW is doubled until reachingWnaz (i.e., CWinaz = 2"CWinin). Proof: See Appendix.



This theorem bounds the differend@(7) between the of all stations should converge to the optimal vattyg,. To

optimum and actual WLAN sum-rate throughput. meet the above requirements we selgcas follows
9i(t) = p_ (rj(r) —ri(7)) = Fi(7) @)
C. Algorithm description ; !

Following the theory of repeated gamés [8], GAS impleyhereF;(r) is a function that we design below. Observe that
ments anadaptive algorithmin which each station updates, (1) consists of the following two components, each of which
its CW at every stage, while keeping the configuration afifills one of the requirements identified above:
the other parameters fixed to the values provided in Section The fi

- i . =" " The first componenty" .. r;(7) — r;(7), serves to pun-
J#i I ?
EE'E Lhe cer_ththlde_a be?}'nd EAS is that, wgen astationis jsp selfish stations: if a statianreceives less throughput
etected as misbehaving, the other stations reduce@i€iin -~ 5, the other stations, this component will be positive
subseq_uent stages to prevent this selfish station from tiegefi and hence station will increase its transmission proba-
from misbehaving. ) i i i bility 7; to punish the other stations.
A key challenge in GAS is to carefully adjust the reaction The second component; (), drives the system to the

against a selfish station. Indeed, as mentioned in the intro- target configuration in the absence of selfish behavior.
duction, if the reaction is not severe enough a selfish statio . .
RegardingF;(7), to drive ; to the target valuer,,, we

may benefit from its misbehavior, but if the reaction is tog " .
uire F;(7) to be positive whenr; > 7,,;, and negative

: e
severe the system_may_becqme unstable by entering an endrl?lgtsarwise. Furthermoré; () should not allow selfish stations
loop where all stations indefinitely reduce thélil” to punish

each other. In order to address this challenge, we design GSQSObtam a throughput gain over well-behaved stations. To

using techniques from Lyapunov theofy [23] that prevent g insight, we first cqn3|der stea_dy-state _operatl_on,cw_m
L : . . . ||['an|es that selfish stations play with a static configumtio
system from entering into a spiral of increasing punishmen

and consider the case when all stations but a selfish one
that lead to throughput collapse and guarantee thatthé implement GAS. (In the analysis of SectibiV-B we show
of all stations converges ©'W,,,,. P ' y

The iterative GAS update of tH&IV” values can be modeledthat GAS is also effective against selfish strategies thangé

as a discrete time dvnamical svstemn whose state is ivent e configuration over time.) In steady-state the LHS and RHS
y Y g or’update[(¥) must be equal for those stations using GAS, i.e.

T = [11,72,...,Ta], Wherer; is related to the probability with =" ™7 "= .
which station: transmits in a slot time. That is: gi(T%) =0 ¥i # s and so
T(t+1) = f(r (1) @ BT =2 () —ri(r ) = (r) = () (@)

J#i
where f : R™ — R” is a non-linear function that models theyhere s is the selfish station;(7>°) is the throughput of a
system dynamics. The main design challenge is to determijg|..behaved station (which, by symmetry, is the same for al
the function f. To this end, we adopt a standard feedbacd,ch stations in steady-state) and teesuperscript indicates
approach[[24] and update at each stage as: values when the system is in steady state. We require that
(1) =7 (1) 4y (r(1)), i=1,--.n (5 thethroughputof a selfish station does not exceed the target

throughputrs(7°°) < 74, That is,
where~ > 0 is a scalar parameter ang: [0,1]" — [0,1] .
In order to allow for larger values of, which reduces ;. (+) =+ (+°°) + (n — 1)r(7%°) + (n — 1)(rs (1) — 7(+™))
the convergence time of the algoritlﬁ“nwe impose that

the probability of transmitting in a slot time does not fall = er(rm) + (n—1)Fi(T%) < nrope 9)
below 7,,,/2. Similarly, if 7,(¢) exceeds 1, we transmit with j=1
probability 1. Thus, which is satisfied when

7i(t) = min(1, max(r;(t), Topt/2)) (6) Fi(r) € ——D(r) (10)

n—

where7;(t) is the probability that the stationtransmits in a \yhere
slot time after imposing the above constraints. Givgin), the D(T) = nrop — Z ri(T) (11)
CW parameter of station at staget is CW;(t) = T

|
7,\—1' t :
We next address the design of functign in . Our o : ' . .
. € desig . gn In déﬁ . The intuition here is that when a selfish station misbehaves,
requirements when designiggare twofold: ¢) selfish stations . : .
. receives more throughput than the well-behaved stations
should not be able to obtain extra throughput from the WLAL, . . .
his, however, moves the point of operation away from

by following a different strategy from GAS, andiY as long the optimal one, reducing the overall efficiency in terms of

as there are no selfish stations that deviate from GASyithe
" %he aggregate throughput. The bouifd](10) ensures that the
2Following the 802.11e standard, which updates the configmraf the additional throughput received by the selfish station dass n
802.11e parameters at every beacon frame, we set the duefiia stage outweigh the throughput it loses due to the overall loss of
equal to the duration of a beacon interval. While the beaoterval can be ; ;
set to different values, it is typically set to 100 ms. agg_regate FhrothpUt' This gl_Jarantees that in Steadym'{
selfish station does not receive more throughput and hence

3The fact that imposing a lower bound epallows for largery values can - . .
be seen from the proof of Theordmh 2. does not benefit from misbehaving.



Following the above requirements, we seléttr) as: To apply this result we must find a Lyapunov functigrwith
these properties. Selecting (7 — 7.) = ||7 — Tello @S @

Fi(r) = I_)g()/)r;’ Tf z Topt i gETg i 8 (12) candidate Lyapunov function, with the equilibrium point =
i(1) = D(_}_);(n"’_ D, Te = T‘gt(_r) Z (;' = Topt = |[Topt -+ Topt] T, the proof of Theorerfll2 establishes that

This choice meets the design requirements set above for the I+ 1) = Toptlloo <7 (t) = Toptlloe (14)
function F; (r): (i) it satisfies[(ID), preventing selfish stationd hat is, Lyapunov equatiofi (IL3) is satisfied by this choice of
from obtaining any gain; andi#) for well-behaved stations V" and sor,, is a globally asymptotically stable equilibrium.
it fulfills Fi(t) > 0 for 7, > 7, and Fy(t) < 0 for It remains to select the value of the parameterThis
7i < Topt, Which drives the system to optimal operationi_nvolves a tradeoff: the smallef, the slower the rate of
The only exception is wherD(r) < 0: in this case[(70) convergence is; however, i is set too large the system
imposesE;(r) < 0 independent of the value of. However, risks instability (as shown by Theorel 2). Following the
as we show later in Sectidn IW}A, this does not affect theame rationale as thgiegler-Nicholsrules [25], which have
convergence of the algorithm to the desired point of openati been proposed to address a similar tradeoff in the context of
To compute update5) with these choices gofand £, classical control theory, we recommend setting half of the
each station only needs to measure at the end of every st4gkle at which the system turns unstable, he= Ymaa /2.
the throughput it has received during this stage as well @s th ) )
throughput that each of the other stations has recved. B. Game Theoretic Analysis
In the previous section we have seen that, when all stations
IV. ALGORITHM ANALYSIS implement GAS, the system converges to the target config-
_ ) ) uration, i.e., all stations play with; = 7., and receive
In this section we study analytically the performance of throughput equal to,,,. In this section we conduct a

the system. First, we prove that when all the stations aggme theoretic analysis to show that a selfish station cannot
well-behaved and implement the GAS algorithm, the WLAN htain more throughput than,,; by following a different

converges to the optimal configuration (Section IV-A). TheRirategy from GAS. In what follows, we say that a station is
we show that a selfish station does not have any incentivedgnestor well-behaved when it implements GAS to configure

deviate from the GAS algorithm (Section IV-B). its 802.11e parameters, while we say that itsifish or
misbehaving when it plays a different strategy from GAS to
A. Stability Analysis configure its parameters with the aim of obtaining some gain.

The game theoretic analysis conducted in this section as-
mes that users arational and want to maximize their own
benefit orutility, which is given by the throughput. The model

is based on the theory oépeated gamefg]. With repeated
games, time is divided into stages and a player can take new
decisions at each stage based on the observed behavior of the
other players in previous stages. This matches our algorith
where time is divided into intervals and stations updatér the
configuration at each interval. Like other previous anayse
on repeated games| [5],][6], we consider an infinitely remkate

We show that when all stations implement GAS, the WLAIgu
is driven to the optimal configuration, i.er; = 7oy Vi.

Formally, a pointr. € [0,1]™ is a said to be alobally
asymptotically stable equilibriuraf the system[{4) if{) Ve >
0 36 > 0 such that]|T (0) — T¢|| < d = [|T(t) — T|| < € V¢
and i) lim;_,, 7 (t) = 7. Y7 (0) € [0, 1]". These conditions
ensure that the system convergesrio independently of its
initial state and that the equilibrium point is unique. Wevdna
the following result:

Theorem 2(Global stability) The target configuratiom,,; = game, which is a common assumption when the players do
[Topt - ..Topt]T is a globally asymptotically stable equilibriumnot know when the game will finish. Using this model, the
point under update{5) provided following theorem shows the effectiveness of GAS against a
. selfish station. Note that the theorem does not impose any
< Yraam = ( nl (1 B Topt)”Q) restriction on the strategy followed by the selfish statiehich
Topt 2 may play with all the four 802.11e parameters changing their
andn > 2. setting over time.

Theorem 3. Let us consider a selfish station that uses a

Proof: See Appendix. , . ; .
The proof of Theoreni]2 makes use of Lyapunov's Olire(E;tonﬁguratlon that can vary over time. If all the other stai$o

method [23]. Namely, a point, is the globally asymptotically |mp!emept the GAS algorithm, the throughput received kg thi

stable equilibrium of the system if there exists a contim?—tatIon will be no larger tharrop:.

ous radially unbounded functiof” : R™ — R such that Proof: See Appendix.

V(T —7e)> 0¥ # 7, V(re) =0and Corollary 1. All-GAS is a Nash equilibrium of the game.

VTt +1) =7e) <V (T () =7 (13) Proof: By Theoreni B, if all other stations play GAS, then

sSimilarly to (3], 6], we rely on the broadcast nature of théreless the best response of this station is to play GAS as well since i

medium which provides WLAN stations with the ability to maes the FannOt beneﬂt_from playing a different strategy. Thi;GAS

throughput received by the other stations. is a Nash equilibrium. [ |



This shows that, if all stations start playing with no preigo 35
history, then none of them can gain by deviating from GAS.
In addition to this, in repeated games it is also important
to make sure that, if at some point the game has a givep ;5| )
history, a selfish station cannot take advantage of thistyist &
to obtain any gain by playing a different strategy from GASZ 2 1
The following theorem confirms thaAll-GAS is a Nash

Throughput (M

equilibrium of any subgame (wheresabgameis defined as e

the game resulting from starting to play with a certain higto 1t 1

Therefore a selfish station cannot benefit by deviating from ;

GAS independently of the previous history of the game. 05 Selfish station |
. o ; ‘ ‘ ‘ Honest station ——

Theorem 4. All-GAS is a subgame perfect Nash equilibrium 0 0 20 20 60 80 100 120 140

of the game. cw

S

Proof: See Appendix.

Fig. 1. Throughput of a selfish and a honest station as a amdif the
V. PERFORMANCEEVALUATION CW; of the selfish station.

In this section we thoroughly evaluate GAS by conducting
an extensive set of simulations to show thata selfish station
cannot benefit from following a different strategy from GAS,
and (i) when all stations are well-behaved, GAS provides
optimal performance, is stable and reacts quickly to change 14 ¢
For the simulations, we have implemented our algorithm
in OMNET++ (Mwv. omrmet pp. or g). The physical layer &
parameters of IEEE 802.11g and a fixed payload size of 15@ 10 &
bytes have been used in all the experiments. In the simoktiog g |
of Section§ V-A td_V-F, we focus on th€W parameter: we 3
assume that all stations (both honest and selfish) use a fixéd
configuration of theitdI F'S, T X OP andm parameters equal 4t
to the target configuration and play only with t68) param-
eter. Then, in the simulations of Section V-G we study all the
four parameters and show that selfish stations cannot obtain o
any benefit from any configuration of these parameters. dnles
otherwise stated, we assume that all stations are sendiffig tr Fig. 2. Throughput of a station with different strategies.
under saturation conditions. For all simulation result8%:9
confidence intervals are below 0.5%.
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A. Selfish station behavior a selfish strategy than by pIaying_GAS. To valid_ate this_ ltesu_l
| d in insiaht i he | ¢ the behavi we evaluate the throughput obtained by a selfish station with
n order to gain Insig tinto the |mpact of the behaviog, following strategies. In the first strategtdtic), the selfish

of a ;elflsh station W't.h the .GAS algonthm,.we evgluate tr‘Eetation uses the fixed configuration @#V; that provides the

rgsultmg throughput d|str|but|_on when a selfish stanpsua largest throughput, obtained from performing an exhaastiv

fixed CW; and all other stations implement GAS. Figlie Learch over all possible configurations (like in Figlte ). |

Ehows the throufghpu_t obtfa ilned by tgeb Se:iSh ?a:]ion a_md & second strategpd@aptive ), the selfish station periodically
onest one as a function of thaV; used by the selfish station, o CW,; = 2 to gain throughput and when it realizes that its

CJVS’ Wr;en thke].ref.arez :h 10 hstations in (t;ge/ WLlAN' ;Ne throughput is below-,,, it assumes that it has been detected
observe from this figure that there are SO0IB'; values 101 oo qeffish and switches back ©W; = CWyp. The third

which the selfish station obtam; a larger throughpgt than t trategy &daptive 2 is similar to the previous one but instead
honest one, and others for which the honest stations Obtslfnswitching back toC'IV, ., the station increases i&W; by
. opty ?

a Iarger_ throughput. However, as I_on_g as the selfish stafug_nln the last strategya@aptive 3, the selfish station decreases
plays with theC'W; value that maximizes its throughput, it;; CW, by 5 as long as its throughput is larger than in

does not receive more throulghput than the hones_t statiah, e previous stage and increases it by 5 otherwise. Flgure 2
hence dogs not ha\{e any gain over an honest station as a ret:?)%pares the throughput obtained with each of these skeateg
of its selfish behavior. against that obtained with GAS for different values. We
. ) ] ) observe that, when all other stations play GAS, a givencstati
B. Protection against selfish stations maximizes its payoff by playing GAS, as it obtains a larger
According to the game theoretic analysis conducted throughput with GAS than with any of the other strategies.
Section[IV-B, a station cannot obtain more throughput witfihis confirms the result of Theorem 2.
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TABLE |
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200 | | Y Fig. 4. Speed of reaction for different settings.
= . . .
g 100 In contrast, for a setting of this parameter 10 times smaller
50 | (label “y/10"), the reaction is very slow and even 5 minutes
0 ‘ ‘ ‘ ‘ ‘ afterwards, the selfish station is still receiving about 1pislb
0 50 100 150 200 250 300 extra throughput
Time (seconds) Since with a larger setting of the system suffers from

instability while with a smaller one it reacts too slowly, we
conclude that the proposed setting provides a good tradeoff
between stability and speed of reaction.

Fig. 3. System stability for different settings.

C. Throughput performance

The GAS algorithm has been designed with the goal of of- Comparison against other approaches
timizing throughput performance when all stations play GAS In order to illustrate the advantages of GAS over other
To verify this goal, we evaluate the throughput performaasce approaches, we compare the performance of GAS against
a function of the number of stationswhen all stations play CRISP [6] and the standard DCF configuration when there
GAS. As a benchmark against which to compare the through-a selfish station in the WLAN. In particular, we consider a
put performance, we consider a WLAN in which t68V; of WLAN with a selfish station that plays with théWW; value
all stations is statically set to the optimal vala8V,,,. The that maximizes its payoff and show the throughput received
results from the above experiment are illustrated in Tabledy an honest staticﬁ
We observe that the throughput performance resulting fromThe results, depicted in Figufé 5, show that GAS outper-
GAS follows very closely the optimal configuration. Based oforms very substantially CRISP and DCF. Since CRISP has
this, we conclude that the proposed algorithm is effective been designed to prevent only extremely selfish users with
providing optimal throughput performance. CW; = 2 or CW; = 1, a selfish user with a slightly larger
CW, goes undetected and can gain very significant throughput,
leaving honest stations with very low throughputs as shown

) . in the figure. With the standard DCF configuration, a selfish
To validate that our system guarantees a stable behavior, Wei . maximizes its gain witt'W; = 1, which yields zero
analyze the evolution over time of the parameié#; for our throughput for the honest stationsz. ’

~ setting and a configuration of this parameter 10 times larger
in a WLAN with 10 stations. We observe from Figure 3 that )
with the proposed configuration (label™, the CW; only F. Robustness to perturbations
presents minor deviations around its stable point of ojmrat  One of the goals in the design of GAS has been its
while if a larger setting is used (label(4”), the CW; has a robustness against any kind of perturbation. Indeed, as it
strong unstable behavior with drastic oscillations. has been proved by Theordmh 2, our system is guaranteed to
To investigate the speed with which the system readtgnverge to the desired point of operation independentef th
against a selfish station, we consider a WLAN with 10 statiof@tial state. Therefore, no matter the state to which thetesy
where initially all stations play GAS and then, after 5@s brought by a perturbation, it will always be able to reaove
seconds, one station changes(it/; to 2. Figurd % shows the In order to show the above feature, we consider the fol-
evolution of the throughput of the selfish station over tie. lowing experiment. In a WLAN with 15 stations, all running

observe from the figure that with our setting (label’); the
9 9 ( 9 ) 5To obtain theC'W; that maximizes the selfish station’s throughput, we

system_reacts _ql"iCkly' and in less than.a few .tens .Of Secom‘él% evaluated all possib&W; values and chosen the one that provides the
the selfish station does no longer benefit from its misbelavitargest throughput to the selfish station.

D. Stability and speed of reaction
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Fig. 5. Comparison against CRISP and DCF. Fig. 7. Protection of GAS against selfish strategies witlieckiht 802.11e
parameters.
— ‘ : : : : . er .11e parameters
5 GAS G. Other 802.11 t
§ 4 Affected station . . .
= 07 Other station - il In the experiments so far, we have considered that selfish
5 2 T : users only play with th&€'WW; parameter. However, according
5 1 i to the 802.11e standard, there are a number of additional
2, parameters a user can play with, namely the backoff stage
. the arbitration interframe spacél/ F'S and the transmission
% 5 ; ; i ;
z ffected station ] opportunity’X OP. In o_rder to show that a selfish user cannot
s, Other station - benefit from playing with any of these parameters, we have
A | conducted a number of experiments in which the parameters
= [ | are set to different values from the ones given in Sec¢ticAlll
2 5 For each of the settings considered for these parameters, th
5 4 6 8 10 12 14 16 18 20 selfish station uses th&W,,;,, that maximizes its thrpughput.
Time (s) The results of the above experiment are given in Figure 7
for differentn values. We observe that the selfish station never
Fig. 6. Robustness to Perturbations of GAS vs. CRISP. obtains any gain by deviating from GAS independent of the

parameters it plays with. We conclude that GAS is effective n
only against theC'W; parameter but also against all the other

GAS, we introduce a burst of errors that affect one of th%onfigurable parameters of the 892'118 stgndard. This ownfir
stations during one second. Figlide 6 shows the evolutiont81e re_sult of Theor_eIEB, aC(_:ordmg to which a s_tat|on cannot
the throughput of the affected station and one of the oth_l%?nef't from following a selfish strategy to configure (all of)

stations over time. The figure also shows the behavior peakidtS Parameters. This result is particularly relevant sitice
by CRISP under the same conditions. previous approachels|[5[.1[6] focus only on th&l; parameter

) _ and are not evaluated against any other parameter.
We observe from the figure that GAS quickly converges to

the desired point of operation after the perturbation. éuge
right after the perturbation the station that suffered thesb H. Non-saturated stations
of errors believes that the other stations are behavingbbifi 5o far we have assumed that all stations are saturated,
(as they have received a larger throughput) and plays withygich is the most relevant case for selfishness and the only
smallerC'W; for a while, which results in a larger throughpupne considered in[5],[]6]. However, GAS can be easily
for this station. However, after a short transient all st@igo aytended to support non-saturated stations as folloiysto(
back to playing with the optimal’IV;. avoid reacting upon other stations receiving more throughp

In contrast to the above, CRISP does not show a robuston-saturated station does not use the GAS algorithm to
behavior. With CRISP, the affected station play$/; = 2 compute its configurationj4) a saturated station only includes
after the burst to punish the others. These react by deageash the sum of [[¥) those stations that are receiving more
their CW; to 2 and eventually to 1, and from this pointhroughput, thus excluding the non-saturated statiorg{ar)
on stations keep punishing each other which brings the totalcomputeCW,,,, we take into account the sending rate of
throughput in the WLAN practically to 0. The WLAN remainsthe non-saturated stations (following, e.@.,1[20]). Towhbe
in this state for the rest of the simulation run, which is 30performance of GAS with non-saturated stations, we conside
seconds long (only the first 20 seconds are shown in the graph)VLAN with 10 stations, half of them saturated and the other



TABLE Il

half sending at a rate equal to half of the saturation thrpugh EXPERIMENTAL RESULTS

In this scenario, a station thaF behav_es selfishly usingthé Strategy | Strategy | Throughput | Throughput
value that maximizes its gain obtains a throughput of 4.51 station 1| station 2|  station 1 station 2
Mbps, while it would obtain 4.52 Mbps if it played GAS. (CW) | (CW3) (Mbps) (Mbps)
This confirms the effectiveness of the algorithm in thwaytin GZAS GQS }égiigg; }égfigéi
selfish behaviors in presence of non-saturated stations. 4 4 1431 +0.1 | 1431 +0.12
8 8 14.84 4 0.08 | 14.87 4 0.08
16 16 14.71 4 0.03 | 14.68 +0.04
VI. EXPERIMENTAL PROTOTYPE 32 32 13.68 + 0.06 | 13.72 % 0.06
One of the advantages of GAS is that it relies on function- 64 64 11.83+0.05 | 11.82+0.06
lity readily available in standard devices and therefae c 128 128 918003 | 9182003
ality y . 2 1244 +£0.01 | 1451 £0.12
be implemented with current off-the-shelf hardware. Inesrd 4 13.83+£0.11 | 14.78 £0.12
to show this, we have implemented our algorithm on Linux- GAS 186 11%%9510(5%6 }i-?gig-gg
based laptops. In this section, we report the experiencedai 32 1474+ 016 | 12.97 + 0.11
from this prototype. 64 14.03 £ 0.63 | 10.52+£0.31
Our implementation is based on Linux kernel 2.6.24 laptops 128 | 12.87+£0.37 | 7.78+0.16

equipped with Atheros AR5212 cards operating in 802.11a

mode and employing the MadWifi v0.9.4 driver. The GAS

algorithm runs as a user-space application. In order t@cbllis that users can selfishly configure the parameters used by
information about other stations’ throughput, GAS uses tBeir station to increase their share of throughput at the
virtual device configured in promiscuous mode and monitogpense of the other users. In order to prevent this undésira
all frames that belong to the same BSS. With this informatiopehavior, in this paper we design a novel adaptive algorithm
it computes the>W configuration by executing the algorithmcalled GAS Game-theoretic Adaptive StapléVith the GAS
described in Sectioh Il and updates the comput&d’,.;, algorithm, upon detecting a selfish station users react imgus
and CW,y,q, parameters in the driver every beacon interval more aggressive configuration of the parameters thatserve
by means of a privaté OCTL call. to punish the selfish station.

In order to validate our implementation, we deployed a A critical aspect in the design of such an adaptive algorithm
small testbed consisting of three laptops, two of them s&ndiis to carefully adjust the reaction against a selfish station
traffic to the third one. For the traffic generation, nodes raivoid that the system turns unstable by overreacting. By con
the i perf tool to generate 1470 byte UDP packets. Theucting aLyapunov stability analysisf the GAS algorithm,
sending rate at each station was set to 20 Mbps, ensurii@ show that, when all the stations in the WLAN run GAS,
that they always had a packet ready for transmission. Withe system is globally stable and converges to the desired
this setting, we ran the experiment and measured the megulttonfiguration. Furthermore, by conducting a game theoretic
throughput performance as a function of the configuratiaihalysis based omepeated gameswe show that a selfish
strategy followed by each of the two sending stations. In patation cannot benefit from playing a different strategynfro
ticular, we considered the following strategi¢s:both stations  GAS (neither with a fixed configuration nor a variable one).
employing the GAS algorithm to compute their configuration We exhaustively evaluate the performance of GAS by means
(ii) both stations using a fixedW configuration (for a wide of simulations and show thati) GAS is effective in optimiz-
range of CW values), and(iii) one station executing GASing throughput performancéji) it is also effective against
and the other one using a fix€dil configuration. selfish stations using a fixed or variable configurations, and

The results of the above experiments are provided in Tgii) it outperforms other approaches both in terms of protec-
ble[ll For each experiment, the average throughput and tien against selfish configurations and robustness. Aditiy,
standard deviation of 5 runs of 300 seconds each is giv&BAS is validated by means of an experimental prototype, con-
From these results, we draw the following conclusion$: (firming that it can be implemented on commodity hardware.
when all stations are well-behaved, GAS not only achieves a
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APPENDIX

A. Proof of Theorerll

We proceed by establishing two useful Lemmas, and then almost identical argument, it also follows that witenr< 0
present the proof of Theoreh 1.

Lemma 1. Consider the set of point§'(p.) = {7 :

[Tons Tar)™, Ty (1 =
C(pe
equal, i.e.r; =75, 4,5 € {1,2

wherez; = 7;/(1 —

T €
75) = pe}, 0 < 7, < Tar < 1. Over set
), the vector# minimising) ;" , r;(#) has all elements

-,n}.
n

l
T T T ict T
(T, — T})/T:. Minimising

Proof: By (@), > i, 7
7;) anda

min

— T < x; <z Vi
x;,i=1,2,---.,n

n n
S st [[0+e) =
1=1 j=1
which we can rewritten equivalently as
. n 1
Zhi_ninQn' Ze 1 s.t. Zzl log o s zm <z < zp Vi

wherez; = log(1412;), zm = log(1+zm), 2z = log(1+zar).
It is enough to show that any optimuat satisfiesz} = 27,
i,j€{1,2,---,n}.

The objective is convex, the equality constraint is linear
and the inequality constraints convex, hence this is a con-
vex optimisation. Sincer,, < 7, the Slater condition is
satisfied and so strong duality holds. The Lagrangiiars

Zezl —1—)\(221 log— +ZG
and the maln KKT condltlons are
oL
821' 2i=z*

n
—z)+ Y 0i(z — 2m)
=

=€ —A—0,+0;=0,i=12,---,n (15)

which must be satisfied by any optimal poiit Wheng, =
0=26;,i=1,2,---,n it follows from the KKT conditions
that the minimum occurs whetf = 27, i,j € {1,2 ,n}.
When ¢, > 0 for some: (and so by complementary
slacknesszf = z,,), we would like to show that we must
haved, > 0 for all i = 1,2,--- ,n (and soz] = z,, for all
i). Firstly, whenlog(1/p.) = nzn,, sincez; > z,, it follows
immediately thatz’ = z,, for all i. Otherwise, we proceed
by contradiction. Suppose thatz,, < log(1/p.) < nzy
and z! = z,, for somei. The elements o&* are therefore
not all the same value. Consider the pojnt= log(1/p.)/n,
i=1,2,--- ,n. This point satisfies the constraints

Zyz

and so is feasible. By the strict convexity of the exponéntia
we havenew 2i=1 % = nelog(l/pe)/n < S o=0 (with strict
inequality since the elements af are, by assumption, not
all the same value). Observing thel)_, e¥: = nelos(t/pe)/n,

it follows immediately thaty""" | e¥i < > | e yielding a
contradiction. That is, we must either have= z,, for all i

or zf # z,, for all <. Since in the case we are analyzing we
havez; = z,, for somei, this impliesz} = z,, for all i. By

log —7 Zm Sy < zZpm (16)

for somei, we must have:; = z,, for all 7. [ |

Lemma 2. Consider the set of point8' = {f
[T, 7)™}, 0 < 7 < 7y < 1. Over setC, the vector?

minimising }_""_, r;(¥) satisfies eitherr; = ,,, for all < or
7; = ) for all 7.

Proof: If 7,,, = 7 the result follows trivially. Suppose
thereforer,,, < 7p,. By Lemmall, minimising}_;" , r; s.t.
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Tm < 7 < 7Tm, 1 =1,2,--- ,nis equivalent to setting; = where|dr(7)/d7|max IS an upper bound for the absolute value

7, i=1,2,---,n and finding ar* solving the derivative in the intervat € [, Tas]

(1—#)m To find |dr(7)/dT|max, We proceed as follows. Given that

l (17) 7 € (Topt, Tm) @nd 7y < min(27,,¢, 1), we want to evaluate
dr(r)/dr atT = K7,y for 1 < K < min(2,1/7,,), which
Taking logs and letting: = ==, # = logz this optimisa- Yields

tion can be rewritten asing, <z<z,, 7(Z) with #(z) = & — _ n—2 _

1Og((1+ei)n+a)+1og%, 0= (T.~T)/ Ty, i = log 12, 3;(:) _ (1 — K7opt) T(2TK K TopiTt) (22)

Iy = log 72— Importantly, the objective function(-) is _ K

concave ing, since () the first term is linear;if) expanding Where Tk is the value ofI for ; = K., Vi. Note that,

the (1 + e®)™ term, it can be verified that the second term ifor K > 1, we haveTx > Top and Tk — nK7op Tt < 0

convex [26]; and i) the third term is constant. Hence, for(the latter holds since we have earlier shown that the term

anyz = az,, + (1 — )z, 0 < a < 1 lying in the interval Ts — n7T; is negative forr > 7,,;). With this, the absolute

[T, Zar] We haver (%) > af (F,,) + (1 — a)7(Za). It follows value ofdr(r)/dr can be bounded by

. nt
min

Tm <T<TMm 1 - 7A' Tt + (Te — Tt)(l — 7A')n

immediately that the minimum of(z) over int_erval[:Em, ] dr(7) U1 = Topt)" 2 (0K Top Ty — Topt)
must be located at one of the boundary points. [ | p < T2 (23)
Proof of Theoreni]1:Let us denoter,,, = 7., — A and T opt

™ = Topt + A. By Lemmal2,ro, — %Zj r; is maximized ~ Before, we have shown that the teffiy — n7T; is equal
either whens; = 7,,, Vi or 7; = mpy Vi. For7; = 7, Vi, we 10 O at7 = 7o, 1.6, Tope — n7oply = 0. Adding this

have term ton K 7,p: Ty — Tope Qives (K — 1)n1,,:1:. Furthermore,
1 T (1= 7)1 T (1 = Tope) "1 sinceI_“OPt = mopt_Tt, this can be expressgd Q8 — 1)Tpp.
- er = T > T (18) Combining this with the above equation yields:
X s,m opt
J
dr(7) (1= Top)" " 2(K — 1) 11— Tope)" 2
where Ty ,, andT,,; are the values of, whenr; = 7, Vi | S pT ) < pt (24)
andT; = 7,5 Vi, respectively. From the above, ) o o o ]
. Finally, combining the above bound on the maximum value
1 1 —7op)" 1 of the derivative with[(21) leads to:
Topt — — ZTJ' < (Topt - Tm)% [2n)
K J opt oL — 1 ZT_ < 1a— TOPt)n72 (TA1 — Topt) = Topt A
_ Aropt <A Topt ort n J 7= Topt M Pty Topt(l - Topt)
o - o 1_ o . .
Topt Topt(1 = Topt) from which [3) also holds for this case. [ ]

from which we have thaf{3) holds for this case.

We next address the case= s Vi. If 7ar > 275, it is
easy to see thal](3) holds, as in this cdse> 7,,; and thus B. Proof of TheorerEIZ o _
pnA > nr,,. To prove that[[B) also holds fan, < 27, Oncg again, we proceed by establishing a number of in-
we proceed as follows. Let(7) be the throughput of a stationtermediate Lemmas, and then present the proof of Theorem
as a function ofr when7; = 7 for all <. Then, -

Tort dp (T Lemma 3.
o =) = [ ar (19)

n—1)I1 Topt \ V2
‘ ) 3 rs(7) i) < Eo 2 =7y (1 - 72)
with 27 = M=t (LonrTi) ‘we next show that the above 77 "
derivative is negative in the intervale [Topt Taz). The sign of (i4) Z (r:(F) = ri(#)) > (n—1)1 (o — 72) (1 _ Tom)nﬂ
the derivative depends on that of the tefin-nrT;. Since the o / - 2
throughput is maximized at,,» andn > 1, the derivative at . o ) .
T = Topt is O (When the number of stations> 1 the optimum With 7 > 2, Tas = maXie(1, .. n} Ty T = Milic(1. 0} T,

1€ mo o M Topt < 7 < 1.
attempt probability must lie in the interior ¢6,1]"), and so 2

Ts —n7T;=0. The derivative of, —n7T; is n(l—7)" YT, — Proof: (i) Sincer; < ry we have): ., (rj —r;) <
T.) — nTy, which is negative for- € [0, 1]. Thus, T — n7T; S (rar —1i) = (n = 1)(rar — 7). Substituting from 1)
equals 0 atr = 7., and decreases afterwards, which impliegnd rearranging we have
that Ty — n7Ty < 0 for 7 > 7., With this, [19) can be ( 1)1

n—

rewritten as (n—1)(ry — 1) = o (Tar — 73) H (1—71)

Tovt | dr (T ki, M
Topt — T(Tar) = — (7) dr (20) B
s dr (a) (TL - 1)l N R Topt n—2
M Si(TM—Ti)(l——)
which can be bounded as follows: T 2
Tort | dr(7) dr(7) where(a) follows from the fact that™* < 7, < 1 andT >
Topt = 7(Tar) < = /TM dr maXdT I maX(TM ~Tont) T .— T, + (T. —Ty) (1 — T22¢)" (the latter holds since; >

(21) ).



(#¢) Sincer; > 7, we havez J(rg—mr) > (n —

12

sincedT,/07; > 0 and = is monotonically increasing im.

1)(rm — 7). The second part of the result now follows usinglencedG/d7; > 0, Whlch implies thatG takes a maximum

an identical argument ta) |

Lemma 4. (I) T —Ti = Tn — T and (II)7A']\4—7A'Z < Ty — Ti,
where 7, = min;eq,...

To
max{-g*, 7;}.

Proof: (i) Whenr; > then7; = 7;. Since7,, > 7,
it follows that 7,, — 7, > Tm — 7. Whenr; < 24, then

Topt

Y Tin TM = MaXje(1,... 0} Tiy Tj =

Topt

Tm = T; = —3*, and hencé,,, —7; = 0, while 7, —7; g 0 )
Whenn > Topt thenﬂ- = T, 7A']\4 =TM and%M—%i = TN —Ti-
When7; < 22 we have two cases: (a) ifyy < ™2 then
™ —Ti =0 < 7 — Tis (b) if a7 > Topt thenTM—n =
™ — T < Ty — T SinceT; < 7. | ]
o1

Lemma 5. Wheny < Ypae = (}” (1—%)” 2) ,
D(7) < 0 andn > 2 then under updatd{5),

Ti (t + 1) < Twm (t + 1) if Ti (t) < Tm (t) (25)

wherety = max;e(i,... n} Ti

Proof: It is sufficient to show that

i+ (Z(Tj _Ti)_Fi> <7Tm+7 ( > (ry—rum)
i J1EM

- FM)

where we drop theé arguments from all quantities to stream-

line notation. SinceF; = Fyy, i =1,--- ,n whenD < 0 this
simplifies toyn (ra — r;) < 7 — ;. Substituting from[{l)
we obtain

nl R
’yT (TA{—TZ) H (1—Tj) < TMm — T;
j#i,M
By Lemmal4,7y; — 7; < 7 — 7; and a sufficient condition
for 28) is v [T, 0 (1 =) < 1. Since; > 2%, this
holds wheny < vae- m

(26)

Lemma 6. Under the conditions of Lemnid 53, (t + 1) <

T (t), with equality only wherr; = 7, j = 1,--- ,n.
Proof: It is sufficient to show that
Nlopt — 9 s T
, i —nry — ———= | < 27
7'M+7<¥T nry n_1 )_TM ( )
with equality only whenr; = 7,,¢, j = 1,--- ,n. Whenr; =

Topt, €quality holds. Assume now thaf # 7,,, for somej.
Sincey > 0, the above condition is satisfied when

ra+ Y (ri =)
i£M
If 73y = 1, then [28) is satisfied since > 1 andr; = 0

for i #£ M. Suppose thereforé,; < 1 and define function

G = a4+ (1i — 7ar) —Tope- The partial derivative off
with respect tor; is given by §¢ = Gz + 37 . Yrgru)
It can be verified thadr; /07; > 0 (smcerj < 7y < 1). Also,

3(7’j—7’M)_L< >

on T2
[Ta-#r+]]0-%)
k

<
ki

— Topt < 0 (28)

™
1—7up

7

L =7
0T

)

>0

for the largest possible value &f, for all i # M. Since
7, < 7, this means thati is maximized whenr; = 7
for all i. In this case,[(28) becomes, — r,,; < 0. Since
ropt 1S the maximum throughput when all stations use the
same transmission attempt probability; — ., = 0 only if
Tm = Tope. BuUt by assumptionry; # 7,,; and so we must
havery; — ropt < 0. [ |
Proof of Theoren]2: To establish global asymptotically

stability we show thaliT (¢ + 1) — Topt|loo < |7 (£) = Topt || 0o
unlesst(t) = Top. By definition, |7 (t) — Topille =
max (|7ar (t) — Topt| , |Tm (t) — Topt|), WhereTy, and 7, are
the maximum and minimum values of the elements of vector
T respectively. We proceed in a case-by-case fashion.

Case 1 7 (t) > Topts ||T(8) — Toptllooc = Tar (£) — Topt-
For |7 (t+ 1) — Toptlloo < |I7 () — Topt]lco We require

|Ti(t+1)_7—opt|<7-]w(t) t=1,---.n (29)
Substituting from[(b) and{7)[(29) is satisfied provided:

— Topt,

T + 7y Z(Tj_ri)_ﬂ — Topt < TM — Topt (30)
J#i
T + Y Z (Tj - Ti) - E — Topt > Topt — TM (31)

JFi
where the dependency oh has been omitted to simplify

notation. )
Case la ; = —D/n: 7, < Topt, Nopt > . 75). Using

Lemmd3 plus TheoreM 1 with = 73/ — 71, is satisfied
provided
(n—l) (A _A‘)<1_Topt>”72+ ( _ ) < .
v Tm TM Ti 2 P\TM Topt TM Ti
(32)

By Lemmal4,7y; — 7; < 7 — 7. Also, by assumption; <
Topt @Nd SOTy; — 7; > Tar — Tope. It then follows that [(3R)
(and so[(3D)) is satisfied provided

) ) e

Since—F; = 2 >0, (33) is satisfied provided

7D
J#i
By assumption|ras — Topt| |7 — Topt| @and sor,, >
27opt — Tir- AlSO, by assumptionr; < 7., < Ta and so
T < Ty Tm < rar. If 7 = 2T0pt — 7y thenr; = r,, and
(34) holds providedy > 0 (the RHS equals 0 while the LHS
is lower bounded byy(ry; — ) > 0). Otherwise, suppose
7 > 27, — 7. By LemmalB, [(3K) is satisfied provided
— 1)1 > n—2
e ()
By Lemmdd7,,—7; > Ton—7i. AN T, — T > 2700 — T — T
Hence, [(3Y) is satisfied provided
n—2\ ~1
)7) e

™ — T (34)

— ’f‘z > 2T0pt

> 2T0pt —TmM — T

n —
n — 17777,(11 -

(n—l)l (1_T()2pt

<
Y T,
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Case 1b ¢; = %: Ti > Topts MTopt = Zj r;). From the fact thatr,,, < 7; < 7,,,. It follows that [40) holds when
nrope > Y, 7, it holds thatF, = 2 = r,,, — L3 r; > 0. 7 satisfies[(38).
If 7, = 7as then either {) 7; = 7, for all j, in which case If 7; = 7,,, then [39) is satisfied since; — r,, > 0 and
F;>0andy,, (rj—r) = 0,or (@) 7; < 7 for some F; >0 (unlessr; = 7, V). Otherwise, ifr; > 7,,, then since
j, in which case ; (r; —r;) < 0 and (as mentioned Fi <0, (39) is satisfied provided 3=, ,; (r; — i) > 7o — ;.
above) F; > 0. In both cases,[(30) is satisfied. OtherwiséBy LemmadB andl4, this holds whensatisfies [(3b).
we haver; < 7. Since F; > 0, (30) is satisfied provided Case 2b ¢ = 2: 7, > 7,5, nrop > >_;75)- Note that
72(7*]- —1;) < 7ar — 7;. By Lemma[3, this holds provided 7 > 7; > 7. Hence, to be in case 2 we must have
i |Tas — Topt| < |Tm — Topt| @Nd SOT,, < 274y — Tas €.
(n—1)i a2 ™ < 2Topt — Tm- If 7 = 7ar then [38) is satisfied since
— (T — F) (1 — O—”t) < TM —Ti (36) the LHS non-negative while the RHS is positive. Otherwise,
T 2 if 7; < 7as then sinceF; > 0, (38) is satisfied provided
By assumptions; > 7, and so7; = 7, Tm = Tm. Also, yzj# (rj —ri) < 2Topt — Tm — 7. By Lemmal3B this holds

v

v — 7 > 0. Hence, [(3B) holds when satisfies[(35). when
~ Using Lemmad B plus Theorelm 1 with = 73/ — 75y, (n—1)1 o
is satisfied provided ”T (Far — 71) (1 _ To2pt) < 2ot — Ton — 7 (A1)
((”_l)l(%-—% )(1—7"”t>"72+ (rar =7 )) "
"\, 2 PRTM = Topt As already notedsas < 27opr — T @Nd Tar > 75 > Topr.
<7 — (2Topt — Tar) @7 Hence, 7y — 7 = s — Ti < 2Topt — T, — 75 It fOllows that

. . is satisfied when satisfies .
By assumptiony, > 27, — 7ar @nd so by Lemmal4s; — @jL]}sing Lemmal[B Z/nd TheorE%S)l WIth = 75,0 — T,

Tm < Ti — (27opt — Ti). AlSO, by assumptiom; > 7o,; and - congdition [39) is satisfied provided
SO Ti — (27opt — Tar) > T — Topt- It then follows that[(3]7) ,
(and so[(31)) is satisfied whensatisfies[(3B). 7("; L (Fm — 71) (1 _ T";t)"* (T — Topt) > T — T
Case 1c ¢ = D/ (n—1): nrope < > .7;). By Lemmas m
and[®,7; (t+1) < 7 (t+1) < 7 () and so [(BD) is Sincer; > Topt, Ton —Ti > T — T3 AlSO, Ty — Topt > T — T
satisfied (observe that the LHS ¢f130)is(t + 1) — 7,,;). It follows that the above holds when satisfies [(3B).
Since F; < 0, (31) is satisfied provided >z (g — 1) > Case 2¢ ¢} = D/ (n — 1)t nrop < 3_;7;). Observe that
2Topt — ™M — ;- By Lemma3B, this holds provided the LHS of [38) is7; (t + 1) — 7. By Lemmas’b and6,
(n— 1)1 . Ti(t+1) <1 (t+1) < mar (2). By as_sgmptiong-M (t) —
o (Fi — m) (1 — %) < Ti— (2Topt — Tar)  Topt < Topt — Tm. Therefore,[(3B) is satisfied.
m If 7, = 7, then [39) is satisfied. Otherwise, i > 7,
By assumptiony,,, > 27,,; —as and by Lemma@l7; —7,,, < then sinceF; < 0 condition [39) is satisfied provided
7i — (27opt — 7). Hence, the above holds (and $01(31) i >, (r; — ri) > 7, — 7. By Lemma3B this holds provided
satisfied) wheny satisfies[(35). w (71— ) (1 %)nsz < 7. By Lemmad this
Case 2 7ar (1) < Topt OF [T (1) = Topilloo # Tar (1) = hods wheny satisfies[(35). [
Topt- IN this case, it necessarily holds that (t) < 7., and
17 (8) = Topt oo = Topt — Tim (). FOF || (¢ 4 1) = Tope oo <
7 (t) = Topt || so We require C. Proofs of Theorenis 3 and 4
Proof of Theorerfil3:The GAS algorithm computes at
(38) a given stage’ according to the following expression:

i+ Z(rj_ri)_Fi — Topt < Topt — Tm

i Y
(') = 7"l S Y () — (1) — Fi(t) | (42)
T+ Z (Tj - Ti) -F| - Topt = Tm — Topt (39) t=0 \ g7
s If 7, exceeds 1 at any stage, then it decreases in the next
Case 2a F, = —D/n: 7, < Top, nropr > »..7;). By stages until it goes below 1. Indeed, fgr> 1 we haver; = 1,
Lemmal3 and Theorel 1 with = 7,,; — 7, condition [38) which leads tor; = 0 for j # 4 andF; > —r;, and thus from
is satisfied provided the above expression decreases. This implies that can
(n—1)1 ) Topt \ "—2 never exceed + 4, whered is the maximum distance thaj
( — (P = 7) (1 - _) + p(Topt = Tm)) can cover in one stage. Frofd (7), we have that y max(C+
< 2Topt —Tm — T; @0)  ropt, n(C — ropt)/(n — 1)), whereC' is the maximum total

throughput of the WLAN. Therefore; never exceeds, .. =
1+ ymax(C + ropt, n(C — rop)/(n — 1)). Taking this into
account,[[4R) yields

Sincer; < Top then27,,s — 7, — 7 > Topt — 7. By Lemma
@, 7A'M —7A'i <Typm—Ti. When||7- (t) _Topt”oo 75 ™ (t) — Topts
then |Tar — Topt| < [T — Topt| @Nd SOT,, < 274, — Tas 1.€.
Tm < 2Topt — Tm. HeNCE, 70 — 73 < 270p — Ty — 7. When __indtial

Tz < Topt thentay —7; < Top — T = 2Topt — Ton — Ti — (Topt — Z (rj(t) —mi(t)) — Fi(t) | < Tmae 770 (43)
Tm) < 2Top — T, — 7; Where the last inequality follows from ¢\ jz v



Let us consider the case in which there is a selfish station
that changes its configuration over time and receives a ¢ffrou
putr,(t) while the rest of the stations are well-behaved, using
the same configuration and obtaining the same throughput
r(t). Then the above can be expressed as

T_Mntuzl

N r(t) < 3 (r(t) + Fi(t) + T’”% (44)

If we now consider the throughput of the selfish user over
an intervalT’, the average throughput over this interval can be
computed as:

1
Ts = T Z Ts (t)Tbeacon (45)
t
From [43),
1 Tmaz — T.initial Tbeacon
s < = t E t Teacon L
oS3 00+ RO 4 ((Tee ) T
(46)

Since we considering a very large interal> oo, the term
initial
(T’”“_;i ) Trcacon tends to 0, which yields

Ts S T (’f‘(t) + Fz (t)) Tbeacon (47)
t

Let us consider now a given stageFrom [12) we have

i 1 (nropt — 15(t) — (n — L)r(t))  (48)

(1) <
Fit) <~
which yields
(n—1)r(t) +rs(t) + (n—1)Fi(t) < nropt (49)
Since the above equation is satisfied forzall

> (= 1r(t) +ro(t) + (n— 1D)Fi(t) <> nrop  (50)

t
Furthermore, from[(47),

(=1 r() <=1 )+ F(t)  (51)

t
Adding the above two equations yields

n Z rs(t) <n Z Topt (52)

from which

Trs = % Z Ts (t)Tbeacon S % Zroptheacon = Topt (53)
t t
which proves the theorem. Since the right hand side of the
above equation is precisely the throughput that the selfish
station would get if it always played GAS, this shows that the
selfish station cannot benefit from using a different strateg
no matter how it changes its configuration over time. As the
proof does not make any assumption on the configuration of
the selfish station, this holds for any configuration of a# th
802.11e parameters. ]
Proof of Theoreni]4: The proof of Theorem]3 is inde-

pendent of the past history, and therefore it can be apptied t
any subgame. This means tht-GASis a Nash equilibrium
of any subgame. ]
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