
ar
X

iv
:1

31
1.

50
14

v3
 [

cs
.N

I]
 1

3
O

ct
 2

01
4

1

Policing 802.11 MAC Misbehaviours
Paul Patras∗, Member, IEEE, Hessan Feghhi∗, David Malone,

and Douglas J. Leith, Senior Member, IEEE

Abstract —With the increasing availability of flexible wireless 802.11 devices, the potential exists for users to selfishly manipulate their
channel access parameters and gain a performance advantage. Such practices can have a severe negative impact on compliant
stations. To enable access points to counteract these selfish behaviours and preserve fairness in wireless networks, in this paper we
propose a policing mechanism that drives misbehaving users into compliant operation without requiring any cooperation from clients.
This approach is demonstrably effective against a broad class of misbehaviours, soundly-based, i.e. provably hard to circumvent and
amenable to practical implementation on existing commodity hardware.

✦

1 INTRODUCTION

COMPUTERS equipped with WiFi devices that follow
the popular IEEE 802.11 specification [1] employ a

decentralised Medium Access Control (MAC) protocol to
coordinate their transmissions on the channel. By design,
this mechanism ensures compliant users connecting to a
wireless network receive equal opportunities of accessing
the medium and in this sense share resources in a fair
manner. Each client station, however, operates indepen-
dently and thus could act more aggressively in order to
gain performance benefits, if changes can be made to the
protocol behaviour. This already occurs in practice when
network interface cards are not designed correctly, as re-
ported in [2]. More critically, it can happen when users
selfishly manipulate their channel access parameters to gain
a performance advantage (see e.g. [3]). This can cause signif-
icant unfairness, with the performance of the users that obey
the standard being severely degraded [4], [5]. For example,
consider a real network with two backlogged stations, one of
them compliant and the other using a minimum contention
window minimum (CWmin) half that recommended by the
802.11 standard. If the network operates with a regular
access point (AP), the misbehaving user will transmit on
average nearly twice as many frames as the compliant
station. We illustrate this scenario in Fig. 1 with light bars.
Also plotted with dark bars is the performance of each
client when the AP runs the policing scheme introduced
in this paper, demonstrating its effectiveness in penalising
misbehaving clients and equalising attempt rates, thereby
restoring fairness.

Such MAC misbehaviours are increasingly of concern
as open-source device drivers (e.g. MadWifi [6], compat-
wireless [7], etc.) are becoming prevalent and permit users
to modify the protocol rules either from the command line
or with basic programming knowledge. Looking ahead, the

• P. Patras is with the School of Informatics, University of Edinburgh.
• H. Feghhi, D. Malone and D. J. Leith are with the Hamilton Institute,

National University of Ireland Maynooth.
• (∗) Joint first authors.
• P. Patras was at the Hamilton Institute, National University of Ireland

Maynooth when this research was conducted.
• Work supported by Science Foundation Ireland grant 08/SRC/I1403.

 0

 200

 400

 600

Compliant
Station

Misbehaving
Station

A
tt
e
m

p
t
R

a
te

 [
F

ra
m

e
s
/s

]

Regular AP Policing AP

Fig. 1. Wireless network with two stations, one contending with CWmin =
32 (compliant) and one with CWmin = 16 (misbehaving). Stations always
have 1,000-byte packets to send and employ the IEEE 802.11 HR/DSSS
physical layer at 11Mb/s. Average and 95% confidence interval of the
attempt rate attained by each station when the network operates with a
regular AP, as well as with an AP running the policing scheme proposed
in this paper. Experimental Data.

trend is towards introducing still further flexibility, such as
versatile architectures that allow changing the MAC opera-
tion of commodity hardware by reprogramming the proto-
col state machine with the help of simple visual tools [8].

In this paper we introduce an AP-based policing scheme
for 802.11 Wireless LANs that is (i) demonstrably effective
against a broad class of misbehaviours, (ii) soundly-based,
i.e. provably hard to circumvent and, importantly, (iii)
amenable to practical implementation on existing commod-
ity hardware. With this policing scheme, the AP controls
the transmission attempt rate of misbehaving stations by
acknowledging their frames with a probability that depends
on the deviation of the stations’ transmission attempt rate
from the fair value. Decreasing the probability of acknowl-
edgement causes a client station to backoff its contention
window, thereby reducing its transmit rate and restoring
fairness. An important feature of this approach is that it only
requires measuring the transmit rate of each client station,
which is straightforward as all traffic passes through the
AP in the infrastructure operational mode, and does not
require identification of the specific type of misbehaviour
being performed (e.g. shorter backoff, frame bursting, etc.).

We provide a mathematical analysis of the proposed

http://arxiv.org/abs/1311.5014v3

2

policing algorithm’s convergence properties and prove its
robustness in the presence of users that can detect APs
that penalise misbehaviour. More precisely, we show that
any strategy that seeks to game our policing algorithm,
deviating from the fair operation, necessarily leads to lesser
goodput performance for a misbehaving station in the
long run.

To establish the feasibility of our proposal, we present
a prototype implementation of the policing algorithm on
off-the-shelf hardware. We validate the performance of our
implementation by conducting extensive experiments over
a wide range of misbehaviour scenarios. The results ob-
tained demonstrate that our solution effectively penalises
misbehaviour irrespective of the network size, number of
selfish users and the parameters manipulated, without im-
pacting negatively the operation of compliant stations. We
also show that our algorithm does not mistakenly penalise
compliant stations, even in complex situations where com-
pliant stations generate different volumes of traffic and so
some clients consume the air time underutilised by others.
Further, we show that our proposal not only tackles MAC
misbehaviour, but has no negative impact on state-of-the-art
PHY rate control algorithms, while it successfully alleviates
fairness issues that arise in practical deployments due to
PHY/MAC interactions.

To the best of our knowledge, our proposal is the first
AP-based MAC misbehaviour counteracting solution with
theoretical performance guarantees and a fully functioning
prototype implementation that has been extensively eval-
uated by way of experiments conducted in a real Wi-Fi
network. We summarise the key contributions of our work
below.

(1) We design a novel algorithm that, unlike previ-
ous proposals, does not only address MAC misbe-
haviour detection, but thwarts selfishness without
requiring non-trivial modifications of the protocol
stack;

(2) We specify a scheme that controls stations’ transmis-
sion attempt rates and is robust to adaptive misbe-
having strategies that seek to game its operation;

(3) We provide detailed proof of this robustness and
rigorous analytical evidence of the algorithm’s con-
vergence;

(4) We detail a functional implementation of the de-
signed system on real 802.11 hardware;

(5) We give a sound methodology for estimating the
maximum achievable attempt rate, without inject-
ing traffic in the network or requiring changes to
compliant stations;

(6) We further validate the algorithm’s convergence
properties with real experiments;

(7) We provide a comprehensive performance evalua-
tion of our scheme, running on commodity devices
in a real deployment, covering a broad range of
circumstances.

The rest of the paper is organised as follows. In Sec. 2
we review related work. In Sec. 3 we present the proposed
policing algorithm and in Sec. 4 we analyse its convergence
properties and its robustness to misbehaviour strategies
that seek to game its operation. In Sec. 5 we detail the

prototype we have implemented on commodity hardware
and in Sec. 6 we report the results of the experimental
evaluation conducted under different network scenarios. In
Sec. 7 we investigate the operation of our solution under
more problematic channel effects. Finally, Sec. 8 concludes
the paper.

2 RELATED WORK

Misbehaviour detection has received much attention from
the research community (see e.g. [3], [4], [9], [10], [11], [12],
[13], [14]). Existing work, however, largely focuses on how
undesired behaviour can be achieved with current cards and
on engineering solutions that assist the AP in identifying
disobedient users, as well as the nature of their misbe-
haviour [4], [12], [14]. Only a limited number of proposals
address counteracting greedy actions, and these suffer from
significant practical drawbacks. For instance, [9] requires
a reputation management system to prevent MAC layer
misbehaviour, while a cross-layer interaction is assumed in
[10] to enable higher layers to restrict the traffic that non-
compliant clients generate.

In contrast to prior work, in this paper we introduce
an effective policing scheme for 802.11 Wireless LANs
(WLANs) that overcomes the above limitations, as it does
not require modification of the protocol stack and is
amenable to practical implementation. By design, a key
benefit of our policing algorithm is that it does not require
any information about the number of active stations or the
nature of their misbehaviour.

The underlying principle behind our approach is to
control the attempt rate of misbehaving clients by censoring
the generation of MAC layer acknowledgements (ACKs).
ACK skipping has been suggested as a means to allocate
bandwidth for traffic prioritisation in a network of well-
behaved stations [15], [16], [17], but to the best of our
knowledge has not been implemented to date with real
devices as this fundamental operation is handled at the
firmware level.

The solution we propose leverages our previous design
[18], but differs in that here: (I) we aim to control the trans-
mission attempt rate instead of throughput, thus seeking to
equalise stations’ air time [19]. By driving the channel access
probabilities of all clients to the same value, regardless
of the contention parameters they employ, we effectively
preserve short-term fairness. (II) We allow carrying forward
penalties, thus also achieve long-term fairness. Finally, (III)
we guarantee that the mechanism cannot be gamed by
greedy users that detect its operation.

3 POLICING ALGORITHM

In this section we first explain the class of misbehaviours
our proposal tackles and then we detail the operation of the
policing algorithm. We consider WLANs with a single-AP
(or, alternatively a group of co-operating APs) operating in
infrastructure mode, i.e. all packets are transmitted through
the AP, as this is the default and most widespread opera-
tional mode of today’s Wi-Fi deployments.

3

3.1 Class of Misbehaviours

Our focus is on 802.11 MAC protocol misbehaviours. We do
not consider lower layer PHY attacks, e.g. ACK jamming, or
higher layer selfish behaviour, e.g. TCP acknowledgement
manipulation or station association attacks. We also confine
consideration to behaviours that seek to obtain performance
benefits, rather than simply to disrupt the network opera-
tion through e.g. signal jamming [20], or exploiting security
vulnerabilities [21].

Our interest in this class of greedy MAC behaviours
arises from the observation that they can be realised with
currently available open-source drivers that allow manipu-
lation of the MAC layer parameters (CWmin, CWmax, AIFS
and TXOP [1]), sometimes simply by issuing a single com-
mand on the system console (see e.g. iwpriv for Atheros-
based cards). Note that, despite the possibility of broad-
casting precise EDCA configurations by means of beacon
frames from the AP, selfish clients are free to ignore any of
the contention parameter values assigned through this (ad-
visory) mechanism and the prevalence of such open drivers
provides them sufficient incentives to do so.1 We assume
WLANs implement an authentication mechanism such as
WiFi Protected Access (WPA2) [24], that prevents short and
repeatedly aggressive sessions facilitated by MAC address
spoofing techniques. Note also that the IEEE 802.11i stan-
dard ensures replay protection through several mechanisms,
of which the use of CCMP (Counter Mode Cipher Block
Chaining Message Authentication Code Protocol, Counter
Mode CBC-MAC Protocol) or TKIP (Temporal Key In-
tegrity Protocol) procedures are particularly relevant to our
scheme. Thus, a selfish user will be unable to impersonate
fair clients and jeopardise their reputation. Our work can
be adapted also to open-access networks, by augmenting
it with a signal-strength based MAC layer spoofing detec-
tor [25] or a passive device fingerprinting tool [26]. The
resilience of our proposal to more sophisticated security
attacks can be further strengthened if used in combination
with fine-grained PHY layer information [27].

3.2 Controller Operation

To tackle this class of misbehaviours, we propose that the AP
exploits the fundamental nature of the acknowledgements
within the ARQ mechanism of 802.11. Specifically, we use
the fact that stations will increase their contention window
and re-attempt to deliver a frame that was not acknowl-
edged before sending the next packet. By appropriately
suppressing ACK generation for cheating users, the AP can
therefore reduce their transmission rate and drive them to
fair operation.

We consider WLANs that operate in a commercial set-
ting where the service provider seeks to monetize connectiv-
ity and thus a naı̈ve solution that simply disassociates users
with marginal, possibly accidental misbehaviour (see e.g.
[2]), would be operationally unacceptable. Instead, our goal
is to effectively correct such behaviours. It is possible though
that a misbehaving station does not increase its contention
window despite not receiving ACKs. For such blatantly and

1. Consequently, earlier TXOP-based airtime allocation approaches
(e.g. [22], [23]) do not provide effective policing when stations are
misbehaving.

deliberately misbehaving stations, it is not possible to use
ACK suppression to drive the station to fair operation and
instead the policing algorithm adapts to drop all ACKs
and associated data packets, reducing the goodput of such
misbehaving stations to zero and eventually disassociating
it from the network.

The key to the performance of this algorithm is the
manner in which we adjust the rate of ACK suppression
PNACK,i(t) for user i at each time step t of its execution.
Algorithm 1 details the operation of the proposed approach.

Algorithm 1 Determining the rate of ACK suppression.

Initialise t = 0, pi(t) = 0, PNACK,i(0) = 0 for client
station i, ∀i.
loop

Estimate the maximum fair transmission attempt rate
x̄(t), given the current network conditions;
for each associated client station i do

Measure transmission attempt rate xi(t) of the sta-
tion;
Update the penalty:

pi(t+ 1) = max

(

0, pi(t) + α

(
xi(t)

x̄(t)
− 1

))

, (1)

where 0 < α < 1 is a parameter that determines
the speed of reaction to deviations from the fair
behaviour;
PNACK,i(t+ 1) = min{pi(t+ 1), 1};
t← t+ 1;

end for
end loop

For each station, the algorithm works as follows. At
each execution step t, it compares the measured station’s
transmission attempt rate xi(t) against the fair value x̄(t).
When the attempt rate2 is above the fair value, the rate
of ACK suppression is increased, and vice-versa when the
attempt rate is below the fair value. Thus at a fixed point we
have xi(t)/x̄(t)−1 = 0, i.e. xi(t)/x̄(t) = 1 and consequently
the station’s attempt rate is driven to the fair value.3

The algorithm requires an estimate of the maximum fair
transmission attempt rate. That is, the transmit rate that
would be achieved by a client station employing the stan-
dard recommended 802.11 MAC configuration. In Sec. 5.2
we discuss in detail how to estimate this quantity and
show that the AP can perform this operation on commodity
hardware, without requiring the cooperation of compliant
stations.

Since PNACK,i(t) is a probability, it can only take values
in [0, 1]. However, as we do not impose an upper bound on
the update of pi(t), we allow the algorithm to carry forward
and accumulate the penalty when pi(t) − PNACK,i(t) > 0
(i.e. for aggressive behaviour where PNACK,i reaches 1),
until the greedy station reverts to compliant operation. Thus

2. We use the term “attempt rate” to refer to the stationary probability
that a station transmits a frame in a randomly chosen slot time. Note
that this does not refer to the PHY layer bit rate achievable with various
modulation and coding schemes (MCS).

3. Note that, to streamline notation, we will often drop the i subscript
from now on, provided there is no scope for confusion.

4

 0

 5

 10

 15

 20

 0 2 4 6 8 10

T
h
ro

u
g
h
p
u
t

p
e
r

S
ta

ti
o
n
 [

M
b
/s

]

Time [algorithm steps]

Aggressive station (CWmin=16)
Fair station (CWmin=32)

Fig. 2. Throughput performance in a Wireless LAN consisting of three
saturated stations that transmit 1,500-byte packets using the 802.11
DSSS-OFDM physical layer at 54Mb/s. Two stations use the default
MAC configuration (CWmin = 32) and the third employs an aggressive
setting (CWmin = 16). The policing algorithm is applied at the AP with
α = 0.1. Theoretical prediction.

we prevent gaining long-term advantage over compliant
stations (see Sec. 4.2).

Fig. 2 shows an example of the policing algorithm in
operation. In this example we consider an 802.11g WLAN
with three stations: two stations use standard contention
parameters and the third uses a smaller value of CWmin.
Using a two-class Bianchi-like model [28] we illustrate the
time evolution of the stations’ throughputs during the oper-
ation of the proposed policing scheme. Observe that while
the more aggressive station initially claims more throughput
due to the increased transmission attempt rate, the policing
algorithm quickly adjusts the ACK drop probability, so that
the misbehaving client receives lower performance.

In what follows we provide a mathematical analysis of
the the policing scheme’s convergence and robustness prop-
erties and then present a practical implementation that we
validate via extensive experiments in a real 802.11 Wireless
LAN.

4 MATHEMATICAL ANALYSIS

In this section, we first establish the convergence properties
of Algorithm 1. Second, we study the robustness of the
proposed solution under misbehaviour strategies that seek
to game its operation with the goal of achieving long-term
performance benefits.

4.1 Convergence

We begin by establishing general conditions under which
Algorithm 1 converges to a fixed point. For well-behaved
stations that follow the 802.11 distributed coordination func-
tion (DCF) specification, using a model such as [29] we
can verify that ∃c, 0 < c < 1, such that x(t)/x̄(t) ≤
1−cPNACK(t), ∀t > 0. Specifically, the attempt rate of a fair
station will be proportional to the transmission probability,
which we can calculate as a function of PNACK , the failure
probability f seen by the station due to collisions, and other
(fixed) MAC parameters. Fig. 3 shows that for a range of col-
lision probabilities, these can be bounded with c ≤ 0.4. Thus
for well-behaved stations we have the following important
result.

Theorem 1 (Well-behaved stations). For stations satisfying
x(t)/x̄(t) ≤ 1 − cPNACK(t), 0 < c < 1, ∀t > 0,
Algorithm 1 ensures limt→∞ p(t) = 0. That is, for well-
behaved stations the policing algorithm does not drop
any ACKs.

Proof: First note p(t) ≥ 0 and if p(t) = 0, then
subsequent terms p(t + k), k > 0, are zero. If the sequence
does not become constant at zero, then the max with zero is
not active in Algorithm 1, and we consider two cases:

1) if 0 < p(t) ≤ 1, then

p(t+ 1) = p(t) + α

(
x(t)

x̄(t)
− 1

)

≤ p(t)− αcp(t);

2) if p(t) > 1, then

p(t+ 1) ≤ p(t)− αc.

So, at each step, p(t) decreases by at least αcmin(p(t), 1).
Thus p(t) is non-increasing and bounded below, and so con-
vergent. As p(t)− p(t+1)→ 0, we see αcmin(p(t), 1)→ 0,
and thus p(t)→ 0.

We now show that in situations with misbehaving sta-
tions Algorithm 1 also converges. Firstly, for misbehaving
stations whose transmit attempt rates remain sensitive to
ACK suppression, we have the following.

Theorem 2 (Moderately misbehaving stations). Suppose the
transmit rate of a station satisfies the following condi-
tions:

i) x(t)/x̄(t) > 1 when PNACK(t) = 0,
ii) x(t)/x̄(t) < 1 when PNACK(t) = 1 and

iii) x(t)/x̄(t) is strictly decreasing with PNACK,t and
Lipschitz with a constant smaller that 2/α.

Then Algorithm 1 converges to a point where x(t) = x̄(t).

Proof: Since x(t)/x̄(t) is strictly decreasing, there ex-
ists a unique value of PNACK(t) where x(t)/x̄(t) = 1. We

call this value P . Let V (t) = (p(t)− P)
2
. Note that V (t) is

positive definite and radially unbounded [30] in p(t) and

V (t+1) = (p(t+ 1)− P)
2 ≤

(

p(t)− P + α

(
x(t)

x̄(t)
− 1

))2

.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
tt

e
m

p
t

R
a

te
 /

 F
a

ir
 R

a
te

PNACK

1 - 0.4 PNACK

f = 0.0
f = 0.1
f = 0.2
f = 0.4

 0.8

 1

 0 0.1

Fig. 3. The normalised attempt rate, x(t)/x̄(t), for a standard compliant
station over a range of network conditions (collision probabilities f) and
ACK suppression rates PNACK . The line 1−0.4PNACK represents an
upper bound. Theoretical prediction.

5

Expanding, we find

V (t+ 1)≤ V (t)

+ α

(
x(t)

x̄(t)
− 1

)

(p(t)− P)

2− α

(
x(t)
x̄(t) − 1

)

p(t)− P

 .

Note that α > 0 and (x(t)/x̄(t) − 1)(p(t) − P) is strictly
negative except when p(t) = P , so if

2 > α

(
x(t)
x̄(t) − 1

)

p(t)− P
,

then we can ensure that V (t) converges asymptotically to
zero as t → ∞. However, this condition is ensured by
requiring x(t)/x̄(t) be Lipschitz in PNACK(t) (and conse-
quently p(t)) with a constant smaller that 2/α. Thus, as
V (t)→ 0 we have p(t)→ P .

In the case of highly-aggressive stations for which the
transmit attempt rate cannot be made fair using ACK sup-
pression alone (e.g. when backoff of the MAC contention
window has been disabled), we have the following.

Theorem 3. For stations where ∃c > 0 such that x(t) ≥
x̄(t)(1 + c) for all PNACK ∈ [0, 1], Algorithm 1 ensures
PNACK(t)→ 1.

Proof: By assumption, x(t)/x̄(t) > 1. Hence, p(t +
1) ≥ p(t)+αc. It follows that p(t) increases to a value greater
than 1 and so PNACK(t)→ 1.

Of course, some non-compliant stations may not meet
the smoothness conditions for convergence of PNACK . In-
deed, the station might randomly choose an attempt rate at
any time. However, in what follows we show that in this
case the station cannot gain from any such strategy.

4.2 Robustness

Next we consider a scenario where a misbehaving client
becomes aware of the policing algorithm running at the
AP and attempts to game its operation, with the goal of
achieving a long-term benefit in terms of throughput. We
demonstrate that our scheme is robust to such sophisticated
misbehaviour strategies by showing that, by design, the
algorithm will penalise any strategy that deviates from the
fair behaviour.

Suppose that the selfish station seeks to maximise its
goodput and remember the algorithm can carry forward the
penalty. The mean goodput over the interval [0, T] is given
by

S(T) :=
1

T

T∑

t=1

x(t) (1− p(t)) =
x̄

T

T∑

t=1

(1 + y(t))(1 − p(t)),

(2)

where y(t) = x(t)/x̄−1. We can rewrite the policing update
as

p(t+ 1) = max (0, p(t) + αy(t)) , (3)

and if we iterate this backwards to the previous time t∗

where p(t) was zero,4 we see

p(t+ 1) = max

(

0, α
t−1∑

k=t∗

y(k)

)

.

4. Note that p(t) will be zero at least at t∗ = 0.

Suppose there is a time T ∗ > 0 with p(T ∗) = 0 but p(t) > 0

for 1 ≤ t < T ∗. Then, we see
∑T∗−1

k=0 y(k) ≤ 0, so the
average attempt rate of the station up to time T ∗ is less than
that of a fair station. As p(T ∗) = 0, we may remove this
interval from our consideration and consider just the times
from T ∗ onwards. By repeating this argument, we see that
we only need to consider the potential unfair behaviour of
stations where p(0) = 0 and p(t) = α

∑t−1
k=0 y(k) > 0 for

1 ≤ t < T . We have the following result.

Theorem 4. For policing Algorithm 1, suppose that
α
∑t−1

k=0 y(k) ≥ 0 for 1 ≤ t < T . Let Y be an upper
bound for y(j) and let ∆ > 1/α + Y be a positive
integer. Then, if T > ∆ and we consider the val-
ues of S(T) as we vary y(1), . . . , y(T −∆) and hold
the other y(j) fixed, S(T) is maximised by choosing
y(1) = . . . = y(T −∆) = 0.

Proof: With policing update (3) we have

p(t+ 1) = α
t∑

k=1

y(t),

and we consider terms in S(T) as follows.

S(T) = x̄+
x̄

T

T∑

t=1

y(t)

︸ ︷︷ ︸

goodput gain

− x̄

T

T∑

t=1

(1 + y(t)) p(t)

︸ ︷︷ ︸

goodput cost

. (4)

Now,

T∑

t=1

(1 + y(t)) p(t) =
T∑

t=1

(1 + y(t))α
t−1∑

k=1

y(t)

=
T∑

t=1

y(t)α
T∑

k=t+1

(1 + y(k)) .

So, the net relative gain is bounded by

T∑

t=1

y(t)−
T∑

t=1

y(t)α
T∑

k=t+1

(1 + y(k))

=
T∑

t=1

y(t)(1 − α(T − t))− α
T∑

t=1

T∑

k=t+1

y(t)y(k).

Taking the derivative with respect to y(j) we get

(1− α(T − j))− α
∑

t6=j

y(j)

= α

1

α
− T + j −

T−1∑

t=j

y(t) + y(j)

 ,

which is negative when j ≤ T −∆ < T −1/α−Y , as the
sum is non-negative and y(j) ≤ Y . Thus, to maximise
the gain, we choose the smallest possible values of y(j)
subject to the constraint on the partial sums being non-
negative. Thus y(1) = . . . = y(T −∆) = 0.

This results confirms that no benefit can be obtained by
deviating from the fair behaviour over T − ∆ steps. Note
however that a non-compliant client could potentially at-
tempt to use a more aggressive transmit rate over the last ∆
iterations before leaving the network, seeking to gain a small

6

throughput benefit. But the fact that we allow for the penalty
to carry forward to future times and consider networks that
employ authentication makes such misbehaviours costly.

5 IMPLEMENTATION

To demonstrate that deploying the policing algorithm is fea-
sible with off-the-shelf hardware, in this section we present
a Linux-based prototype implementation that we developed
and discuss a non-intrusive technique for estimating the fair
transmission attempt rate.

5.1 Prototype

Implementing the suppression of MAC ACKs with existing
devices is a challenging task, since generation of ACK
frames is a basic operation that is handled at a low level
within the wireless stack, below the device driver. To tackle
this challenge, we based our implementation on an AP
equipped with a Broadcom BCM4318 wireless adapter that
employs the OpenFWWF firmware [31]. The key advan-
tage of using this open-source firmware is that it allows
modifying the MAC protocol state machine running on
the device, as already reported in [32], [33]. In addition to
this, as the firmware runs on a modest 8 MHz processing
unit on the network interface card, we modified the b43
driver of the open-source compat-wireless package, to
manage the more computationally demanding operations
of our algorithm.

Fig. 4 illustrates the essential building blocks of our
prototype. As shown in the figure, the implementation
is split between the firmware and the driver: the former
handles book keeping of per-station frame count, channel
monitoring and ACK generation, while the latter manages
the transmit rate computation and updating the ACK sup-
pression rate for each associated client, based on the policing
algorithm. To co-ordinate the operation of the firmware and
driver modules, we rely on the 4KB shared memory. We
use this to store the information pertaining to each station
and required by our algorithm, as we observe that a large
portion of it remains unused during normal operation of the
card.

Fig. 4. Schematic view of the policing algorithm implementation. The
policing update and fair rate estimation are implemented in the driver,
per-station information is stored in the shared memory and ACK sup-
pression is performed in firmware.

Fig. 5. Memory structure storing policing data. The hash map items point
to per-station information elements storing the MAC address, frame
counter (used to compute the attempt rate) and the current PNACK

value.

We implement ACK handling in the firmware, as this is
a highly time-sensitive operation. Specifically, the decisions
to acknowledge or not a correctly received frame must be
made within SIFS time and thus must not be interrupted
or delayed by other tasks. For each frame received with a
correct frame check sequence (FCS), we inspect the source
MAC address, increment the frame counter (used by the
driver to compute the attempt rate) of the sending station,
fetch the corresponding PNACK value and decide to gener-
ate or suppress the acknowledgement. To complete these
operations efficiently, our implementation employs a fast
hash map and a list of information blocks. The hash-map
consists of a 1 KB memory block that holds 512 2-byte
pointers to sub-blocks storing the current frame count and
ACK dropping probability associated to a station, as well as
its MAC address. Fig. 5 shows the structure of the memory
allocated for policing.

The policing update, which controls the penalty associ-
ated to each client, is implemented in the driver, as driver
code runs on the CPU of the host and can perform calcu-
lations more quickly. The computation of the transmit rates
and updates of the penalties according to (1) are executed
at configurable discrete time intervals, when the driver
reads the information stored in the shared memory for each
associated station and performs the following operations:
(i) computes the transmission attempt rate of each station
based on the frame count, (ii) estimates the fair attempt rate
(see Sec. 5.2), (iii) updates the ACK dropping probabilities
PNACK,i and writes their values back into the correspond-
ing blocks, and (iv) resets the frame counters.

5.2 Fair Attempt Rate Estimation

To decide whether to police an associated station, our al-
gorithm measures its performance and compares this to
the maximum transmission attempt rate a fair client would
attain under current network conditions. In this subsection,
we discuss one mechanism for achieving fair attempt rate
estimation non-intrusively, i.e. without injecting traffic in
the network or requiring message passing between the AP
and other stations. We will show that observing the wireless
channel for a duration above 5 seconds ensures a good
estimate of fair performance.

Towards this end we run a virtual MAC instance at the
AP, that reproduces the operation of a fair station, but does

7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5

f 1

fv

f1
fv

Fig. 6. Relationship between failure probability of a virtual station fv and
that of a real fair client f1. Theoretical prediction.

not release packets on the channel. Instead, we monitor
channel slots and check the outcome of “virtual” trans-
missions, i.e. whether virtual attempts would have resulted
in successes or collisions. Based on these observations, the
mechanism estimates the failure probability f experienced
by a fair station, which can be then used to derive the
attainable transmission attempt rate. In what follows, we
give a formal analysis of this approach and investigate its
accuracy.

Suppose we have a network of n stations transmitting
with probabilities x1, . . . , xn. Further, suppose that a station
is saturated, for instance station 1. Assume for now that this
station is fair. We can write the failure probability due to
collisions for this station as

f1 = 1− (1− x2) . . . (1− xn).

As the station is fair,

x1 = g(f1),

where g is a function mapping the failure probability to the
transmission probability and is given by [34]:

g(f) =
2(1− 2f)(1− fR+1)

W (1− (2f)m+1)(1 − f) + (1− 2f)(1− fR+1)

+W2mfm+1(1− 2f)(1− fR−m)
. (5)

In the above, we denote W = CWmin, m is the maximum
backoff stage and R denotes the retry limit.

Consider now that the AP runs a saturated virtual MAC
instance. We can similarly express the failure probability fv
this observes, as follows:

fv = 1− (1− x1)(1 − x2) . . . (1− xn)

= (1− x1)(1 − f1) = 1− (1− g(f1))(1− f1),

where g is the fair backoff function given by (5). Note that
if we know fv, we can solve the above for f1. In Fig. 6,
we plot the relationship between the virtual and actual
failure probability of a saturated station. To add perspective,
we also plot fv with a dotted line; we observe that the
difference between the two is relatively small and reduces
as the contention rate increases.

Since there is a one-to-one mapping from fv to f1, we can
invert this to obtain an exact value for the failure probability
of a fair saturated station and apply (5) to compute the
maximum achievable rate x̄ of a fair station.

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8 9 10

O
b

s
e

rv
a

ti
o

n
 t

im
e

 [
s
]

Number of stations

Fig. 7. Observation time required to estimate the collision probability fv
of a fair client as the number of active station increases. Theoretical
prediction.

The remaining question is how long should the channel
observation period be, to ensure an accurate estimate of fv.
To answer this, we regard the virtual transmission attempt
as a Bernoulli trial, whereby assuming independent trails,

a failure is observed with probability f̂v and a success

with probability 1 − f̂v. By the central limit theorem, if
the number of observations N is large, the distribution of

f̂v is approximately normal with mean fv and variance
σ2 = fv(1 − fv)/N .

Say we want to compute the number of samples N
that gives us 95% confidence that the estimated mean has

precision ǫ, i.e. P (|fv − f̂v| > ǫ) < 0.05. The confidence

interval is f̂v±zσ, where z = 1.96 is the z-score required for

95% confidence. Since σ is unknown and f̂v(1 − f̂v) ≤ 0.5,
using this conservative upper bound [35], N must satisfy

z

2
√
N

= ǫ.

Thus the number of observations required to ensure a good
estimate of the fair attempt rate is

N =
(z

2ǫ

)2
.

To translate this into an observation period required for a
good estimate of fair performance before an update of the
PNACK probabilities, consider the average slot duration in
a network with saturated stations

E[Tslot] = Peσ + PsTs + PcTc,

where Pe, Ps and Pc are the probabilities that a slot is empty,
contains a success and respectively a collision, and σ, Ts and
Tc are the corresponding slot durations (see [29] for detailed
calculations). Thus we compute the observation interval that
gives an accurate estimation of the mean as5

Tupdate = N · E[Tslot].

To indicate the values Tupdate would take in practice for
ǫ = 0.01, in Fig. 7 we plot the necessary channel observa-
tion time for obtaining an estimate according to the above
requirements for different network conditions in terms of

5. Note that T [slot] is upper bounded by the length of a successful
transmission Ts, which is readily obtainable in practice from the
“duration” field of correctly received frames. Thus, one could avoid
the complexity of computing Tslot and use Ts instead, to simplify
implementation.

8

 0

 200

 400

 600

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

T
h
ro

u
g
h
p
u
t
[F

ra
m

e
s
/s

]

All Fair CWmin Halved CWmax=CWmin AIFS=SIFS Large TXOP

 0

 200

 400

 600

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

A
tt
e
m

p
t
R

a
te

 [
F

ra
m

e
s
/s

]

Fair Behavior Without Policing With Policing

Fig. 8. WLAN consisting of three backlogged stations sending 1,000-byte packets using the IEEE 802.11 HR/DSSS physical layer at 11Mb/s.
Station S1 employs one of four types of MAC misbehaviour, stations S2 and S3 are standard compliant. Average throughput (above) and attempt
rate (below) of each station in each scenario, when the network operates with a regular AP (light bars) and an AP running our policing algorithm
(dark bars). Also plotted is the performance of a station when all clients are fair. Experimental data.

number of saturated stations and assuming stations send
packets with 1,000-byte payload at 11 Mb/s (IEEE 802.11
HR/DSSS). We conclude, that an observation interval above
5 seconds will ensure a good estimate of the fair perfor-
mance in many scenarios. In our experiments we conserva-
tively use a Tupdate = 10s for all tests.

In what follows, we evaluate the performance of our
prototype in a real testbed and demonstrate its effectiveness
under different types of misbehaviour.

6 EXPERIMENTAL EVALUATION

Having described the design and implementation of our
proposal, we now evaluate the performance of the policing
algorithm in a real 802.11 testbed and prove its effectiveness
under different types of misbehaviours and a wide range
of network conditions. Our deployment consists of nine
Soekris net4801 embedded PCs, one acting as AP and the
other eight as stations. The AP is equipped with a Broadcom
BCM4318 wireless card and is capable of running our proto-
type. The clients use Atheros AR5212 chipset adapters and
the ath5k driver, which we modified to allow manipulating
the MAC parameters by simple commands from the system
console. All clients employ the 802.11 HR/DSSS physical
layer (802.11b) and, if not otherwise specified, do not per-
form rate adaptation.

Unless stated otherwise, we consider all stations are
backlogged and send unidirectional UDP traffic to the AP. In
all cases, we measure the performance of the stations when
the network is operating with a standard AP and an AP
running the proposed policing algorithm configured with
the following settings: speed of reaction factor α = 0.1 (see
(1)) and update period Tupdate = 10s.

6.1 Controller Validation

First we study the impact of four types of misbehaviour that
can be easily implemented with current hardware, whereby
aggressive MAC settings are used. Specifically, we investi-
gate the scenarios where a user seeks to obtain performance
benefits by employing selfish configurations as follows: (i)
contending with a CWmin parameter half the default value
(“CWmin Halved”), (ii) disabling the Binary Exponential
Backoff (BEB) mechanisms while keeping a smaller CWmin

setting (“CWmin=CWmax”),6 (iii) using a shorter interframe
space post-backoff (“AIFS = SIFS”),7 and (iv) retaining the
access to the medium for 6.413ms by violating the TXOPlimit

parameter (“Large TXOP”), thus being able to send multiple
frames upon a single transmission.

In these scenarios we consider a simple network topol-
ogy with one misbehaving stations sharing the medium
with two fair clients that contend for the channel using the
default MAC parameters specified by the 802.11 standard
(i.e. CWmin = 32, CWmax = 1024, AIFS = DIFS = 50µs,
TXOP = 0). Each client is saturated and transmits 1,000-
byte packets to the access point for a total duration of 3
minutes. We measure the throughput and attempt rate of
each station under each scenario, with and without the
policing algorithm running at the AP, and repeating 10 times
each test to compute average and 95% confidence intervals
with good statistical significance.

Fig. 8 shows the throughput and attempt rate attained
by each client in each of the scenarios considered, both
with and without our policing algorithm running at the

6. Note that compliant devices employ CWmax > CWmin settings to
reduce failure probability upon subsequent attempts, thus being less
aggressive.

7. AIFS ≥ 2σ+ SIFS is the amount of time a station is required to
sense the channel idle before entering the backoff procedure. SIFS=10µs
is the short interframe space. σ is the duration of an idle slot.

9

 0

 200

 400

 0 30 60 90 120 150

T
h
ro

u
g
h
p
u
t

[F
ra

m
e
s
/s

]

Misbehaving Station
Compliant Station

 0

 200

 400

 0 30 60 90 120 150

A
tt
e
m

p
t
R

a
te

[F
ra

m
e
s
/s

]

 0

 0.2

 0.4

 0.6

 0 30 60 90 120 150

P
e
n
a
lt
y

Time [s]

Fig. 9. WLAN consisting of three saturated stations: two compliant
and one misbehaving, using a CWmin half the default value. The AP
runs the proposed policing scheme. Time evolution of the throughput
(above), attempt rate (middle) and penalty applied by the proposed
policing algorithm (below) for the misbehaving station and one fair client.
Experimental data.

AP. To add perspective, we also plot with a dotted line the
performance of one station when when all clients behave
fairly (“All Fair”). Observe that a selfish user using a smaller
CWmin attains nearly twice the throughput of compliant
stations if not policed, whilst reducing the throughput
and attempt rate of the fair users (“CWmin Halved”, light
bars). When we activate the policing algorithm (dark bars),
this behaviour is effectively counteracted, as our solution
equalises the attempt rates, while the misbehaving client
sees its throughput performance reduced. If the selfish be-
haviour becomes more aggressive (“CWmax=CWmin”, light
bars), e.g. the cheater employs a fixed contention window
and thus does not backoff upon failures, in fact the policing
algorithm rapidly increases the ACK dropping probability
corresponding to that client to 1, thereby disassociating this
from the AP. This is reflected in both the attempt rate and
throughput performance, which are effectively zero when
policing is applied (dark bars).

A more subtle misbehaviour strategy could employ a
short post-backoff interframe space, e.g. the greedy station
only waits SIFS before a new attempt, which is the mini-
mum time separating two consecutive frames. Although less
significant (since the selfish station sometimes randomly
selects a large backoff counter and waits more than the
other contenders that wait DIFS plus a short backoff value),
the non-compliant client still achieves performance gains to
the detriment of the fair stations present in the network
(“AIFS=SIFS”, light bars). Once again, if we execute the
policing algorithm at the AP, the transmission attempt rates
are equalised and fairness is restored also in this case (dark
bars).

 0

 200

 400

 0 30 60 90 120 150

T
h
ro

u
g
h
p
u
t

[F
ra

m
e
s
/s

]

Misbehaving Station
Compliant Station

 0

 200

 400

 0 30 60 90 120 150

A
tt
e
m

p
t
R

a
te

[F
ra

m
e
s
/s

]

 0

 0.2

 0.4

 0.6

 0 30 60 90 120 150

P
e
n
a
lt
y

Time [s]

Fig. 10. WLAN consisting of three saturated stations: two compliant and
one misbehaving, using TXOP = 6.413 ms. The AP runs the proposed
policing scheme. Time evolution of the throughput (above), attempt rate
(middle) and penalty applied by the proposed policing algorithm (below)
for the misbehaving station and one fair client. Experimental data.

Lastly, if the misbehaving user transmits several frames
upon a single channel access (“Large TXOP”), their through-
put performance is significantly higher than that of the fair
stations as no action is taken to correct this selfish comport-
ment (light bars). In contrast, with the proposed policing
scheme, attempt rates stay equal and the cheater sees their
throughput throttled down below the value corresponding
to fair operation (dark bars).

Let us now take a closer look at the behaviour of the
controller implemented by our scheme. Specifically, we are
interested in validating the convergence of the algorithm
under different types of misbehaviour. For this purpose,
we pick two of the four scenarios discussed above and
examine the time evolution of the network performance.
More precisely, in Figs. 9 and 10 we show the time evolution
of the throughput and attempt rate for the non-compliant
user and a fair station, as well as the penalty applied by our
algorithm, in the cases when the selfish client uses a CWmin

half the default value and respectively a large TXOP setting,
e.g. TXOP = 6.413ms.

In both cases, observe that the policing algorithm suc-
cessfully brings the attempt rate of the misbehaving station
down to that of a fair client (middle graph), while their
throughput is reduced (top graph). What is important to
remark is that the algorithm is close to convergence after a
few steps, with the convergence time being shorter for more
aggressive behaviour (i.e. with manipulated TXOP). Note
also that the convergence time can be further reduced by
choosing a larger α parameter.

10

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7

A
tt
e
m

p
t
R

a
te

 [
F

ra
m

e
s
/s

]

Number of Compliant Stations

Misbehaving, w/o Policing
Misbehaving, w/ Policing
Compliant, w/o Policing
Compliant, w/ Policing

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7

T
h
ro

u
g
h
p
u
t
[F

ra
m

e
s
/s

]

Number of Compliant Stations

Misbehaving, w/o Policing
Misbehaving, w/ Policing
Compliant, w/o Policing
Compliant, w/ Policing

Fig. 11. WLAN consisting of one misbehaving client with CWmin half
the default value and an increasing number of compliant stations. All
clients always have a 1,000-byte packet to transmit at 11Mb/s (802.11b).
Average and 95% confidence intervals of the attempt rate (above) and
throughput (below) attained by the misbehaving station and one fair
user, when the AP operates with and without the proposed policing
scheme. Experimental data.

6.2 Impact of Network Size

Next, we investigate whether a misbehaving client could
hide in the crowd as the number of network users increases.
For this purpose, we consider a network with one selfish
station employing a small CWmin based misbehaviour and
we vary the number of fair stations, while we examine the
performance of both. In each case, all clients are backlogged
and send 1,000-byte packets for a total duration of 3 min-
utes. We repeat each experiment 10 times and compute the
again average with 95% confidence intervals of the attempt
rate and throughput attained by each station.

In Fig. 11 we show the attempt rate and throughput
of the selfish station and that of one fair client, with a
standard AP as well as with an AP executing our algorithm.
Observe that the performance of the selfish user decreases
as the network size increases, but is constantly significantly
above that of a fair client if no action is taken to counteract
the greedy behaviour. In contrast, when the AP runs our
policing algorithm, the attempt rate of the misbehaving user
never exceeds that of a fair client (observe the overlapping
dark lines in the top sub-figure), while their throughput per-
formance falls below that of fair clients in all circumstances.

We conclude that the network size does not impact the
performance of our algorithm, which effectively penalises
misbehaving clients even in denser topologies.

6.3 Multiple Misbehaving Clients

In what follows, we study the performance of the proposed
policing algorithm when multiple misbehaving clients are
present in the WLAN. Here, we aim to understand whether

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7

A
tt
e
m

p
t
R

a
te

 [
F

ra
m

e
s
/s

]

Number of Misbehaving Stations

Misbehaving, w/o Policing
Misbehaving, w/ Policing
Compliant, w/o Policing
Compliant, w/ Policing

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7

T
h
ro

u
g
h
p
u
t
[F

ra
m

e
s
/s

]

Number of Misbehaving Stations

Misbehaving, w/o Policing
Misbehaving, w/ Policing
Compliant, w/o Policing
Compliant, w/ Policing

Fig. 12. WLAN consisting of one compliant station and an increasing
number of misbehaving users with CWmin half the default value. All
stations are backlogged with 1,000-byte packets and transmit at 11Mb/s
(802.11b). Average and 95% confidence intervals of the attempt rate
(above) and throughput (below) attained by the fair client and one selfish
user, when AP operates with and without the proposed policing scheme.
Experimental data.

 0

 50

 100

 150

 200

7:1 6:2 5:3 4:4 3:5 2:6 1:7

A
tt
e
m

p
t
R

a
te

 [
F

ra
m

e
s
/s

]

Compliant : Misbehaving Stations

Misbehaving, w/o Policing
Misbehaving, w/ Policing
Compliant, w/o Policing
Compliant, w/ Policing

 0

 50

 100

 150

 200

7:1 6:2 5:3 4:4 3:5 2:6 1:7

T
h
ro

u
g
h
p
u
t
[F

ra
m

e
s
/s

]

Compliant : Misbehaving Stations

Misbehaving, w/o Policing
Misbehaving, w/ Policing
Compliant, w/o Policing
Compliant, w/ Policing

Fig. 13. WLAN consisting of eight backlogged clients transmitting 1,000-
byte packets at 11Mb/s (802.11b). The ratio of compliant:misbehaving
stations is varied. Selfish users contend with CWmin half the default
value. Average and 95% confidence intervals of the attempt rate (above)
and throughput (below) attained by a fair and a misbehaving station,
when AP operates with and without the proposed policing scheme.
Experimental data.

the presence of a large number of selfish users could in-
fluence the penalty update of our algorithm. We demon-

11

strate that, despite its prevalence, such behaviour will not
be regarded as fair by the policing scheme. We use the
same methodology as in the previous subsection, running
3-minute tests for each network scenario and conducting
10 independent experiments for each case. We measure the
average performance of both fair and misbehaving stations
in terms of attempt rate and throughput.

First let us consider the case where only one station is
fair and increase the number of selfish clients present in
the network. The results of these experiments are depicted
in Fig. 12, where we plot the attempt rate and throughput
of the fair station and that of one non-compliant station,
with and without the policing algorithm running at the
AP. We observe that also in these scenarios, the policing
algorithm equalises the attempt rate of all stations while
the throughput performance of non-compliant users is ef-
fectively reduced.

In addition, we examine a network with a fixed num-
ber of clients (n = 8) and vary the proportion of
fair/misbehaving stations. The attempt rate and throughput
of one client within each category is shown in Fig. 13 when
the AP operates with and without the proposed policing
scheme. The obtained results further confirm the effective-
ness of our approach in the presence of several misbehaving
stations.

6.4 Dynamic Network Conditions

We consider next a scenario with network dynamics
where fair and misbehaving clients join and leave the
WLAN at different times. Our goal here is twofold: (i) we
verify that our proposal adapts quickly to changes in the
network topology, and (ii) we demonstrate the algorithm
carries forward the penalty of selfish users when those leave
the network. To this end, we conduct an experiment with
the AP running our policing scheme and four backlogged
client stations, as follows. Two fair stations connect to the
WLAN and start transmitting to the AP at t = 0s. After 100s,
a misbehaving station (S3) joins the network, contending
with a CWmin parameter half the default value. At t = 200s
another standard compliant station (S4) connects to the
WLAN. Finally, S3 leaves the network after transmitting for
200s and S4 disassociates 100s later.

The result of this experiment is depicted in Fig. 14 where
we plot the time evolution of the attempt rate, throughput
and penalty corresponding to each client. We can see clearly
that our algorithm quickly detects and starts penalising the
misbehaving station, equalising the attempt rates in a few
iterations. As the forth client joins, our solution re-estimates
the maximum achievable attempt rate and continues penal-
ising the selfish user, without affecting the performance of
the new station. Lastly, as the cheater leaves the network,
the penalty is preserved and carried forward to be applied
when this client will reconnect. Thus we confirm that the
performance of our algorithm is not affected by network
dynamics and penalties are successfully carried forward.

6.5 Real Traffic

Next, we investigate the performance of the policing algo-
rithm in a more realistic scenario with heterogeneous traffic.

 0

 200

 400

 600

 0 100 200 300 400 500

A
tt
e
m

p
t
R

a
te

[F

ra
m

e
s
/s

]

S1 				 (compliant)
S2 				 (compliant)
S3 (misbheaving)
S4 				 (compliant)

 0

 200

 400

 600

 0 100 200 300 400 500

T
h
ro

u
g
h
p
u
t

[F
ra

m
e
s
/s

]

 0

 0.2

 0.4

 0.6

 0 100 200 300 400 500

p

Time [s]

Fig. 14. WLAN with dynamic topology: two compliant stations are joined
by a misbehaving one (CWmin half the default value) and subsequently
by a third fair client. Stations S3 and S4 transmit for 200s each and
then leave the network. The AP runs the proposed policing scheme.
Time evolution of the attempt rate (above), throughput (middle) and
penalty applied by the proposed policing algorithm (below) for each
client. Experimental data.

We will show that the policing algorithm does not unneces-
sarily penalise fair clients that have increased demands and
attain higher transmission rates simply due to the reduced
activity of the other contenders.

Towards this end, we consider a network with n = 4
clients, the first one uploading a large file, the second
generating web traffic, the third streaming a video file and
the last performing a system update. To emulate the file
upload, we generate saturated traffic using iperf on the
first client. The second station establishes finite size TCP
connections, alternating between periods of activity, during
which a 2-Mbyte file is transferred, and silent periods expo-
nentially distributed with mean λ−1 = 60s [36]. The third
station streams a MPEG-4 encoded version of “Resident
Evil: Apocalypse” at 1 Mb/s using the VLC media player
[37]. To emulate the activity of the forth station, we use a
backlogged iperf downstream session from the AP to the
client. In this scenario, as the AP is always fair, we use the
downstream flow to estimate the fair throughput. We run
the experiment for a total duration of 1 hour, measuring for
each flow the attempt rate, throughput and penalty applied
by our policing scheme.

In Fig. 15 we plot a 30-minute snapshot of the network
operation in this experiment, showing the time evolution
of the aforementioned performance metrics for each client
station. First, we observe that the penalty stays at zero most
of the time for all stations, only with infrequent and small
variations (below 0.05) above zero. Second, the medium-
quality video flow sees its bandwidth demand satisfied
most of the time. Third, the bandwidth demanding upload
and download flows equally share the remaining available
air time. Lastly, the spurious web traffic experiences similar

12

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600 1800

A
tt

e
m

p
t

R
a

te
 [

F
ra

m
e

s
/s

]
Time [s]

Web
Video

File Upload

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600 1800

T
h

ro
u

g
h

p
u

t
[F

ra
m

e
s
/s

]

Time [s]

Web
Video

File Upload
Downstream

 0

 0.05

 0.1

 0.15

 0.2

 0 200 400 600 800 1000 1200 1400 1600 1800

P
e

n
a

lt
y

Time [s]

Web
Video

File Upload

Fig. 15. WLAN consisting of four standard compliant stations generating heterogeneous traffic: file upload, web browsing, video streaming, system
update (download). AP runs the proposed policing scheme. 30-minute snapshot of the attempt rate (above) and throughput (middle) attained by
each flow, as well as the penalties applied by our algorithm (below). Experimental data.

performance to that of the other data flows whenever they
are competing.

We conclude that indeed the proposed policing algo-
rithm does not penalise stations that generate more traffic
than their competitors as long as they comply with the MAC
configuration defined by the 802.11 standard.

7 NON-IDEAL CHANNEL EFFECTS

We also investigate the performance of our implementation
under several challenging situations that occur frequently in
practice. Specifically, we verify that the proposed algorithm
has no negative impact on rate switching decisions taken by
state-of-the-art rate control algorithms and demonstrate the
potential of our scheme to alleviate unfairness issues that
arise due to the PHY/MAC interactions occurring in the
presence of the capture effect.

7.1 Rate Control

We study the behaviour of a rate control algorithm executed
at a greedy client that manipulates their MAC configura-
tion and is being penalised by our policing algorithm to
counteract their misbehaviour. Our goal here is to verify
that rate control (RC) algorithms will not wrongly interpret
suppressed ACKs as losses caused by poor channel condi-
tions and thus will not trigger downgrades of the PHY rate.
This is particularly important, since unnecessarily selecting

a lower modulation scheme can be wasteful of channel time
and have a significant impact on the overall network utility
[38].

To this end, we consider again a simple scenario with
two fair clients and one misbehaving station that uses a
CWmin parameter half the standard recommended value.
In this experiment, the selfish client runs the Minstrel rate
control algorithm, which is the default mechanism imple-
mented by mac80211 drivers on Linux systems since kernel
version 2.6.29 (March 2009 to date), and the AP executes
the proposed policing scheme. Note that Minstrel [39], Sam-
pleRate [40] and other commonly used rate control schemes
work by sampling the mean transmission time at different
PHY rates. Since our ACK dropping scheme impacts on all
PHY rates in the same way, it will inflate the transmission
times for all rates in the same way, and consequently we
expect the rate control scheme will still pick the rate with
shortest transmission time. Similarly, schemes that make
decisions based on SNR or related indicators will not be
mislead by ACK dropping [41].

We examine the time evolution of the penalty applied
by our algorithm to the cheater, as well as the rate selected
by Minstrel during the operation of our scheme. As shown
in Fig. 16, increasing the penalty does not influence the rate
selection decisions taken by the rate control algorithm, since
packets are transmitted almost always at the maximum rate
(11 Mb/s) and lower rates are only periodically sampled
(approx. every 30s), with only a couple of frames.

13

 1
 2

 5.5

 11

 0 30 60 90 120 150

P
H

Y
 R

a
te

 [
M

b
/s

]

 0

 0.2

 0.4

 0.6

 0 30 60 90 120 150

P
e
n
a
lt
y

Time [s]

Fig. 16. WLAN consisting of three saturated stations that transmit 1,000-
byte packets using the IEEE 802.11 HR/DSSS physical layer. Two
stations are compliant and transmit at 11Mb/s, the third is misbehaving
(CWmin halved) and runs the Minstrel RC algorithm. Clients can choose
from the following set of PHY bit rates for transmission: {1, 2, 5.5 and
11} Mb/s. The proposed policing scheme is executed at the AP. PHY
rates selected by the selfish client (above) and penalty applied (below)
over a 150s period. Experimental data.

 0

 2

 4

 6

 8

 10

Single Rate Minstrel RC

U
ti
lit

y

Fig. 17. WLAN consisting of three saturated stations that transmit 1,000-
byte packets using the IEEE 802.11 HR/DSSS physical layer. Two
stations are compliant and transmit at 11Mb/s and the third is misbe-
having (CWmin halved). The proposed policing scheme is executed at
the AP. Network utility when the misbehaving client runs the Minstrel
RC algorithm and uses a single PHY rate for transmission respectively.
Experimental data.

To verify that indeed the network utility is not affected
when policing is applied to selfish stations, we also plot
in Fig. 17 this metric for the same experiment, as well as
for the case when the misbehaving client does not perform
rate adaptation and all stations transmit at a single rate,
e.g. 11Mb/s . Note that we compute the network utility as
in [42], i.e. the sum of the natural logarithm of the indi-
vidual throughputs, which is considered a good measure
of proportional fairness [19]. From the results in Fig. 17
we conclude that our policing algorithm does not tamper
with the operation of current rate control mechanisms and
thus has no negative impact on the network utility when
penalties are applied to non-compliant client stations.

7.2 Capture Effect

We investigate a scenario where all stations obey the stan-
dard specification, but experience different performance due
to their placement relative to the AP. Specifically, we are

 0

 100

 200

 300

 400

S1 S2 S3

T
h

ro
u

g
h

p
u

t
[F

ra
m

e
s
/s

] w/o Policing w/ Policing

 0

 2

 4

 6

 8

 10

w/o Policing w/ Policing

U
ti
lit

y

Fig. 18. WLAN consisting of three compliant stations always having
1,000-byte packets to transmit using the IEEE 802.11 HR/DSSS phys-
ical layer at 11Mb/s. Station (S1) is located next to the AP. Stations S2
and S3 are placed at a distance four times longer, thus S1 can capture
the channel over S2 and S3. Average and 95% confidence interval of
per-station throughput shown above with a regular AP (light bars) and
an AP running the proposed policing scheme (dark bars). Network utility
shown below, with and without policing. Experimental data.

interested in checking whether our policing scheme can
improve fairness when a client that is located closer to the
AP captures the channel while transmitting simultaneously
with stations that reside farther away. This effect is fre-
quently encountered in practical deployments and can cause
significant unfairness, as already documented in e.g. [43],
[44].

For this purpose, we examine again the performance
of a network with three fair stations, but this time with
one station (S1) located next to the AP and the other two
(S2 and S3) at similar, but four times longer distances. In
the top plot of Fig. 18 we show the average throughput
attained by each client in this scenario, with and without our
policing algorithm running at the AP. Observe that without
policing S1 achieves significantly better performance than
the other two clients with a standard AP (light bars). On the
other hand, when the AP executes our policing algorithm,
the attempt rate of the station positioned near the AP will
be reduced and consequently all stations will attain nearly
identical throughputs (dark bars). Note that this correction
of the throughput distribution among clients comes at no
network utility cost, as we show in the lower plot of Fig. 18.

We conclude that our policing algorithm does not only
combat MAC misbehaviour, but can also mitigate unfair-
ness that arises in real deployments due to the PHY/MAC
interactions.

8 CONCLUSIONS

In this paper we introduced a policing scheme that penalises
MAC misbehaviour and preserves fairness in wireless net-
works. The proposed algorithm is executed at the AP and
does not require any modification to compliant devices. We
established the convergence of our algorithm, as well as
its robustness to sophisticated misbehaviour strategies that

14

seek to game its operation. We presented a practical im-
plementation on off-the-shelf hardware and demonstrated
the effectiveness of our proposal by conducting extensive
experiments in a real wireless LAN, over a wide range of
network conditions and misbehaviour scenarios. The results
obtained show that our policing algorithm drives selfish
users into compliant operation, regardless of the type of
misbehaviour employed, and does not penalise compliant
clients that consume more air time than lightly loaded
stations. In addition to that, we showed that our solution
has no negative impact on current rate control algorithms
and can alleviate unfairness incurred by the physical layer
capture effect.

ACKNOWLEDGEMENTS

The authors wish to thank Francesco Gringoli for his valu-
able support with OpenFWWF and Ken Duffy for his
thoughtful comments that helped improving this article.

REFERENCES

[1] IEEE 802.11 WG, “Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) specifications,” IEEE Std 802.11, 2007.

[2] G. Bianchi, A. Di Stefano, C. Giaconia, L. Scalia, G. Terrazzino,
and I. Tinnirello, “Experimental Assessment of the Backoff Behav-
ior of Commercial IEEE 802.11b Network Cards,” in Proc. IEEE
INFOCOM, Anchorage, USA, May 2007, pp. 1181–1189.

[3] J. Tang, Y. Cheng, and W. Zhuang, “An analytical approach to
real-time misbehavior detection in IEEE 802.11 based wireless
networks,” in Proc. IEEE INFOCOM, Shanghai, China, April 2011,
pp. 1638–1646.

[4] M. Raya, I. Aad, J.-P. Hubaux, and A. E. Fawal, “DOMINO:
Detecting MAC layer greedy behavior in IEEE 802.11 hotspots,”
IEEE Trans. Mob. Comput., vol. 5, pp. 1691–1705, December 2006.

[5] C. Liu, Y. Shu, W. Yang, and O. Yang, “Throughput Modeling and
Analysis of IEEE 802.11 DCF with Selfish Node,” in Proc. IEEE
GLOBECOM, December 2008, pp. 1–5.

[6] “MadWifi project,” http://www.madwifi-project.org.
[7] “Compat-wireless drivers,” http://wireless.kernel.org/en/users/Drivers.
[8] G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, F. Gringoli, and

I. Tinnirello, “MAClets: active MAC protocols over hard-coded
devices,” in Proc. ACM CoNEXT, Nice, France, December 2012,
pp. 229–240.

[9] A. A. Cardenas, S. Radosavac, and J. S. Baras, “Detection and
prevention of MAC layer misbehavior in ad hoc networks,” in
Proc. ACM Workshop on Security of ad hoc and sensor networks
(SASN), Washington DC, USA, October 2004, pp. 17–22.

[10] P. Kyasanur and N. H. Vaidya, “Selfish MAC Layer Misbehavior in
Wireless Networks,” IEEE Trans. Mob. Comput., vol. 4, pp. 502–516,
October 2005.

[11] A. L. Toledo and X. Wang, “Robust Detection of Selfish Misbehav-
ior in Wireless Networks,” Journal on Sel. Areas in Comm., vol. 25,
no. 6, August 2007.

[12] P. Serrano, A. Banchs, V. Targon, and J. F. Kukielka, “Detecting
selfish configurations in 802.11 WLANs,” IEEE Comm. Lett., pp.
142–144, February 2010.

[13] S. Szott, M. Natkaniec, and R. Canonico, “Detecting backoff misbe-
haviour in IEEE 802.11 EDCA,” European Trans. on Telecom., vol. 22,
no. 1, pp. 31–34, January 2011.

[14] A. A. Cardenas, S. Radosavac, and J. S. Baras, “Evaluation of
Detection Algorithms for MAC Layer Misbehavior: Theory and
Experiments,” IEEE/ACM Trans. Netw., vol. 17, no. 2, pp. 605–617,
2009.

[15] L. Vollero and G. Iannello, “Frame dropping: A QoS mechanism
for multimedia communications in WiFi hot spots,” in Intl. Conf.
on Parallel Processing, Montreal, Canada, August 2004, pp. 54–59.

[16] L. Vollero, A. Banchs, and G. Iannello, “ACKS: a technique to
reduce the impact of legacy stations in 802.11e EDCA WLANs,”
IEEE Comms. Lett., vol. 9, no. 4, pp. 346–348, April 2005.

[17] A. Banchs, P. Serrano, and L. Vollero, “Providing Service Guaran-
tees in 802.11e EDCA WLANs with Legacy Stations,” IEEE Trans.
Mob. Comput., vol. 9, no. 8, pp. 1057–1071, August 2010.

[18] I. Dangerfield, D. Malone, and D. Leith, “Incentivising Fairness
and Policing Nodes in WiFi,” IEEE Comms. Lett., vol. 15, pp. 500–
502, May 2011.

[19] A. Checco and D. Leith, “Proportional Fairness in 802.11 Wireless
LANs,” IEEE Comms. Letters, vol. 15, no. 8, pp. 807–809, August
2011.

[20] D. J. Thuente, B. Newlin, and M. Acharya, “Jamming vulnera-
bilities of IEEE 802.11e,” in Proc. IEEE MILCOM, Orlando, USA,
October 2007.

[21] J. Edney and W. Arbaugh, Real 802.11 security: Wi-Fi protected access
and 802.11i. Addison-Wesley Professional, 2004.

[22] G. Tan and J. Guttag, “Time-based Fairness Improves Performance
in Multi-rate WLANs,” in Proc. USENIX, Boston, MA, 2004.

[23] I. Tinnirello and S. Choi, “Temporal fairness provisioning in multi-
rate contention-based 802.11e WLANs,” in Proc. IEEE WoWMoM,
June 2005.

[24] IEEE 802.11 WG, “Specifications Amendment 6: Medium Access
Control (MAC) Security Enhancements,” IEEE Std 802.11i, 2004.

[25] Y. Sheng, K. Tan, G. Chen, D. Kotz, and A. Campbell, “Detecting
802.11 MAC Layer Spoofing Using Received Signal Strength,” in
Proc. IEEE INFOCOM, Phoenix, USA, April 2008, pp. 1768–1776.

[26] C. Neumann, O. Heen, and S. Onno, “An Empirical Study of Pas-
sive 802.11 Device Fingerprinting,” in Proc. Distributed Computing
Systems Workshops (ICDCSW), June 2012, pp. 593–602.

[27] J. Xiong and K. Jamieson, “SecureArray: Improving Wifi Security
with Fine-grained Physical-layer Information,” in Proc. ACM Mo-
biCom, Miami, Florida, USA, 2013, pp. 441–452.

[28] D. Malone, K. Duffy, and D. J. Leith, “Modeling the 802.11
distributed coordination function in non-saturated heterogeneous
conditions.” IEEE/ACM Trans. Net., pp. 159–172, February 2007.

[29] G. Bianchi, “Performance analysis of IEEE 802.11 distributed coor-
dination function,” IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp.
535–547, March 2000.

[30] A. Bacciotti and L. Rosier, Liapunov Functions and Stability in Control
Theory. Springer, 2006.

[31] “OpenFWWF,” http://www.ing.unibs.it/∼openfwwf/.
[32] B. Han, A. Schulman, F. Gringoli, N. Spring, B. Bhattacharjee,

L. Nava, L. Ji, S. Lee, and R. Miller, “Maranello: practical partial
packet recovery for 802.11,” in Proc. USENIX NSDI, San Jose,
California, USA, April 2010, pp. 205–218.

[33] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, and
F. Gringoli, “Wireless MAC processors: Programming MAC proto-
cols on commodity Hardware,” in Proc. IEEE INFOCOM, Orlando,
USA, March 2012, pp. 1269–1277.

[34] H. Wu, Y. Peng, K. Long, S. Cheng, and J. Ma, “Performance of
reliable transport protocol over IEEE 802.11 wireles LAN: Analysis
and enhancement,” in Proc. IEEE INFOCOM, NEw York, USA,
June 2002, pp. 599–607.

[35] D. S. Shafer and Z. Zhang, Introductory Statistics. Flat World
Knowledge, 2012.

[36] P. Barford and M. Crovella, “Generating representative web work-
loads for network and server performance evaluation,” in Proc.
ACM SIGMETRICS, Madison, USA, July 1998, pp. 151–160.

[37] “VLC media player,” http://www.videolan.org/.
[38] M. Heusse, F. Rousseau, G. Berger-sabbatel, and A. Duda, “Per-

formance anomaly of 802.11b,” in Proc. IEEE INFOCOM, San
Francisco, USA, April 2003, pp. 836–843.

[39] “Minstrel Rate Control,” http://wireless.kernel.org/en/developers/Documentation/mac80211/RateContr
[40] J. Bicket, “Bit-rate selection in wireless networks,” Masters thesis,

MIT, Tech. Rep., 2005.
[41] K. Huang, K. Duffy, and D. Malone, “H-RCA: 802.11 Collision-

Aware Rate Control,” IEEE/ACM Trans. Netw., vol. 21, no. 4, pp.
1021–1034, Aug 2013.

[42] F. Kelly, “Charging and rate control for elastic traffic,” European
Trans. Telecom., vol. 8, no. 1, pp. 33–37, February 1997.

[43] P. Patras, H. Qi, and D. Malone, “Exploiting the Capture Effect
to Improve WLAN Throughput,” in Proc. IEEE WoWMoM, San
Francisco, USA, June 2012.

[44] ——, “Mitigating Collisions through Power-Hopping to Improve
802.11 Performance,” Perv. & Mob. Comput., vol. 11, pp. 41–55,
April 2014.

http://www.madwifi-project.org/
http://wireless.kernel.org/en/users/ Drivers
http://www.ing.unibs.it/~openfwwf/
http://www.videolan.org/
http://wireless.kernel.org/en/developers/ Documentation/mac80211/RateControl/minstrel

	arxiv.org
	eps/capture-util.eps
	1 Introduction
	2 Related Work
	3 Policing Algorithm
	3.1 Class of Misbehaviours
	3.2 Controller Operation

	4 Mathematical Analysis
	4.1 Convergence
	4.2 Robustness

	5 Implementation
	5.1 Prototype
	5.2 Fair Attempt Rate Estimation

	6 Experimental Evaluation
	6.1 Controller Validation
	6.2 Impact of Network Size
	6.3 Multiple Misbehaving Clients
	6.4 Dynamic Network Conditions
	6.5 Real Traffic

	7 Non-ideal Channel Effects
	7.1 Rate Control
	7.2 Capture Effect

	8 Conclusions
	References

