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Abstract—We show that the occupancy of appropriate queues
can be used as a surrogate for Lagrange multipliers in convex
optimisation. Our analysis uses only elementary methods, and is
not asymptotic in nature. One immediate consequence is that in
network problems the scaled link queue occupancy can be used
as multipliers when calculating the dual function. Conversely,
the connection with multipliers casts light on the link queue
behaviour under optimal decision-making (not just max-weight
scheduling). Namely, on links corresponding to active constraints
the queue occupancy necessarily grows as step size α is reduced.
Importantly, our analysis encompasses nonlinear constraints, and
so generalises analysis beyond conventional queueing networks.

Index Terms—convex optimisation, subgradient methods, max-
weight scheduling

I. INTRODUCTION

In this paper we consider the use of queue occupancy as

a surrogate for Lagrange multipliers. In queueing networks

the use of queue occupancy is well established in max-weight

scheduling, where scheduling decisions which aim to stabilise

queues are explicitly based on queue occupancies. Max-weight

methods can be extended to solve a class of convex utility

optimisation problems, but as previously noted by e.g., [1]

the connection between queues and multipliers in max-weight

methods remains largely open. Further, our interest here is

in general convex optimisation problems rather than only

queueing network problems.

We take as our starting point the observation that the usual

subgradient multiplier update λk+1 = [λk+α(g(zk)−b)]+ for

convex constraint g(zk) ≤ b has a queue-like form. Namely,

rescaling the multiplier by α, the subgradient update can be

rewritten equivalently as Qk+1 = [Qk + g(zk) − b]+ where

Qk := λk/α, which is identical to a queue update with incre-

ment g(zk) − b. Similarly, we can also consider a sequence

of convex constraints g(zk) ≤ bk and subgradient multiplier

update λk+1 = [λk + α(g(zk) − bk)]
+ to accommodate

queue-like arrival/departures. This increment is necessarily

continuous-valued in convex problems (if zk is restricted to

take values in a discrete set, the problem is non-convex),

and so the queue occupancy Qk is also continuous-valued. In

contrast, in network problems where flows consist of packets,

code blocks, vehicles, etc., the queue occupancy is discrete-

valued. While an asymptotic fluid analysis might be attempted

to establish a relationship between scaled multiplier Qk and
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the occupancy of appropriate network queues, in this paper

we show that in fact this is unnecessary. Using elementary

methods (no need for sophisticated fluid-limit arguments etc.),

we present mild conditions under which multiplier λk and

the occupancy of an appropriate discrete queue are essentially

inter-changeable quantities.

One immediate consequence of this result is that in network

problems the scaled link queue occupancy can be used as

multipliers when calculating the dual function. Conversely,

the connection with multipliers casts light on the link queue

behaviour under optimal decision-making (not just max-weight

scheduling); namely, on links corresponding to active con-

straints the queue occupancy necessarily grows as step size α
is reduced. Importantly, our analysis encompasses nonlinear

constraints, and so generalises analysis beyond conventional

queueing networks1.

A. Related Work

Max-weight scheduling was introduced by Tassiulas and

Ephremides in their seminal paper [2]. They consider a

network of queues with slotted time, an integer number of

packet arrivals in each slot and a finite set of admissible

scheduling patterns, referred to as actions, in each slot. Using

a Forster-Lyapunov approach they present a scheduling policy

that stabilises the queues provided the external traffic arrivals

are strictly feasible. Namely, the scheduling policy consists

of selecting the action from a discrete set D at each slot

that maximises the queue-length-weighted sum of rates, xk ∈
argmaxx∈D −QT

kAx. Max-weight is extended in a sequence

of papers [3], [4], [5], [6] and books [7], [8] to encompass

the maximisation of concave utility functions subject to queue

stability.

The observation that the multiplier subgradient update has

a queue-like form is not new, see for example [9] and later

papers. However, we are aware of few rigorous results relating

queues and multipliers in convex optimisation. A notable

exception is [10], which establishes that under a max-weight

schedule a discrete queue update tends on average to drift

towards the optimal multiplier value.

1In a typical queueing network formulation the connectivity between queues
is captured via a matrix A ∈ {−1, 0, 1}n×n , whose i’th row has a −1 at
the i’th entry, 1 at entries corresponding to queues from which packets are
sent to queue i, and 0 entries elsewhere. The queue occupancy then updates
according to Qk+1 = [Qk +Axk + bk ]

+, i = 1, 2, . . . , n, where the i’th
element of vector bk ∈ Nn denotes the number of external packet arrivals to
queue i at time k.
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B. Notation

Vectors and matrices are indicated in bold type. Since we

often use subscripts to indicate elements in a sequence, to

avoid confusion we usually use a superscript x(i) to denote the

i’th element of a vector x. The i’th element of operator [x][0,λ̄)

equals x(i) (the i’th element of x) when x(i) ∈ [0, λ̄) and

otherwise equals 0 when x(i) < 0 and λ̄ when x(i) ≥ λ̄. Note

that we allow λ̄ = +∞, and following standard notation in this

case usually write [x]+ instead of [x][0,∞). The subgradient of

a convex function f at point x is denoted ∂f(x). For two

vectors x,y ∈ R
m we use element-wise comparisons x � y

and y � x to denote when y(i) ≥ x(i), y(i) > x(i) respectively

for all i = 1, . . . ,m.

II. DISCRETE AND CONTINUOUS QUEUES

Let sequences zk and xk, k = 1, 2, . . . , consist of points

from R
n. We will often think of zk as being continuous-valued

and xk as being discrete-valued. For example, xk might be a

suitable projection of zk onto the integer lattice. Let matrix

A ∈ R
m×n and {bk} be a sequence of points from R

m and b

also a point from R
m. We will often think of bk as the packet

arrivals/departures at time step k and b as the mean packet

arrival/departure rate.

Define the following two queueing iterations:

Qk+1 = [Qk +Azk − b][0,λ̄), (1)

Q̃k+1 = [Q̃k +Axk − bk]
[0,λ̄) (2)

with Qk, Q̃k ∈ R
m
+ , Qk := [Q(1), . . . , Q(m)]T , Q̃k :=

[Q̃(1), . . . , Q̃(m)]T and initial condition Q1 = Q̃1. Here,

vector Qk can be thought of as the occupancy of a set

of queues with continuous-valued/fluid-like arrivals/departures

Azk+1 and b2. While vector Q̃k can be thought of as the

occupancy of a set of queues with discrete arrivals/departures

Axk and bk. Note that the maximum queue size λ̄ may be

finite.

When bk = b and zk = xk, k = 1, 2, . . . , the two queue

updates are of course identical and Qk = Q̃k. For zk �= xk

and/or bk �= b, so long as the differences between zk, xk and

between bk, b remain small in an appropriate sense then we

might expect that the queue occupancies Qk and Q̃k remain

close, and indeed this is the case. The required sense in which

differences are required to be small is clarified by the following

lemma (which corresponds to [11, Proposition 3.1.2.]):

Lemma 1. Consider the sequences xk+1 = [xk + δk]
[0,λ̄)

and yk+1 = [yk + δ̃k]
[0,λ̄), k = 1, 2, . . . where xk, yk ∈ R

+,

δk, δ̃k ∈ R and λ̄ > 0. Suppose x1 = y1 and |
∑k

i=1 δi− δ̃i| ≤
ε for all k ≥ 1. Then,

|xk − yk| ≤ 2ε, ∀k ≥ 1.

It can be seen from Lemma 1 that the requirement is that

|
∑k

i=1 δi − δ̃i| is uniformly bounded for all k. Hence, to

bound the difference between queue occupancies Qk and Q̃k

we can expect to require that |
∑k

i=1(a
(j))T (zi − xi)| ≤ σ1

2Since Azk and b can both be negative valued we can think of Azk and b
as either arrivals or departures, or any combination of arrivals and departures
that is convenient – all that matters is the net queue increment Azk − b.
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Fig. 1. Example realisations of λ̃k and λk for a queue with service rate
b = 0.51, i.i.d. equiprobable {0,1} arrivals (so mean is 0.5) and parameter
α = 1.

and |
∑k

i=1 b
(j)
i − b(j)| ≤ σ2 for some σ1, σ2 > 0 and any

k ≥ 1, where (a(j))T denotes the j’th row of matrix A.

However, rather than stating this result in terms of Qk and

Q̃k it will prove more convenient later to state it in terms of

the corresponding rescaled updates

λk+1 = [λk + α(Azk − b)][0,λ̄), (3)

λ̃k+1 = [λ̃k + α(Axk − bk)]
[0,λ̄) (4)

where λk := αQk and λ̃k := αQ̃k, α > 0. We have the

following:

Lemma 2 (Discrete and Continuous Queues). Consider

the updates (3) and (4) with λ1 = λ̃1. Suppose that

|
∑k

i=1(a
(j))T (zi − xi)| ≤ σ1 and |

∑k

i=1(b
(j)
i − b(j))| ≤ σ2

where (a(j))T denotes the j’th row of matrix A and b
(j)
i

denotes the j’th element of vector bi. Then,

|λ̃
(j)
k − λ

(j)
k | ≤ 2α(σ1 + σ2), k = 1, 2, . . . (5)

where λ̃
(j)
k , λ

(j)
k denote, respectively, the j’th element of

vectors λ̃k, λk.

Note that selecting constant sequence bk = b, k = 1, 2, . . .
trivially satisfies the conditions of Lemma 2. Also, since ‖ ·
‖2 ≤ ‖ · ‖1 it follows immediately from Lemma 2 that

‖λ̃k − λk‖2 ≤ 2mα (σ1 + σ2) , k = 1, 2, . . . (6)

This behaviour is illustrated in Figure 1, where it can be

seen that the distance between λk and λ̃k remains uniformly

bounded over time.

III. APPLICATION TO CONVEX OPTIMISATION

We consider the application of Lemma 2 to convex optimi-

sation. Consider the convex optimisation P :

minimise
z∈C

f(z)

subject to Az � b

where f : R
n → R is convex, matrix A ∈ R

m×n, vector

b ∈ R
m and C a bounded convex subset in R

n. Let C0 :=
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{z ∈ C : Az � b} denote the set of feasible points, which

we will assume has non-empty relative interior (i.e., a Slater

point exists). Let C∗ := argminz∈C0
f(z) ⊂ C0 be the set of

optima and f∗ := f(z∗), z∗ ∈ C∗.

Define Lagrangian L(z,λ) := f(z) + λT (Az − b) where

λ ∈ R
m
+ . Since set C has non-empty relative interior, the

Slater condition is satisfied and strong duality holds. That is,

min
z∈C

max
λ�0

L(z,λ) = max
λ�0

min
z∈C

L(z,λ) = f∗.

Further, we have the following boundedness property, which

corresponds to [12, Lemma 1]:

Lemma 3. Let q(λ) := minz∈C L(z,λ) and λ∗ ∈
argmaxλ�0 q(λ). Suppose set C0 has non-empty relative

interior. Then

‖λ∗‖2 ≤
f(z̄)− q(λ∗)

ξ
(7)

where ξ = −min1≤j≤m g(j)(z̄), z̄ ∈ relint(C0).

From Lemma 3 it follows that there exists a constant

λ̄ ∈ [0,∞) such that the optimum λ∗ � λ̄1 := λ̄. That is,

it is sufficient to confine consideration to the Lagrangian on

bounded set 0 � λ � λ̄ since max0�λ�λ̄ minz∈C L(z,λ) =
f∗.

Before proceeding, we note the following bound that will

prove useful:

Lemma 4 (Lower Bound). Let f : R
n → R, g(j) :

R
n → R, j = 1, . . . ,m be convex functions and let C

be a bounded convex set in R
n. Further, assume that there

exists a constant such that maxz∈C ‖g(z)− b‖2 ≤ σ3 where

g(z) = [g(1)(z), . . . , g(m)(z)]T . Let Lagrangian L(z,λ) :=
f(z)+λT (g(z)−b), λ � 0, and assume that f∗ := L(z∗,λ∗)
is a saddle point, i.e., L(z∗,λ) ≤ L(z∗,λ∗) ≤ L(z,λ∗), and

that λ∗ � λ̄1. Consider update

λk+1 = [λk + α(g(zk)− b)][0,λ̄) (8)

with constant step size α > 0 and {zk} is an arbitrary

sequence of points from set C. Then,

−
‖λ1 − λ∗‖22

2αk
−

α

2
σ2
3 ≤

1

k

k∑
i=1

L(zi,λi)− f∗. (9)

We are now in a position to consider the following sequence

of optimisations {P̃L
k }:

zk ∈ argmin
z∈C

L(z, λ̃k) (10)

= argmin
z∈C

f(z) + λ̃
T

kAz (11)

λ̃k+1 = [λ̃k + α(Axk − bk)]
[0,λ̄) (12)

where α > 0 is a step size parameter, {bk} is a sequence

of points from R
m, {xk} a sequence of points from R

n.

Update (11) is obtained from (10) by retaining only the parts

of L(z, λ̃k) which depend on z i.e., dropping constant terms

which do not change the solution to the optimisation. Note

that (11) does not involve b or bk.

Observe that when we select bk = b, xk = zk and λ̄ =
+∞ then sequence {P̃L

k } corresponds to the standard dual

subgradient update:

zk ∈ argmin
z∈C

L(z,λk) (13)

λk+1 = [λk + α(Azk − b)]+ (14)

which is known to converge to a ball around the optimum of

optimisation P , with the size of the ball depending on the

value of step size parameter α. Namely, by Lemma 4 we have

the following bound

−
‖λ1 − λ∗‖22

2αk
−

α

2
σ2
3 ≤

1

k

k∑
i=1

L(zi,λi)− f∗ ≤ 0

since minz∈C L(z,λk) = L(zk,λk) ≤ L(z∗,λk) ≤
L(z∗,λ∗) = f∗ for all k.

Update (10)-(12) generalises this standard subgradient up-

date to allow use of a time-varying, possibly discrete, additive

term bk and use of an approximate, possibly discrete, action

xk. Provided α is sufficiently small and bk, xk sufficiently

well-behaved, by Lemma 2 we know that the multiplier λ̃k

generated by (12) will remain close in value to the continu-

ously valued multiplier λk generated by (14). Using this, we

can then show that the sequence {P̃L
k } converges to a ball

around the solution of optimisation P :

Theorem 1. Consider optimisation P . Consider also the

associated sequence of optimisations {P̃L
k }. Suppose that

sequence {bk} of points from R
m satisfies |( 1

k

∑k

i=1 b
(j)
i ) −

b(j)| ≤ σ2/k, j = 1, . . . ,m and sequence xk satisfies

|
∑k

i=1(a
(j))T (zi − xi)| ≤ σ1, j = 1, . . . ,m. Then, the

sequence of solutions {zk} to the sequence of optimisations

{P̃L
k } satisfies:

−
‖λ̃1 − λ∗‖22

2αk
−

α

2
σ2
3 − 2mα (σ1 + σ2)σ3

≤
1

k

k∑
i=1

L(zi, λ̃i)− f∗ ≤ 0 (15)

where σ3 := maxz∈C ‖Az − b‖2.

As already noted in Section II, λ̃k can be thought of as

the α scaled occupancy of a set of queues with net increment

Axk − bk. That is, use of a discrete time-varying update (12)

induces an equivalence between multipliers and the occupancy

of an associated set of queues. Note that this observation

complements [10, Theorem 1] in the context of max-weight

optimisation, which states that a discrete queue update tends

on average to drift towards the optimal multiplier value. In

network flow problems these queues can be identified with

physical link queues. However, since the formulation of net-

work flow constraints is not unique, and changing how these

constraints are formulated changes the multiplier update, some

care may be necessary to select the constraints in a way that

is congruent with the physical queues in a particular network.

Further, since the multiplier queue occupancy is given by

Q̃k = λ̃k/α, for constraints where the multiplier is non-zero at

the optimum the associated queue occupancy will necessarily

grow as subgradient step size α is decreased. Since a small
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step size is generally needed in order to converge to a small

ball around the optimum, this indicates that a fundamental

trade-off may exist between queue occupancy and optimality.

IV. STOCHASTIC CONSTRAINTS

This optimisation analysis can be readily extended to a

useful class of stochastic constraints. Of particular interest, in

view of the equivalence which has been established between

multiplier updates and queues, is accommodating stochastic

queue arrivals/departures. When {bk} is a sequence such

that 1
k

∑k

i=1 bi converges sufficiently quickly to b, then by

Theorem 1 the sequence of non-convex optimisations {P̃L
k }

converges to the solution of optimisation problem P . Since

this holds for all admissible sequences {bk}, this of course

includes sample paths of a stochastic process.

Let {Bk} be a stochastic process with realisations of

Bk taking values in R
m and with mean b ∈ R

m. Let

pk := Prob(‖( 1
k

∑k

i=1 Bi) − b‖k ≤ mσ2/k). Note that,

by central limit arguments, for many stochastic processes

limk→∞ pk = 0. Let {bi}
k
i=1 denote a realisation of length k

and Ek the set of possible realisations of length k. Fraction pk
of these realisations satisfy ‖( 1

k

∑k

i=1 bi)−b‖k ≤ mσ2/k, i.e.,

fraction pk of realisations satisfy the conditions of Theorem

1. We therefore have the following corollary to Theorem 1.

Corollary 1. Consider the setup in Theorem 1. Suppose that

sequence {bk} is a realisation of a stochastic process {Bk}
with mean b ∈ R

m. Let pk := Prob(‖( 1
k

∑k

i=1 Bi)− b‖∞ ≤
mσ2/k). Then there exists k̄ such that with probability pk for

all k ≥ k̄ the sequence of solutions {zk} to the sequence of

optimisations {P̃L
k } satisfies (15).

For example, Bk might take values in discrete set E =
{0, 1}m and we can think of Bk as random packet ar-

rivals/departures at time step k and b as the mean packet

arrival/departure rate. Note that there is no requirement for

stochastic process {Bk} to be i.i.d. or for any of its properties,

other than that feasible set Az � b has non-empty relative

interior, to be known in advance in order to construct solution

sequence {P̃L
k }. Note also that while we require an interior

(Slater) point to exist for Az � b we do not require this to

be the case for constraint Az � 1
k

∑k

i=1 Bi for finite k.

V. NONLINEAR CONSTRAINTS

The foregoing is for linear constraints. However, it carries

over largely unchanged to nonlinear constraints g(j)(z) ≤ b(j),
j = 1, . . . ,m (which can be equivalently written in vector

notation as g(z) � b where g(z) = [g(1)(z), . . . , g(m)(z)]T )

provided sequence {xk} satisfies |
∑k

i=1 g
(j)(zi)−g(j)(xi)| ≤

σ1. Namely, consider the sequence of optimisations {P̂NL
k }:

zk ∈ argmin
z∈C

L(z, λ̃k)

= argmin
z∈C

f(z) + λ̃
T

k g(z) (16)

λ̃k+1 = [λ̃k + α(g(xk)− bk)]
[0,λ̄). (17)

Then we have that:

A

B

N D

Fig. 2. Illustration of the network used in the example of Section VI.

Theorem 2. Consider optimisation P with modified con-

straints g(z) � b, and consider associated sequence

of non-convex optimisations {P̂NL
k }. Suppose that σ3 :=

maxz∈C ‖g(z) − b‖2 is finite, sequence {xk} satisfies

|
∑k

i=1 g
(j)(zi)−g(j)(xi)| ≤ σ1 and sequence {bk} of points

in R
m satisfies |( 1

k

∑k

i=1 b
(j)
i )− b(j)| ≤ σ2/k, j = 1, . . . ,m.

Then, the sequence of solutions {zk} to the sequence of

optimisations {P̃NL
k } satisfies:

−
‖λ̃1 − λ∗‖22

2αk
−

α

2
σ2
3 − 2mα(σ1 + σ2)σ3

≤
1

k

k∑
i=1

L(zi, λ̃i)− f∗ ≤ 0. (18)

Also, for stochastic nonlinear constraints (where the bk are

random variables) we have the following:

Corollary 2. Consider the setup in Theorem 2. Suppose that

sequence {bk} is a realisation of a stochastic process {Bk}
with mean b ∈ R

m. Let pk := Prob(‖( 1
k

∑k

i=1 Bi)− b‖∞ ≤
mσ2/k). Then with probability pk for all k ≥ k̄ the sequence

of solutions {zk} to sequence of optimisations {P̃NL
k } satisfies

(18).

VI. EXAMPLE

Consider the simple network shown in Figure 2. Time is

slotted with slots indexed by k = 1, 2, . . . and at each time

slot k sources A and B generate packets s
(j)
k j = 1, 2

with probability p(1) = 0.66 and p(2) = 0.33 respectively

that arrive at queues Q̃(1) and Q̃(2) of node N . At each

time slot node N selects an action from a discrete set of

actions D := {(0, 0), (0, 1), (1, 0)}, where (1, 0) corresponds

to sending a packet from Q̃(1), (0, 1) to sending a packet from

Q̃(2) and (0, 0) to do nothing. The objective is to minimise

the energy utility function U(z) :=
∑2

j=1(z
(j))2 subject to

the network rate constraints, where z(1) is the mean transmit

rate of packets from source A and z(2) the mean transmit rate

of packets from source B.

A. Convex problem formulation

We can formulate the network problem as a convex optimi-

sation problem, i.e.,

minimise
z∈C

zTz

subject to r � z

where r = [r(1), r(2)]T , z = [z(1), z(2)]T and C := conv(D).
Notice that constraining z ∈ C enforces r(1) + r(2) ≤ 1 in
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order for the problem to be feasible. The Lagrangian is given

by

L(z,λ) = zTz + λT (r − z)

B. Dual subgradient method with discrete queue updates

We can solve the latter convex optimisation problem using

the subgradient method for the dual problem [13]. That is,

with updates

zk ∈ argmin
z∈C

zTz + λT
k (r − z)

= argmin
z∈C

zTz − λT
k z (19)

λk+1 = [λk + α (r − zk)]
+

(20)

However, observe that update (20) requires previous knowl-

edge of the mean rate arrivals. By Theorem 1 we can alterna-

tively choose to solve the network problem using the following

updates

zk ∈ argmin
z∈C

zT z + λ̃
T

k (sk − z)

= argmin
z∈C

zTz − λ̃
T

k z (21)

λ̃k+1 =
[
λ̃k + α (sk − xk)

]+
(22)

where λ̃k = αQ̃k, Q̃k+1 = [Q̃k −xk +sk]
+, xk is a the dis-

crete action from set D selected by node N and sk the vector

of packet arrivals at the queues at time slot k. Recall that the

convergence of the sequence of updates obtained in Theorem 1

relies on the fact that |λ
(j)
k − λ̃

(j)
k | is uniformly upper bounded

for all k ≥ 1, that is, by Lemma 2 we need that the sequences

{zk} and {xk} remain close in appropriate sense and that
1
k

∑k

i=1 si converges sufficiently fast to r. In general, multiple

sequences {xk} might exist, and those can have different

properties in terms of average queue backlog, packet delay, etc.

Nonetheless, although constructing sequences with different

properties is challenging and interesting on its own, this is

outside of the scope of the present paper. For this particular

example we construct sequence {xk} as follows

xk ∈ arg min
x∈D

∥∥∥∥∥
k∑

i=1

zi −
k−1∑
i=1

xi − x

∥∥∥∥∥
∞

. (23)

Figure 3 and 4 show the values of the multiplier λk and

λ̃k at each time slot k when we use updates (19) and (20)

to solve the optimisation problem with parameter α = 10−2

and α = 10−3 respectively. It can be observed in both figures

that the distance between the continuous and discrete valued

multipliers is uniformly bounded, and that we can decrease

the distance between both multipliers by choosing α small.

Nevertheless, recall that we do not require to know λ in the

optimisation, and that we can simply obtain λ̃k by scaling the

queue occupancy at time k by α. Figures 5 and 6 show the

bound claimed in Theorem 1 for α = 10−2 and α = 10−3

respectively. The constants used in the lower bound are σ1 =
1, σ2 = 10, σ3 = 1 and ‖λ̃1 − λ∗‖22 = 1. It can be observed

that the bound obtained with α = 10−3 is tighter than the

one obtained when α = 10−2, however, at the cost of slower

convergence.
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Fig. 3. Illustrating the discrete and continuous valued multipliers when step
size α = 10−2 is used in the optimisation.
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Fig. 4. Illustrating the discrete and continuous valued multipliers when step
size α = 10−3 is used in the optimisation.
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Fig. 5. Illustrating the bound of Theorem 1 when step size α = 10−2 is
used in the optimisation.
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Fig. 6. Illustrating the bound of Theorem 1 when step size α = 10−3 is
used in the optimisation.

VII. CONCLUSIONS

We show that the occupancy of appropriate queues can

be used as a surrogate for Lagrange multipliers in convex

optimisation. Our analysis uses only elementary methods, and

is not asymptotic in nature. One immediate consequence is that

in network problems the scaled link queue occupancy can be

used as multipliers when calculating the dual function. Con-

versely, the connection with multipliers casts light on the link

queue behaviour under optimal decision-making (not just max-

weight scheduling). Namely, on links corresponding to active

constraints the queue occupancy necessarily grows as step size

α is reduced. Importantly, our analysis encompasses nonlinear

constraints, and so generalises analysis beyond conventional

queueing networks.
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