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Abstract—We present a new information-theoretic defi- perspective. Such systems are based on yet unproven
nition and associated results, based on list decoding in a hardness assumptions, but nevertheless have led to cryp-
source coding setting. We begin by presenting list-source tographic schemes that are widely adopted (for an

codes, which naturally map a key length (entropy) to - .
list size. We then show that such codes can be analyzedoverv'ew’ see[[3]). Currently, computationally secure

in the context of a novel information-theoretic metric, - Schemes are used millions of times per day, in ap-
symbol secrecy, that encompasses both the one-time padplications that range from online banking transactions
and traditional rate-based asymptotic metrics, but, like to digital rights management. However, with the ever
most cryptographic constructs, can be applied in non- j,creasing amount of data streaming over the Internet
asymptotic settings. We derive fundamental bounds for- . - .
symbol secrecy and demonstrate how these bounds can beand the need to _prOV|de secure _connectlons to mobile
achieved with MDS codes when the source is uniformly 10w powered devices, there is still a constant demand
distributed. We discuss applications and implementation for new and efficient security solutions.
issues of our codes. There has been a long exploration of the connection
between coding and cryptography [4], and our work is
inscribed in this school of thought. From a theoretical
Classic information-theoretic approaches to secrepgrspective, we aim to present a new framework that
are concerned with unconditionally secure systems, ialows the application of information theoretic-tools to
schemes that manage to hide all the bits of a messagwlyze a broader set of secrecy schemes that go beyond
from an adversary with unbounded computational réhe one-time pad and the wiretap model with its varia-
sources. It is well known that, for a noiseless settingions. Towards this goal, we define a new metric for an-
unconditional (i.e. perfect) secrecy can only be attainedyzing security, namely-symbol secrecy, which quan-
when both communicating parties share a random kéfies the uncertainty of specific source symbols given
with entropy at least as large as the message ifself [1].&am encrypted source sequence. This metric subsumes
other cases, perfect secrecy can sometimes be achietraditional rate-based information-theoretic measurfes o
by exploiting particular characteristics of the consideresecrecy which, unlike usual cryptographic approaches,
model, such as when the legitimate communicating pargye generally asymptotic. However, our definition is not
has a less noisy channel than the eavesdropper (wiretegymptotic and, indeed, we provide a construction that
channel) [[2]. achieves fundamental symbol secrecy bounds, based on
Alternatively, computationally secure cryptosystemBIDS codes, for finite-length sequence.
have thrived both from a theoretical and a practical In order to construct schemes that achieve symbol
secrecy performance bounds, we present the definition
This work is sponsored by the Depa}rt_ment _of Defens_e under Alf |ist-source codes, which are codes that compress a
Force Contract FA8721-05-C-0002. Opinions, interpretetj recom- .
mendations, and conclusions are those of the authors ancdhadre source sequeaneIOW Its entropy rate. Consequemly'
necessarily endorsed by the United States Governmentifisply; a list-source code is decoded to a list of possible
this work was supported by Information Systems of ASD(R&E).  source sequences instead of a unique source sequence.
Currently with Auroral LLC. . .
*+ Supported by the Irish Higher Educational Authority (HEAyR  Fundamental bounds for list-source codes are derived,
Network Mathematics Grant. and explicit constructions that achieve such bounds are
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presented using tools from algebraic coding theory. similar to [13], albeit the framework developed here is
We show how list-source codes can be used as @ore general.
important tool for hiding information with key sizes that List decoding techniques for channel coding were
are only a fraction of the entropy of the message. Usirfigst introduced by Elias’[14] and Wozencréft [15], with
list-source codes, it becomes possible to argue that thebsequent work by Shannemnal. [16], [17] and Forney
best an adversary can do is to reduce the set of possifil8]. Recently, new algorithmic results for list decoding
messages to an exponentially sized list with certain propf channel codes were discovered by Gurusuwami and
erties, where the size of the list depends on the length 8fidan [[19]. We refer the reader fo [20] for an excellent
the key. Since the list has an exponential size, it canmgurvey of list decoding results. List decoding has been
be resolved in polynomial time, offering a certain level o€onsidered in the context of source coding(inl [21]. The
computational security. We will show how this propertypproach is related to the one presented here, since we
can be used to develop hybrid encryption schemes, whenay view a secret key as side information, but| [21] do
only part of the message needs to be securely encryptedt consider source coding and list decoding together for
Our main practical application of interest is securthe purposes of security.
content caching and distribution. We propose a hybrid
encryption scheme based on list-source codes, wh&eCommunication and threat model
a Ia_rge fractl_on of the_ message can be encoded an(k transmitter (Alice) sends to a legitimate receiver
distributed using a key-independent list-source code. T :
) ) L . (Bob) a sequence of length produced by a discrete
information necessary to resolve the decoding list, Whlcg‘f

can be much smaller than the whole message, is the urce X' with output alphabett and probability dis-
uen w . 9¢. 15 MEbution px(-). Both Alice and Bob have access to a
encrypted using a secure method. This scheme allo

IR T ared secret key< drawn uniformly and at random
a significant amount of content to be distributed al W y

cachedbefore dealing with key generation, distribution oma d|scr_ete aIphangf, such _thatH(.K)n< H(X™),
. and encryption/decryption functiorisic : X" x K — C
and management issues.

and Dec : C x K — X", whereC is the set of
possible encrypted messages. In addition, Alice commu-
A. Related work nicates with Bob over a noiseless channel. Alice observes
Tools from algebraic coding theory have been widelthe source sequenc&™, and transmits an encrypted
used for constructing secrecy scheni€s [4]. In additiomessageC = Enc(X", K). Bob then recoversX™
the notion of providing security by exploiting the facty decrypting the message using the key, recovering
that the adversary has incomplete access to informd"* = Dec(C, K). The communication is successful if
tion is also central to several secure network coding” = X".
schemes and wiretap models. Ozarow and Wyher [5]We assume a passive but computationally unbounded
introduced the wiretap channel 1, where an adversagavesdropper (Eve) that has access to all transmitted
can observe a set of his choice out ofn trans- messages from Alice to Bob and knows the functions
mitted symbols, and proved that there exists a codec(-) andDec(-), but does not know the secret kéy.
that achieves perfect secrecy. A generalized version lb¥e’s goal is to gain as much knowledge as possible
this model was investigated by Cai and Yeunglih [6pbout the original source sequence. This is the tradi-
where they introduce the related problem of designirtipnal framework used in cryptography, and no degraded
an information-theoretically secure linear network codassumption is made beyond the shared secret key.
when an adversary can observe a certain number of edgeln the remainder of this paper we investigate two main
in the network. Their results were later extended_in [7]aspects of this model, described below.
[10]. A more practical approach was presented by Lima 1) Encryption with key entropy smaller than the mes-
et al. in [11]. For a survey on the theory of secur&age entropy: We initially analyze how to perform
network coding, we refer the reader o [12]. encryption when the key is smaller than the message.
The setting considered in this paper is related fGowards this goal, we present the definition of list-
the wiretap channel Il in that a fraction of the sourceource codes (LSCs), together with fundamental bounds,
symbols is hidden from a possible adversary. Olivetra in section[1l. Furthermore, practical code constructions
al. investigated in[[113] a related setting in the context aff LSCs are introduced in sectignllll. We present list-
data storage over untrusted networks that do not colludmurce codes as codes that compress the source sequence
introducing a solution based on Vandermonde matricd®low its entropy rate, and in sectignllll describe how
The MDS coding scheme introduced in this paper isSSCs can be used in the considered model.



2) Security analysis and new security metrics for i.i.d. 1
sources. We analyze the security of schemes basét(X)
on LSCs in sectiofiIV. In addition, we introduce &8/
new information-theoretic metric that can be used in
scenarios where perfect secrecy cannot be achieved,
namelyabsolute and e-symbol secrecy. Achievable

In section[¥ we discuss the extension of LSCs to [,
Markovian source models, and in sectiod VI we present
applications and practical considerations of the proposed
secrecy scheme. Finally, sectibn VIl presents our con-
cluding remarks.

II. LIST DECODING AND SOURCE CODING
FUNDAMENTAL LIMITS

In this section we present the definition of list-source 00 H(X)
codes and derive fundamental bounds. Consider a dis- R
crete memoryless sourcé with output alphabe®” and
probability distributionpx (-). Fig. 1. Rate list region for normalized list siZe and code rateR.

Definition 1. A (2"%, |xX|*", n)-list-source code for a

discrete memoryless sourcé consists of an encoding Proof: Let > 0 be given and(f..g.) be a
1 . n nR H H . - ) JnsIn

function f, : & — {1,...,2""} and a list-decoding gequence of codes with (normalized) list sizg such

functiong, : {1,..., 2"} — P(A")\@, WherLeP(X") that L,, — L and for any0 < ¢ < 1 andn sufficiently
is the power set ofY™ and |g(w)|= |X["" Yw € jarge( < e1(fn,gn) < . Then

{1,... 278},
Note that0 < L < 1. From an operational point Pr lX" e U gn(w)] > PrIX™ € gn(f2(X™))] (3)

of view, L is a parameter that determines the size of wEW™
the decoded list. For exampld, = 0 corresponds >1—c¢ (4)
to traditional lossless compression, i.e., each source _
sequence is decoded to a unique sequence. Furthermifeere " = {1,.. -, 2"} and R, is the rate of the
L = 1 represents the trivial case when the decoded 1§04€(/n, gn). Using [22, Lemma 2.14]:
corresponds toX'™. 1 1
For a list-source code, an error is declared when a —10g< Z |gn(w)|> = —log (2”R"|X|”Ln)
string generated by a source is not contained in the K weWwn K
corresponding decoded list. The average error probability =R, + L, log|X|
is given by
> Liog| | gu(w)
eL(frnsgn) = PHX" & gn(fn(X™))). ) =5 %8 ST In
Definition 2. For a given discrete memoryless source > H(X) -6 (5)

X, the rate list size paifR, L) is said to beachievable

if for every § > 0, 0 < e < 1 and sufficiently large. if 7 > no(d,¢, |X[). Since this holds for any > 0,
there exists a sequence @ f | |X|"L» n)-list-source it follows that R(L) > H(X) — Llog|X| for all n
codes(f,,gn) such thatR,, < R+ 6, |L, — L|< § and Sufficiently large.

er, (fn,gn) < €. Therate list region is the closure of u

all rate list pairs(R, L). Remark 1. Achievability of the bound{2) will be shown

Definition 3. Therate list function R(L) is the infimum through an explicit design using linear codes in the next
of all ratesR such that(R, L) is in the rate list region Section, so the inequality can be proved to be an equality.

for a given normalized list sizé < L < 1. lIl. CODE DESIGN

Proposition 1. For any discrete memoryless source X, A Trivial approach

the rate list function is bounded below by Assume that the sourcq” is uniformly distributed
R(L) > H(X) — Llog|X| . (2) inF,, ie., P(X = 2) = 1/q Yo € F,. In this case



R(L) = (1—L)logq. A trivial scheme for achieving the Proof: Since the size of each coset corresponding
list-source boundary is the following. Consider a sourde a syndrome &%~ is exactly¢®", the normalized
sequenceX” = (X?, X*), where X? denotes the first list size isL,, = (k,logq)/(nlog|X|) — L. Denoting

p =n— |Ln| symbols of X" and X* denotes the last m,,/n = H(X)/log ¢+, whered,, — 0, it follows that

s = | Ln| symbols. Encoding is done by discardiAyf, is R = [(m, — ky)logq]/n = [(H(X) + 0, logq)n —

and mapping the prefiX? to a binary codeword’ "® L, nlog|X|]/n, which is arbitrarily close to the rate in
of lengthnR = [n — | Ln|logq] bits. (@) for sufficiently largen. [ ]

For decoding, the codeword™* is mapped toX?, The source coding scheme used in the proof of Propo-
and the scheme outputs a list of sizé composed sition[Z can be any asymptotically optimal scheme. Note
by X? concatenated with all possible combinations ahat if the sourceX is uniform, and assuming without
suffixes of lengths. Clearly, for n sufficiently large, loss of generality that,, = L and thatLn is an integer,

R ~ (1—L)log q, and we achieve the optimal list-sourceany message in the coset®idetermined bys'~5)" is
size tradeoff. equally likely. Hence H(X"|S(1~1)m) = ¢E», Scheme

The previous scheme is completely inadequate fi@provides a systematic way of hiding information, and
security purposes. An adversary that observes the binavg can take advantage of the properties of the underlying
codewordY "% can uniquely identify the first symbols linear code to make precise assertions regarding the
of the source message, and the uncertainty is concémformation leakage” of the scheme.
trated over the last symbols. Ideally, assuming that With the syndrome in hand, how can we recover the
all source symbols are of equal importance, we shoutdst of the message? One possible approach is to find
spread the uncertainty over all symbols of the messagek x n matrix D that has full rank such that the rows
More precisely, given the encodingX"), a “good” se- of D and H form a basis ofF}. Such a matrix can
curity scheme would providg(X;; f(X™)) < e < logq be easily found, for example, using the Gram-Schmidt
for 1 < ¢ < n. Of course, we can naturally extend thigprocess with the rows df as a starting point. Then we
notion for groups of symbols or functions over inpusimply calculatel’*” = DX and forward7'~" to the
symbol. This idea will be captured in the definition ofreceiver. The receiver can then invert the system

symbol secrecy, introduced in sectiofIV. H g(-Lyn
. . X" = (6)
B. A construction based on linear codes ( D ) ( TEn ) ’

Let X be an iid. source withX € A& with and recover the original sequenc€”. This property
entropy H(X), and S,, a source code with encoderallows list-source codes to be deployed in practice using
sp ¢ A" — Fp'~ and decoden, : Fj' — X™. well known linear code constructions, such as Reed-
Furthermore, le€ be a(m,,, k,,d) linear code oveif, Solomon or LDPC.
with an (m,, — k,,) x m,, parity check matrixtL, (i.e.
c € C & H,c = 0). Consider the following scheme
where k,, = nL, log|X|/logq for 0 < L, < 1 and
L, — L asn — oo. To simplify notation, we assume
without loss of generality that,, is an integer.

Remark 2. This approach is valid for general linear
"spaces, and holds for any pair of full rank matriggand
D with dimensiongn — k) x n andk x n, respectively,
such that rankH” D?]7) = n. However, here we adopt
the nomenclature of linear codes since we make use of
Scheme 1.Encoding: Let X" be the sequence generknown code constructions to design secrecy schemes in
ated by the source. Compute the syndrofife: —%» = the following sections.
H,s,(X™) and map each syndrome to a distinct se- L .
quence ofnR — [(m, — k) logq] bits, denoted by C. A secure communication scheme based on list-source
YR, codes

Decoding: Map the binary codeword’™%? to the In this section we present a general description of a
corresponding syndrom&™- %= Outputr,, (™) for two-phase secure communication scheme for the model
eachz™" in the coset OHn Corresponding tgmn—kn introduced in SeCtiOEEB, presented in terms of the list-
source code constructions derived using linear codes.
Note that this scheme can be easily extended to any
list-source code by using the corresponding encod-
ing/decoding functions instead of multiplication by par-
ity check matrices.

1This idea is tightly related to the concept of hard core matgis We assume that Alice and Bob have access to a
and semantic security in cryptography. encryption/decryption scheminc’, Dec’) that is used

Proposition 2. If S,, isasymptotically optimal for source
X, i.e m,/n — H(X)/logq, scheme [ achieves the
optimal list-source tradeoff point R(L) for an i.i.d.
source, where R(-) is the rate list function.



with the shared secret kelf and is sufficiently secure sources. Before presenting the definition, we make a
against the adversary. This scheme can be, for examgy comments on notation and briefly review the threat
a one-time pad. The encryption/decryption procedure fisodel.

performed as follows, and will be used as components _

of the overall encryption schemnc, Dec) described A Notation

below. Let C,, be a sequence of codes for a discrete memo-
ryless sourceX with probability distributionp(x) that
achieves a rate list paiiR, L). Furthermore, let' "

be the corresponding codewofd(X™) created byC,,.
Denote byZ, (t) the set of all subsets dfl,...,n} of
sizet, i.e. J € Z,(t) & J C {1,...,n} and |J|=t.

In addition, we denote byX (/) the set of symbols of
X" indexed by the elements in the s&tC {1,...,n}.

As discussed in section_IIB, we assume a passive
but computationally unbounded adversary that only has
access to the list-source encoded messpge™) =
Y™ Based on the observation bf**» | the adversary
will attempt to determine what is the original message.

Assuming that(Enc’, Dec’) is secure, the security of In addition, we assume that the source statistics and
schemd reduces to the security of the underlying lighe list-source code used are universally known, i.e. an
source code (i.e. schenié 1). In practice, the encrypdversary has access to the distributipg. (X") of
tion/decryption functiongEnc’, Dec’) may depend on the symbol sequences produced by the source and the
a secret or public/private key, as long as it providsequence of codes,. We use the standard information-
sufficient security for the desired application. In additio theoretic approach of measuring the amount of informa-
assuming that the source sequence is uniform and i.it@hn that an adversary can gain of a specific sequence of
in F', we can use MDS codes to make strong securigource symbolsy (7) by observingy = as the mutual
guarantees, as described in the next section. In thigormation (X (7); ynfin),
case, an adversary that obsengs* cannot inferany
information about any set df symbols of the original B- Symbol Secrecy
message. The following definition introduces two security met-

Note that this scheme hastanable level of secrecy: rics, namelyabsolute symbol secrecy and e-symbol se-

The amount of data sent in phase | and phase Il carecy.

be appropriately selected to match the properties of the .. .. .
encryption scheme available, the size of the key leng ’ef|n|t|on 4. We defineuig(Cr) as theabsolute symbol
and the desired level of secrecy. Furthermore, when tRe oY of a codeC,, as

encryption procedure has a higher computational cost C.) = max{i : I(X(j);Y"R") _0. VT e In(t)}.
n

Scheme 2.Input: The source encoded sequenté <
[y, parity check matrixd of a linear code ir¥y, a full-
rank k x n matrix D such that rankH” D7]) = n, and
encryption/decryption functionéEnc’, Dec’).
Encryption (Enc):

Phase | (pre-caching): Alice generatesS” % = HX"
and sends to Bob.

Phase Il (send encrypted data): Alice generatess® =
Enc/(DX™, K) and sends to Bob.

Decryption (Dec): Bob calculatdD X™ = Dec’(E*) and
recoverX” from S"~* andDX™".

than the list-source encoding/decoding operations, lidto (&
source codes can be used to reduce the total number of (7
operations required by allowing encryption of a smalleFhe absolute symbol secregy of a sequence of codes
portion of the message (phase ). C, is:

= lim inf . 8
IV. NEW METRICS FOR SECURITY ANALYSIS Ho 1nn—1>1£ #o(Cn) )

We introduce a new information-theoretic metric folFurthermore, we define thesymbol secrecy 1. of a code
security callede-symbol secrecy. This metric can beC, as
used to characterize the properties of security schemes i1
that do not provide absolute secrecy (such as in scheméC,,) = max{— CSN(XW Yy < e VT € In(t)} ,
[2). Given a source sequendg® and its corresponding not (9)
encryptionY’, e-symbol secrecy is the largest fraction, thee-symbol secrecy of a sequence of codesas
t/n such that at most bits can be inferred from any
t-symbol subsequence & ™. We derive a fundamental e = liminf . (Cy), (10)
bound for e-symbol secrecy, and show that it can be e
achieved using MDS codes fer= 0 and uniform i.i.d. Wheree < H(X).



Proposition 3. Let C,, be a sequence of list-source codes
that achieves a rate-list pair (R, L) and an e-symbol

secrecy of .. Then 0 < . < min {f&%}ﬂ, 1}.
Proof: We denoteu.(C,,) = fie.n. Note that
[(XWWynfny = g(X)) — g(X ) |ynhin)
=npenH(X) — HX)[ynh)
< Nfbe,n€.
Therefore
1 n
ten(H(X) =€) < EH(X(j)ly fin)
< Ly log|X].

The result follows by takingy — co. |

large, we have from{(11):

1 1
—H(Y") = (X" Yy
—H( )= I(X™ )

< H(X) — pe(H(X) — ) +0

= H(X) — Llog|X|+46.
Since this holds for any, thenR’ < H(X) — Llog|X]|.
However, from proposition 1R’ > H(X) — Llog|X]|,
and the result follows. [ |
C. A scheme based on MDS codes

We now prove that for a uniform i.i.d. sourcg in
F,, using schem&l1 with an MDS parity check matrix
H achievesu. Since the source is uniform and i.i.d.,
no source coding is used.

The previous result bounds the amount of informatioRroposition 6. If H is the parity check matrix of an
an adversary gains about particular source symbols by, ¥, d) MDS and the source X" is uniform and i.i.d.,
observing a list-source encoded message. In particuléien Scheme[ll achieves the upper bound 1o = L, where
for ¢ = 0, we find a meaningful bound on what is thel = k/n.

largest fraction of input symbols that jier fectly hidden.

A simple upper-bound for the maximum average amou
of information that an adversary can gain from a messa &etJ I, (k)
encoded with any source codg with symbol secrecy ha minimum distance of is 7 —

Ue , 1S given below.

Proposition 4. For any code C,, for a discrete memory-
less source X and any e such that 0 < ¢ < H(X), we
have

LIy ) < H(X) — pen(H(X) —0), (11)
n
where Men = Me(cn)
Proof: Let pe, = t/n, J € I,(t) and J =
{1,...,n}\J. Then
l[(Xn;yan) < 3 (€_|_ %I(X(j);Y”RﬂX(j))
n

n

(12)
< e+ UV p(x) (13)
— H(X) — pen(H(X) — o). (14)

||

Proof: Let H be the parity check matrix of a
,k,n—k+1) MDS codeC overF,, and letx € C. Fix
of k positions ofx, denoteck”). Since
k + 1, for any other
codeword inz € C we havez) # x(7), Denoting by
CY) = {29 e F¥ : z € ¢}, then|CcD)|= [C|= ¢".
ThereforeC(7) contains all possible combinations bf
symbols. Since this property also holds for any coset of
H, the result follows.

[ |

V. LIST-SOURCE CODES FOR GENERAL SOURCE
MODELS

The previous results hold for i.i.d. source models.
However, for more general sources the analysis becomes
significantly more convoluted, since multiple list-source
encoded messages can reveal information about each
other. Considering that encryption is performed over
multiple blocks of source symbols, the list size will not
necessarily grow if these block are correlated.

In general, given an outplX = Xi,...,X,, of n
correlated source symbols, and using scheme 1, what
is observed by an eavesdropper is the coset valued

The next proposition relates the rate-list function witlequence of random elemeritd (s, (X))}, H being the
e-symbol secrecy through the upper bound in propositigsarity check matrix. Sinc& is a correlated source of

B

Proposition 5. If a sequence of list-source codes C,,
achieves a point (R’, L) with u. = }flé‘)’g)'fl for some e,
where R’ = lim,,_,oc = H(Y"R"), then R’ = R(L).

symbols, there is no a priori reason to expect that the
coset valued process will not be correlated. For example
if X forms a Markov chain, then the coset valued process
is a function of a Markov chain; although it will not,
in general, form a Markov chain itself, it will still

Proof: Assume that,, satisfies the conditions in thehave correlations. These correlations could effectively

proposition and > 0 is given. Then forn sufficiently

reduce the list size that an eavesdropper must search and,



consequently, reduce the effectiveness of the schememplete [28]. Schemég] 2 circumvents the communi-
Reducing or eliminating correlations in the coset valuechtion delays incurred by key compromise detection,
process would counteract the impact of this vulnerabilityevocation and redistribution by allowing data to be
Different approaches can be taken to resolve thefficiently distributed concurrently with the key distri-
issue. In general, the key to reducing the effect dfution protocol, while maintaining a level of security
the correlation between codewords is to encode largédetermined by the underlying list-source code.
block lengths. More precisely, leX;,Xo,..., Xy
be N blocks of symbols produced by a Marko
source, such thak; € A" and p(Xy,...,Xy) = List-source codes can also provide additional robust-
p(X1)p(X2|X1)...p(Xn|Xn_1). Instead of encoding ness to key compromise. If the secret key is compro-
each block individually, the transmitter can computglised before phase Il of scherk 2, the data will still
YNE — (X, .., Xy). be as secure as the underlying list-source code. Even
The previous approach has the disadvantage of requira (computationally unbounded) adversary has perfect
ing long block lengths and possibly high implementatioknowledge of the key, until the last part of the data is
complexity. We note, however, that the encoding prdransmitted the best he can do is reduce the number
cedure over multiple blocks does not necessarily hagé possible inputs to an exponentially large list. In
to be performed independently. For example, one pogentrast, if a stream cipher based on a pseudo-random
sible approach for overcoming edge-effect correlatiomgimber generator were used and the initial seed was
between codewords is to defidg = f(X;,X3), Yo = leaked to an adversary, all the data transmitted up to
f(X2,X3),..., and so forth. This approach reducethe point where the compromise was detected would
the edge effects of correlation between codewords, lt¢ vulnerable. The use of list-source codes provide an
particular when the individual sequencXs are already additional, information-theoretic level of security tceth
significantly long. data up to the point where the last fraction of the message
We note that, when probabilistic encryption| [3] igs transmitted. This also allows decisions as to which
required over multiple blocks, the source encoded syrfgceivers will be allowed to decrypt the data can be
bols in scheme 1 can be combined with the outp@e€layed until the very end of the transmission, providing
of a pseudorandom number generator (PRG) befofeore time for detection of unauthorized receivers and
being multiplied by the parity check matrix. This wouldallowing a larger flexibility in key distribution.
provide the necessary randomization of the output. Theln addition, if the level of security provided by the list-
initial seed of the PRG can then be transmitted to trg@urce code is considered sufficient and the key is com-

vB' Application to key distribution protocols

legitimate receiver in phase Il of scheifne 2. promised before phase Il, the key can be redistributed
without the need of retransmitting the entire data. As
VI. APPLICATIONS AND PRACTICAL soon as the keys are reestablished, the transmitter simply
CONSIDERATIONS encrypts the remaining part of the data in phase Il with

The protocol outline presented in schelle 2 is useftile new key.
in different practical scenarios, which are discussed i . .
the following sections. Most of the advantages of thg” Additional layer of securi ty
suggested scheme stem from the fact that list-sourceVe also highlight that list-source codes can be used
codes are key-independent, allowing content to be di&- provide an additional layer of security to the underly-
tributed when a key distribution infrastructure is not yeng encryption scheme. The message can be list-source
established, and providing an additional level of securi§oded after encryption and transmitted in two phases,
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