
Hash Pile Ups: Using Collisions to Identify

Unknown Hash Functions

R. Joshua Tobin

School of Mathematics

Trinity College Dublin,

Ireland.

Email: tobinrj@tcd.ie

David Malone

Hamilton Institute

National University of Ireland,

Ireland.

Email: David.Malone@nuim.ie

Abstract—Hash functions are often used to consistently assign
objects to particular resources, for example to load balancing
in networks. These functions can be randomly selected from a
family, to prevent attackers generating many colliding objects,
which usually results in poor performance. We describe a number
of attacks allowing us to identify which hash function from a
family is being used by observing a relatively small number of
collisions. This knowledge can then be used to generate a large
number of colliding inputs. In particular we detail attacks against
small families of hashes, Pearson-like hash functions and linear
hashes, such as the Toeplitz hash used in Microsoft’s Receive
Side Scaling.

I. INTRODUCTION

Hash functions are often used to spread load across several

resources. For example, in the common case of a hash table, a

hash function is used to give a consistent assignment of objects

to linked lists. In modern networking, similar techniques are

used by high-end network cards to assign packets to CPUs [1],

by switches/routers to assign packets to links (e.g. Cisco CEF

load-sharing [2], 802.3 LAG [3] or OSPF ECMP [4]), or by

routers/load balancers to assign flows/requests to servers (e.g.

F5 BigIP hash based load balancing [5]).

In [6], the authors described algorithmic complexity attacks,

where by choosing the inputs to an algorithm, an attacker

could provoke poor performance of an algorithm, rather than

typical performance. Attacks on known hash functions are a

canonical example of this. Attacks can be frustrated by the

use of a randomly selected (keyed) hash function. Typically

these hashes will not be cryptographic hash functions, as

the computational cost associated is too high (e.g. Figure 1).

Consequently, generating collisions once the hash function is

known is not usually computationally expensive.

In this paper we look at attacking such keyed hash functions

in situations where we can determine if two inputs collide,

even though we do not know the actual value of the hash

function. This may be possible in a number of contexts.

1) In the case of a hash table, the length of the hash chains

might be estimated by timing lookups. By sequentially

adding objects and measuring the chain lengths each

time, it may be possible to determine which objects have

been added to the same chain.

2) In the case where the hash is used to assign objects to

a processing resource, such as a CPU or server, then

 0

 2

 4

 6

 8

 10

 12

 14

 16

Geode
500MHz

Core 2 Duo
2.66GHz

Athlon 64
2.6GHz

Xeon
3GHz

Atom
1.6GHz

C
P

U
 T

im
e

(u
s)

Xor
Jenkins

Pearson
Universal

MD5
SHA

SHA256

Fig. 1. The average cost of hashing an IPv6 flow record with different
algorithms on a selection of CPUs. Xor is a simple per-byte xor; Jenkins is
the hash used in Section II; Pearson is the hash used in Section III; Universal
is a Carter-Wegman hash used from [6]; MD5, SHA and SHA256 are standard
OpenSSL implementations. Results are averaged over a range of hash keys
and records.

we can load one of the resources to produce a change

in response time. After that, we may see which objects

collide by checking their response time.

3) In the case of a device assigning packets to a CPU, we

might send packets back-to-back and look for packet

reordering. Packets going to the same CPU should never

be reordered, whereas packets going to different CPUs

may occasionally be reordered. The chance of reordering

might even be increased by choosing the protocol or

packet size to vary the processing time for the packets.

4) In the case where packets are being load balanced across

links, such as in LAG (link aggregation group) or ECMP

(equal cost multi-path), it may be possible to determine

which flows share a route using a probing tool such as

traceroute (e.g. [7]).

5) In the case of load balancing of more complex services,

such as HTTP or DNS, it may be possible to fingerprint

the assigned server by some higher level mechanism.

The last two attacks, which depend on a clear fingerprint,

are easy to implement while some of the timing attacks might

be more challenging. However, a number of these attacks have

been demonstrated to be feasible. For example, [8] shows a

timing attack against packets sent through a stateful firewall.

The limitations of similar attacks in the face of network jitter

have been studied in [9].

Given that we can test if inputs (say x and y) of a hash

collide (i.e. if h(x) = h(y)), the question we will study is: can

we quickly determine the hash h if we know it is drawn from

some family H . In the following sections we will show that it

is often possible to find h surprisingly quickly. In particular,

we demonstrate how this can be done when the family satisfies

certain general conditions. These conditions include having a

small range of hashes, and having a linear function underlying

the hash (even in the presence of an additional non-linear

layer).

We consider two ways to measure the amount of work

required to determine h and cause collisions. First, we consider

the average number of objects we have to insert to cause

a particular number of collisions. We call this the number

of probe strings (i.e. objects inserted) required to cause L
objects to collide. We also consider the average number of

comparisons, as depending on the exact nature of the attack,

this may be more representative of the work required. We note

that with no information about a hash function with uniformly

distributed output, we require on average KL probe strings to

cause L objects to collide, where K is the number of output

buckets. This blind attack requires no comparisons.

II. SMALL HASH SET

We first consider what happens if the set from which we

select hash functions is relatively small. Suppose we have H
different hash functions which each map to K output buckets.

We are aiming to identify a particular h in use. We may pick

inputs to the hash s1, s2, . . . until we find that h(si) = h(sj).
Using Birthday Paradox arguments, this will require about√
K probe strings and about K comparisons. The attack is

summarised in Algorithm 1.

If H is small enough to enumerate, we then calculate

the subset of all H functions which collide on this set of

strings. We note that h must agree on these colliding strings,

and each of the other hash functions in H will match with

probability 1/K. Thus, we eliminate all but the correct hash

with probability

(
1− 1

K

)H−1

=

((
1− 1

K

)K
)H−1

K

≈ e−
H

K .

If we are left with more than one possible hash, we may repeat

this attack until just one hash remains. Even if we do not

reuse information between rounds of this attack, we would

expect to be successful in e
H

K attempts. A more optimistic

attacker that reused information between attempts might hope

to have around HK−n hashes remaining after n attempts, and

so require around logK H attempts to identify h. This suggests

between
√
K logK H and

√
Ke

H

K probe strings or between

 0

 5

 10

 15

 20

 25

 30

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

N
um

be
r

of
 P

ro
be

 S
tr

in
gs

Number of Hashes

Attempts
Optimistic Estimate

Conservative Estimate

Fig. 2. The average number of probe strings required to determine the hash,
as the number of possible hashes h increases. the number of output buckets
is k = 16 and values shown are averaged over 1000 trials.

K logK H and Ke
H

K comparisons are required for the attack

to identify the hash function.

To demonstrate this, we apply the attack to the keyed

version of Bob Jenkins’s hash from Appendix A.2 of [10].

We evaluate the hash mod 16, so we have 16 output buckets

and vary the range of the initval parameter of the hash.

Figure 2 shows the average number of probe stings we need

to use to recover initval over 1000 different runs, where we

reuse information between collisions. In practice we find the

conservative estimate of the attack’s performance is too conser-

vative. Performance is closer to the crude optimistic estimate,

and can even require fewer probes than expected when the

number of hashes is larger. This is because when more probe

strings are required, multiple collisions with previous strings

become more likely, and each collision provides us with more

opportunities to reduce the number of candidate hashes.

For this attack to be ineffective, we either require K to

be very large or require H to be considerably bigger than K.

Hashes are sometimes keyed by initialising some internal state,

such as a 32-bit integer. In this case we have H = 232, and

this analysis suggests that we should have K much larger (say

K > 264) than H . For many applications, such a large value

of K will be impractical. When H = 232, if collisions can be

found, then an attack that progressively eliminates candidate

hashes is likely to uniquely identify h quickly.

Note, this is similar to the black box attack described in

[8], however they make one comparison per hash function,

rather than finding colliding inputs and then eliminating. As

we have demonstrated, this attack could be used against hashes

such as Bob Jenkins’s hash function [11], which was originally

unkeyed, but variants with small keys have been used in the

Linux Kernel and also suggested in [10].

III. PEARSON-LIKE HASH FUNCTIONS

This section outlines an attack on a hash built from a known

group operation and a unknown permutation (effectively the

Algorithm 1 A simple attack when H is small enough to enumerate.

candidates ← {h1, . . . hH}
while |candidates| > 1 do

Insert random si until collision between some values si and previous sj .

candidates ← {h ∈ candidates : h(si) = h(sj)}
end while

Use h ∈ candidates to determine collisions.

key). Hashes such as Pearson’s hash [12] are in this class. The

attack in this case will recover the permutation, and so the key.

Pearson’s hash has been suggested for use in load balancing,

for example in [13], however this is with a well-known key.

Note this is an extended version of an attack on this hash

which discussed with Pearson [14].

A. The Model

We present the attack on a generalisation of the Pearson

hash. Let G be any finite group, with its operation denoted by

⊗. We have a hash function h, which maps from strings of

elements onto G, defined recursively as follows:

h(s1s2 · · · sn) = T (h(s1s2 · · · sn−1)⊗ sn)

where si ∈ G, T ∈ SG is a permutation of G, and h(ε) = 0 (ε
denoting the empty string, and 0 the identity of G). Here, the

hash is determined by T , which is an arbitrary permutation of

G, so there are H = |G|! possible hashes.

Pearson’s original hash is obtained by setting G to be the set

{0, 1, · · · , 255} with the group operation ⊗ being xor (i.e. Z8
2).

However, the attack we will describe will work for any finite

group G, and so we leave G unspecified for this discussion.

This hash accepts arbitrary strings, but our attack only re-

quires the use of fixed length strings. Our aim is to recover the

permutation T , which is unknown to us, by using information

on which strings collide.

B. Attack Description

The attack, which is summarised in Algorithm 2, has several

steps which we will now discuss.

First, we probe with h(x, 0, · · · , 0) and h(0, x, · · · , 0) for

all x ∈ G and identify collisions. That gives us all values of

a, b for which h(a, 0, · · · , 0) = h(0, b, · · · , 0). By applying the

definition of h:

h(a, 0, · · · , 0) = h(0, b, · · · , 0)
⇔ Tn−2(T (a)⊗ 0) = Tn−2(T (0)⊗ b)

⇔ T (a) = T (0)⊗ b

For all a there exists some b which satisfies the above equation,

so if we know T (0) we have determined the value of T (a)
for all a. That is, once we know T (0), we know the entire

permutation. There are |G| different values for T (0), and so

there are |G| possible permutations. This first step has used

2|G| probe strings and, on average, about |G|2/4 comparisons.

Next, we insert h(0, 0, · · · , x) for each x ∈ G. Then we

generate random strings s1s2 · · · sn and insert them. Each

random string will collide with the string 0, 0, · · · , x for

exactly one value of x. After inserting our random string we

know which x matches s1s2 · · · sn. We then test which of each

of the |G| remaining permutation tables permits this collision.

If there is more than one possible table left, we repeat this

with another random string.

How many random strings will we have to insert to identify

the permutation? Each time we test a possible T (0) value

against a collision between a random h(s1s2 · · · sn) and

h(00 · · · 0x), we expect it to match by chance with probability

1/|G|. So, after checking the |G| possible T (0), there will be

exactly one left with probability (1− 1/|G|)|G|−1 = .3686 ≈
1/e, if |G| is large.

After t choices of the random string, we’ve effectively put

each possible T (0) through t tests. All |G|−1 will have been

eliminated on trial some trial between 1, . . . t with probability

(1− (1/|G|)t)|G|−1. Thus, the chance of being eliminated on

exactly trial t is (1− (1/|G|)t)|G|−1− (1− (1/|G|)t−1)|G|−1.

As this probability decreases rapidly in t, we note that the

average number of trials, t̄, required will be small. The number

of comparisons for this phase will be t̄|G|/2.

For Pearson’s original hash, Figure 3 shows the distribution

of t, i.e., the number of random strings required to determine

T for a random sample of 106 different permutations T .

For comparison, we also show the predicted distribution. The

average number of probe strings required to determine the

permutation T per trial was 769.636, which is 3|G| plus

the average number of probes from Figure 3. The number

of comparisons is more widely distributed, between about

13×103 and 21×103, with the mean number of comparisons

16.7× 103, close to the expected value of 16.6× 103.

With this attack, we can create L colliding inputs using just

L + O(3|G|) probe strings. The number of comparisons will

be |G|2/4 + t̄|G|/2.

In this attack we have used several fixed strings. Firstly we

hashed strings of the form a000 . . . 0 and 0b00 . . . 0. In fact,

we could have appended an arbitrary fixed suffix to a0 and 0b,
rather than the all zeros suffix, without changing the attack.

Prepending an arbitrary prefix p makes the attack slightly more

complex, where we end up with relations:

T (X ⊗ a) = T (X)⊗ b

where X = h(p) is unknown. In this case we may parame-

terise T by X and T (X), and then use later stage collisions

to eliminate possibilities. Then, without sending more probes,

Algorithm 2 An attack against Pearson-like Hashes.

Insert (x, 0, . . . , 0) and (0, y, . . . , 0) for x, y ∈ G and note collisions

C ← {(x, y) : h(x, 0, . . . , 0) = h(0, y, . . . , 0)}
candidates ← {T ∈ SG : T (a) = T (b)⊗ T0,∀(a, b) ∈ C, T0 ∈ G}
Insert (0, 0, . . . , x) for x ∈ G.

while |candidates| > 1 do

Insert random s and find x so that h(s) = h(0, 0, . . . , x).
candidates ← {T ∈ candidates : hT (s) = h(0, 0, . . . , x)}

end while

Use h ∈ candidates to determine collisions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 2 3 4 5 6 7 8

fr
ac

tio
n

of
 tr

ia
ls

number of random strings hashes to recover T

1,000,000 trials
predicted

Fig. 3. The fraction of random hashes required to uniquely determine the
permutation table. 106 trials.

we may test each possible pair (X,T (X)), to determine which

actually lead to a collision between a000 . . . 0 and 0b00 . . . 0.

This reduces the number of possible remaining hashes to |G|,
and then the attack can continue as if there is no prefix. The

number of comparisons and probes is then the same as for the

attack with no prefix, though some increased local computation

is required.

IV. LINEAR HASHES

In this section we will consider a hash function that is

an unknown linear function. An example of this hash is the

Toeplitz function, recommended as part of Microsoft’s Receive

Side Scaling for network cards [1]. Here, a random Toeplitz

matrix is used as the key for the hash function. The input

strings are of size 64, 96, 256 or 288 bits, depending on the

use of IPv4/IPv6 and the availability of layer-4 port numbers.

The output is between 2 and 128 buckets, that is 1 to 7 bits.

Note that before the output is used, it is looked up in an array

to map the hash output to a CPU. We will consider the hash

without this indirection table initially, and then consider how

to attack the hash with the indirection table.

Some common unkeyed hash functions are linear (e.g. the

IPSX hash in [10]), and this technique could also be used to

identify collisions for them.

A. The Model

In this section we consider a hash function h which is an

unknown linear function h : Zn
2 → Z

m
2 over Z2. The attack we

will describe can be generalised to homomorphisms between

other groups.

B. The Attack

The steps of this attack are summarised in Algorithm 3.

Let E = {e1, . . . , ek} be a linearly independent subset of Zn
2 ,

representing bits we can vary. Now, by probing, say, h(x +
e1), . . . , h(x + ek) we get a partition of E into E1, . . . , El

so that all the members of Ei collide. This requires k probe

strings and on average kl/2 comparisons.

Now we may choose even-sized subsets of each of Ei, say

E′
1, . . . E

′
l and consider

h

⎛
⎝x+

∑
e∈

⋃
E′

i

e

⎞
⎠ = h(x) +

∑
e∈

⋃
E′

i

h(e) = h(x),

because pairs from the same E′
i will cancel. We may choose

the E′
i in 2|Ei|−1 ways, and each choice will give a different

input
∑

e∈
⋃

E′

i

e because the set E is linearly independent.

Thus we have generated

2|E1|−1 × . . .× 2|El|−1 = 2|E1|+...+|El|−l = 2k−l

collisions by using k + 2k−l probes and kl/2 comparisons.

Note, the largest that l may be is 2m, the number of

output buckets. This gives a lower bound of 2k−2
m

collisions.

Suppose we control 64 bits of the input string and we are

assigning inputs among 16 = 24 resources (maybe CPUs or

routes), then this leads to 264−16 = 248 collisions. However,

if m is large, then this lower bound can be very pessimistic.

We can get an alternative estimate by observing that if we

throw k balls into 2m urns, then the average number of urns

with balls will be a = 2m
(
1− (

1− 1

2m

)k)
. Heuristically, we

expect around 2k−a collisions, though this will not be exact

because we are substituting the average of l rather than using

its distribution.

For example, consider a linear hash with 6 output bits, or

64 output buckets1. We consider how the attack performs as

1We choose 6 output bits because it gives a reasonable spread of outputs,
but also allows us to conduct a comparison with the non-linear indirection
table in the next section. Our results generalise to other output sizes.

Algorithm 3 An attack against Linear Hashes.

E = {e1, . . . , ek}.

Partition E into E1, . . . El by inserting and noting collisions.

for all E1‘ ⊂ E1, . . . , El‘ ⊂ El and |Ei‘| even do

Insert
∑

e∈
⋃

E′

i

e.

end for

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100 120 140 160

M
ea

n
lo

ok
up

 ti
m

e

Basis bits used by attacker

Attack on Linear Hash
Attack analytic lower bound

Attack heuristic estimate
Uniform data (no attack)

Fig. 4. Attacking a hash with 64 outputs with a variable number of input
bits. Mean lookup time for 100,000 inserted strings.

the number of basis vectors k used by the attacker varies.

Figure 4 shows the mean object lookup time when we insert

105 strings. If the above method produces fewer than 105

strings, we continue by using random strings, until 105 strings

have been inserted. The results shown are averages over 103

different Toeplitz matrices.

As expected, the attack performs well against the hash once

a moderate number of bits are available to the attacker. For

comparison, we show the mean lookup time when strings are

uniformly distributed over the buckets, which demonstrates

how effective the attack can be. We also show our lower bound

and heuristic estimate for the mean lookup time. We see that

the lower bound is quite conservative, but the heuristic gives

a reasonable indication of when the attack becomes effective.

C. Modified Attack

We now consider the case where the linear function is

composed with an ‘indirection table’ — a further mapping

which reduces the range of the hash to something suitable for

a particular application (for example, assignment of packets

to processors [1]).

If the indirection table is linear, then the composition of the

hash function and the indirection table will also be linear. In

this case, we can still use the attack described above. However,

if the indirection table is not linear, our previous attack will

be less effective — now the composition of the hash function

and the indirection table is not linear, and our attack requires

linearity to combine inputs.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100 120 140 160
M

ea
n

lo
ok

up
 ti

m
e

Basis bits used by attacker

Base Attack on Linear Indirection
Base Attack on Non-Linear Indirection

Modified Attack on Non-Linear Indirection

Fig. 5. Attacking a hash with 64 outputs with a variable number of input
bits in the presence of an indirection table, where the attacker knows that the
indirection table has changed once during the attack. Mean lookup time for
100,000 inserted strings.

For example, consider the situation tested in the previous

section. Now the linear part of our hash outputs 7 bits, but

using an indirection table we map this to 6 bits (again 64

buckets). As was said above, if the indirection table is linear,

we are in the situation described shown in Figure 4. So instead

assume the indirection table is not linear, and is instead a

randomly generated mapping. Figure 5 shows how the mean

lookup time changes in this case. We see that this significantly

weakens the attack, though more collisions are generated than

we would expect if the strings were uniformly distributed.

In some situations, we can improve the attack, even with a

nonlinear indirection table. We are interested in the inputs that

collide in the linear component of the hash function, and not

those that collide in the non-linear indirection table. We can

distinguish between these two cases by exploiting the fact that

in practice the indirection table may change regularly; indeed,

this is suggested as a method of load balancing for RSS. We

first insert a set of strings, as before. We identify the collisions,

and then we wait for the indirection table to change. We then

insert these strings again, and record the collisions. Those

strings that collide in both tests are likely to be collisions

in the linear hash. We then continue with the attack as

originally described. Figure 5 shows the effectiveness of this

modified attack. We see that the attack regains much of its

previous effectiveness. By observing collisions for more than

two indirection tables, the attack could be further improved.

While we have described these attacks for Z
m
2 , a group

where all elements have order 2, similar attacks could be

conducted on groups with higher order elements. If h was

a homomorphism between groups H and G and and d is

a number such that gd is always the identity, then we can

perform the same attack by choosing subsets of Ei which

have a number of elements divisible by d. Instead of linear

independence of E we would want a set with a small number

of group relations. However, the effectiveness of this attack is

reduced as d increases, because the number of subsets with a

multiple of d elements decreases rapidly. Groups with a larger

d are subject to other attacks, such as noting that for colliding

inputs x, y and that h(N(x − y)) = 0 for integers N (e.g.

advanced hash flooding [15]).

V. DISCUSSION AND CONCLUSION

In this paper we have shown how collisions between strings

or objects can be used to identify which hash function h from

a family of hash function H is in use. If the hash functions

themselves are not collision resistant, this leaves the system

open to algorithmic complexity attacks. We have discussed

how finding collisions may be possible in practice.

For three cases, we demonstrate attacks. In the first case, the

set of hash functions is small, and we can simply enumerate

via collisions found using the birthday paradox. In the second

case, the key indexing the hash function is a permutation, and

so the large number of permutations (e.g. 256! of one byte)

means the hashes are not subject to enumeration. However,

for Pearson-like hashes we show how the permutation can be

discovered using a relatively small number of tests, and then

collisions can easily be generated.

We then consider hash functions that are linear, particularly

with respect to xor. We show how to identify collisions for

these hash functions, even without explicitly identifying the

function. This attack can also be extended if a time-varying

nonlinear part is present. While this attack can be extended

to other groups, it is less effective for groups with a large

index. For example, the Carter-Wegman families of universal

hash discussed in [6] are linear, but modulo a large prime, and

so the elements have a large index. However, attacks against

these functions when used as part of a MAC [16], [17] are

likely to generalise to the situation considered here.

The abstract attack that we presented at the start of this

paper, determining a hash function from a family using colli-

sions, can be applied to almost any family of functions. While

we have identified some general conditions that should be

avoided (e.g. the size of the family being small with respect to

the number of outputs or the functions being homomorphisms

over groups with small index elements), it would be interesting

to establish if there are conditions that can provide some

guarantees that identifying the hash or colliding inputs is

hard. Another option is to design cryptographic-strength hash

functions that are computationally less expensive, e.g. SipHash

[15].

An alternative would be to look at methods for changing

the hash function, either periodically or when an attack is

suspected. As we show in Section IV-C, if this is not done

carefully, it can open the system to more effective attacks.

The nature of the techniques applicable in this situation will

vary from application to application. For example, for routing

packets it may be acceptable to change the hash function from

time to time, as the exact route that packets take through the

network is usually not important as long as packet reordering is

uncommon. However, if we are assigning HTTP flows to load-

balanced web servers, then reassignment of existing flows will

usually break the connection, which will usually be considered

unacceptable. However, there still may be general lessons to

be learned regarding how detection, timing and rehashing can

be performed in this context.

ACKNOWLEDGMENTS

This work was supported by Science Foundation Ireland

grant 08/SRC/I1403 and 07/SK/I1216a.

REFERENCES

[1] Microsoft, “Scalable networking: Eliminating the receive processing
bottleneckintroducing RSS,” http://download.microsoft.com/download/
5/D/6/5D6EAF2B-7DDF-476B-93DC-7CF0072878E6/NDIS RSS.doc,
April 2004.

[2] Cisco, “Cisco’s express forwarding (CEF),” http://www.cisco.com/
en/US/tech/tk827/tk831/tk102/tsd technology support sub-protocol
home.html.

[3] IEEE Standards, “IEEE Std 802.3, 2000 edition: IEEE standard for
information technologytelecommunications and information exchange
between systemslocal and metropolitan area networksspecific require-
ments,” 2000.

[4] C. E. Hopps, “Analysis of an equal-cost multi-path algorithm,” 2000.
[5] F5, “Hash load balancing and persistence on BIG-IP LTM,” http://

devcentral.f5.com/Tutorials/TechTips/tabid/63/articleType/ArticleView/
articleId/135/Hash-Load-Balancing-and-Persistence-on-BIG-IP-LTM.
aspx.

[6] S. Crosby and D. Wallach, “Denial of service via algorithmic complexity
attacks,” in Proceedings of the 12th USENIX Security Symposium,
August 2003.

[7] B. Augustin, T. Friedman, and R. Teixeira, “Measuring load-balanced
paths in the internet,” in Proceedings of the Internet Measurement

Conference, October 2007.
[8] N. Bar-Yosef and A. Wool, “Remote algorithmic complexity attacks

against randomized hash tables,” E-business and Telecommunications,

Communications in Computer and Information Science, vol. 23, pp.
162–174, 2009.

[9] S. Crosby, D. Wallach, and R. Riedi, “Opportunities and limits of remote
timing attacks,” ACM Transactions on Information and System Security,
vol. 12, no. 3, pp. 17:1–17:29, Janurary 2009.

[10] T. Zseby, M. Molina, N. Duffield, S. Niccolini, and F. Raspall, “Sam-
pling and filtering techniques for IP packet selection,” RFC 5475, 2009.

[11] R. Jenkins, “Algorithm alley,” Dr. Dobb’s Journal, September 1997.
[12] P. K. Pearson, “Fast hashing of variable-length text strings,” Communi-

cations of the ACM, vol. 33, no. 6, pp. 677–680, 1990.
[13] B. Volz, S. Gonczi, T. Lemon, and R. Stevens, “DHC load balancing

algorithm,” RFC 3074, 2001.
[14] P. Pearson, “Discussion on fast hashing,” Personal Communication,

2008.
[15] J.-P. Aumasson and D. J. Bernstein, “SipHash: a fast short-input PRF,”

Cryptology ePrint Archive, Report 2012/351, 2012, http://eprint.iacr.
org/.

[16] H. Handschuh and B. Preneel, “Key-recovery attacks on universal hash
function based MAC algorithms,” Advances in Cryptology–CRYPTO

2008, pp. 144–161, 2008.
[17] J. Black and M. Cochran, “MAC reforgeability,” in Fast Software

Encryption. Springer, 2009, pp. 345–362.

