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__________________________________________________________________________________________ 

 
 Abstract – An alternative technique for the derivation of an 
event driven phase lock loop (PLL) model is presented enabling the 
modelling of higher order PLLs. Event driven models have 
previously been developed for 2nd, and 3rd order PLLs [1,2,3], 
however for higher order systems (5th, 6th etc.) the derivation of the 
loop filter difference equations are not amenable. This paper 
introduces a technique to model PLLs with arbitrary order filters 
that removes the restriction on the loop order.  
 

Keywords – Phase Lock Loop, Event Driven Modelling. 
__________________________________________________________________________________________
 

I  INTRODUCTION 
PLLs find widespread use in many areas of modern 
electronics such as disk drive electronics, 
telecommunications, wireless systems and digital 
circuits. A PLL is a closed loop feedback system 
where the phase of an output signal tracks the phase 
of an input signal. A typical Digital PLL consists of a 
charge pump phase frequency detector (CP-PFD), a 
low pass filter, a voltage controlled oscillator (VCO) 
and a frequency divider. Modelling these systems 
can be a slow, challenging process due to the 
combination of discrete and continuous time 
components and long settling times. 

 
Figure 1 – CP-PLL 
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Hedayat et al. [1,2] and Van Paemel [3] have 
developed fast and accurate PLL models for 2nd and 
3rd order systems. However no event driven PLL 
model for higher order systems (4th, 5th, 6th etc.) 
exists. 
 
The event driven PLL model developed by Hedayat 
et al. [1, 2], provides a fast, efficient, accurate means 
of modelling 2nd and 3rd order systems. The 
advantage of such an event driven model over a 
circuit level simulation model such as Spice is the 
time taken to run one simulation. For example a full 
Spice circuit simulation of a PLL for 20 µs requires 
up to 24 hours of CPU processing time. The event 
driven model is approximately three orders of 
magnitude faster. 
 
For higher order PLLs the derivation of the model 
difference equations become less amenable as the 
order of the loop filter is increased. In this paper an 
alternative technique is proposed. This uses the event 
driven technique, but removes the restriction on the 
order of the system. 
 
In section 2 an overview of event driven modelling 
of the PLL is given, explaining the purpose and the 
advantage of using an event driven model over a 
circuit simulation such as SPICE. In section 3 this 
alternative technique to modelling is given, examples 
of this model are presented and verified in section 4.  



 

II  EVENT DRIVEN MODELLING 
The PLL is a non-linear system. The non-linearities 
lie in the CP-PFD and the VCO (Figure 2). These 
non-linearities require modelling in the system. One 
such technique is to linearise. This can provide an 
accurate linearization of the VCO but is insufficient 
for the CP-PFD, particularly at higher orders.  

 
Figure 2: VCO non-linear Characteristic response 

The VCO can be linearised as shown below in Figure 
2, the linearization (equation (1)) will be accurate as 
long as the control voltage operates within the linear 
constraints of Vc_MIN and Vc_MAX,.  
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Figure 3: Linear approximation of the VCO 

system response 

Linearising the CP-PFD introduces unacceptable 
inaccuracies in the model and is therefore not a 
viable solution [4]. However the non-linear nature of 
the CP-PFD can be accurately modeled using an 
event driven state machine as shown in Figure 4. 
This assumes that the PFD will always operate in one 
of the following three states: 
1. Up (Reference Phase leads the VCO Phase) 
2. Down (VCO Phase leads the Reference Phase) 
3. Null (Neutral) 
If the CP-PFD is in the Up state then there is a +Ip 
current out from the CP-PFD, likewise if the state is 
Down there is a –Ip current out, finally if the state is 
Null there is no current out from the CP-PFD.  

 
The state changes after each new event detected in 
the system. The relevant events are the falling edges 
of the reference and VCO signals (Figure 4). This 
‘event driven’ modelling technique has being 
previously pioneered for PLL’s by [1,2,3]. 

 
Figure 4: PFD State Diagram 

An important parameter of this event driven model is 
the phase of the VCO and reference signals. These 
parameters determine the instant at which events 
occur in the PFD. The phase of the reference signal 
is calculated using equation (2) below.   
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Where fr is the reference frequency.  Similarly the 
phase of the VCO is calculated using equation (3).  
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Where Kv is the VCO gain and fv0 is the VCO free 
running frequency.  All of the parameters in equation 
(3), can be calculated except for the integration 
shown in equation (4).  
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For high order PLLs this cannot be solved in closed 
form. The technique suggested by Van Paemel [3], to 
solve this is a first order numerical integration 
approximation, equation (5). 
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This introduces an approximation error into the 
model. This error can be minimized by using a small 
value of the time step ∆t. The VCO and reference 
phase are calculated using the difference equations 
(6) and (7) below. 
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The CP-PFD detects falling edge events of the VCO 
and reference signals. The VCO signal falling edge 
occurs when the VCO phase is equal to 2π, similarly 
the reference falling edge occurs when the reference 
phase is equal to 2π. Note that if a frequency divider 
is included in the feedback loop of the PLL, then the 
VCO signal falling edge will not occur at 2π but at 
2πN, where N is the feedback divider ratio, as shown 
in Figure 1 earlier. 



III  ARBITRARY ORDER 
TECHNIQUE 

Current event driven PLL models [2,3] determine the 
control voltage by iterating a difference equation 
over a period of time. A unique difference equation 
is derived for each type of filter architecture or order. 
These difference equations contain differential terms 
and become increasingly complex as the order of the 
loop filter increases. For filter orders of higher then 
4th there is no closed form solution for the difference 
equation of the over all system. In this section a new 
model is proposed, this technique uses the charge on 
the capacitors, rather then the voltages at the nodes 
(used in [2,3]) as the state variables.  
 

 
Figure 5: First order filter 

For a first order RC filter the ideal response, shown 
in Figure 5, can be easily derived, as shown in Figure 
6. 
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Figure 6: Ideal RC filter response 

There is an alternative technique to determine the RC 
filter response by numerically integrating the current 
using the rectangular rule to determine the charge at 
time t+1.  
 
In Figure 7 below, the current, I through the 
capacitor C at time t+1 is required, while the current 
at time t is known. We know that the voltage on the 
capacitor Vt+1 is equal to the change in charge over 
time period ∆t divided by the capacitance, equation 
(8). 
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For a fixed ∆t step size, all parameters on the right 
hand side of equation (8) are known except Iave.  If Iave 
can be approximated then Vc(t+1), the control 
Voltage, can be found. 
 

The assumption made is that the average current Iave 

through a capacitor during the period ∆t is equal to 
the current at time t (Figure 7).  
 

 
Figure 7: Assumption that current at time t  

is equal to the average current during ∆t 

This simplifies the calculation of the Vc, as there are 
no differential terms, making it significantly easier to 
increment the model to any arbitrary order. The error 
introduced through the model is bounded, it tends to 
zero as the time interval ∆t tends to zero as shown in 
Figure 8a and 8b.  

 
Figure 8: (a) Zero order hold approximation with large 

∆t, (b) smaller ∆t smaller Error 

In Figure 9, the error between the ideal and 
approximated response of an RC filter is calculated 
at three different capacitor voltages for a range of 
step sizes.  It can be seen that the error introduced 
due to the charge approximation on the RC filter 
reduces to zero as the step size is reduced. 
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Figure 9: Increasing Error with Increasing Step Size at 
Three different Voltages 

 
In the PLL model proposed here the set of difference 
equations used to calculate of the control voltage Vc, 
are derived using this technique to approximate the 
charge on the filter capacitors. For example, a PLL 
with a first order filter, as in Figure 5 has the set of 
difference equations as shown in equations (9) and 
(10). 
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Where ∆t is the time step, and Q2 is the charge on the 
capacitor C2. 
 
Higher order filters can be easily accommodated 
using this technique, as demonstrated by the second 
order filter shown in Figure 10. 
 

 
Figure 10: Second order filter 

For this 2nd order filter, the control voltage Vc can 
be found similarly for any time tn using equations 
(11)-(15).  
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Similarly, the difference equations for any order of 
filter can be easily derived. 
 
For example, a third order PLL system with the set 
of system parameters R2 = 16kΩ; C2 = 200pF; C3 = 
100pF; Ip = 10µA; Kv = 30x106; ∆ = 0.3nS; N = 1, is 
modelled using both the proposed charge 
approximation model, and the hedayat et al. model. 
The transient responses of both models are shown in 
Figure 11, they produce similar frequency responses.   
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Figure 11: Frequency response of (a) Charge 
approximation model on the left and (b) Equivalent 

Hedayat et al. 

The error between the two signals is found to be 
small, Figure 12. It can be seen that the error 

introduced by the charge approximation, is reduced 
as value of the time step is decreased. 
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Figure 12: Plot showing decreasing error as ∆t is 
reduced 

The selection of ∆t introduces a trade off between the 
error and the simulation time. As ∆t reduces, the 
error reduces correspondingly, with an increase in 
the simulation time as shown in Figure 13. 
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Figure 13: Plot showing decreasing simulation time as 
the step size is increased 

IV  MODEL VERIFICATION  
In the following section the frequency response of 
three example PLLs are modelled using the proposed 
charge approximation model. Firstly a marginally 
stable PLL is considered and compared to Simulink 
PLL simulation. In the next example a frequency 
divider is included in the feedback of the PLL, this is 
compared to the equivalent Hedayat et al. model. 
Finally the frequency response of a fifth order PLL 
model is and compared to the Simulink model. 
 
a) Example 1 – Marginally Stable Third Order 
The following set of PLL parameters for a third order 
PLL are considered in this case, R2 = 9kΩ; C2 = 
200pF; C3 = 200pF; Ip = 30µA; Kv = 200x106; ∆t = 
0.3nS; N = 1. In Figure 14 the transient response of 
the charge approximation model and the equivalent 
Simulink models are shown, again they produce 
similar transients.  
 
The charge Approximation model took 
approximately 2 seconds to complete the 35µS, 
while the Simulink took approximately 10 minutes. 
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Figure 14: Plot of frequency responses of (a) the 

Charge approximation model and (b) the Equivalent 
Simulink for example 2 

 
b) Example 2 – Third Order Using a Feedback 
Divider. 
In this example a 3rd order PLL is again considered, 
however this time a divider is included in the PLL 
system with a value of N = 4560. The other 
parameters are a reference frequency of 500 KHz 
and a VCO free running frequency of 2.33 GHz, R2 
= 0.4kΩ; C2 = 55nF; C3 = 4.6nF; Ip = 5mA; Kv = 
200x106; ∆t = 0.5nS. The transient responses of the 
charge approximation model and the Hedayat et al. 
event driven model [2] are plotted in Figure 15 
below. 
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Figure 15: Plot of  the Frequency Responses of (a) the 
Charge approximation model and (b) the Equivalent 

Hedayat et al. model for example 3 
 

c) Example 3 – Fifth Order PLL 
Finally a 5th order PLL is considered, the parameters 
for this model are N = 1, R2 = R3 = R4 = 16kΩ, C2 = 
100pF, C3 = 200pF, C4 = 100pF, C5 = 100pF, Ip = 
10µA, Kv = 30x106, ∆t = 0.1ns. Again the transient 
response of the system is shown in Figure 16 as 
modelled by the charge approximation and the 
Simulink models. 
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Figure 16: Plot of the frequency response of (a) the 
charge approximation model and (b) the equivalent 

Simulink model for example 4 

VI  CONCLUSION 
It has been shown in this paper that a PLL of 
arbitrary order can be modelled using the event 
driven modelling technique. The strength of this 
technique is the speed of transient simulations. The 

frequency response of the PLL can be easily found 
using the filter difference equations, derived using 
the charge approximation, for any order of filter. It is 
shown that the charge approximation error that is 
introduced to simplify the difference equation 
derivation is bounded. Finally, numerous examples 
are given comparing the charge approximation event 
driven model to the Simulink model and the Hedayat 
et al. model.  
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