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Abstract – A technique is presented that allows for the easy and
rapid extraction of the parameters of a sigma-delta modulator
system.  While an interesting problem in the area of mixed signal
system identification it also has applications in the silicon device
production environment.
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I INTRODUCTION

For very high-resolution performance at audio
frequencies, for example CD quality music
applications, sigma-delta modulator based analog-
digital data converters are generally the optimum
choice [1].  Sigma-delta based converters sample the
incoming data at much higher frequencies than
needed.  Through modulation, system imperfections
are converted to noise and shifted to higher
frequencies.  This noise is then removed through
additional digital filtering.  This approach enables
resolutions in excess of 16 bits to be obtained.

However this technique leads to difficulty in proving
that a sigma-delta modulator system has been
manufactured correctly and that it satisfies the
required performance specifications.  The standard
techniques for testing analog-to-digital converters
(ADCs) are not appropriate for use with high
performance sigma-delta modulator.

This paper will be divided into several sections, the
first gives a brief description of sigma-delta
modulators and standard ADC test techniques.  The
second section introduces a new technique that
allows for rapid identification of the system’s
performance.  The next section shows the results of
simulations that illustrates the performance of this
approach.  The final sections will discuss this work,
future developments and conclusions.

II SIGMA-DELTA MODULATORS

Sigma-delta modulators have become very popular
since the 1980’s and are now generally accepted as
the optimum data converter for high performance

low to audio frequency applications.  This is due to
their feedback architecture that allows the individual
components of the system to be more tolerant of
manufacturing imperfections [2].  In recent times,
sigma-delta modulators have been applied to higher
frequency applications, including an increasing
number of video-rate applications [3].  Their range of
application is limited only by the fact that they must
be used in conjunction with significant oversampling
which places tight restraints on their maximum
sampling frequency.

Sigma-delta modulators were first suggested by
Cutler in 1960 [4], with the first published
description of their properties was by Inose and
Yasuda [5] three years later. Sigma-delta modulators
are based upon the principle of using feedback to
improve the effective resolution of a coarse
quantiser, commonly a 1-bit quantiser. If this
feedback is used in conjunction with discrete-time
integrators then the mean of the output of the
quantiser will oscillate about the mean of the input,
these oscillations decreasing in size over a number of
iterations. Each output is a coarse quantisation of the
input, depending on the resolution of the quantiser.
This combined with the technique of oversampling
results in a high-resolution composite output.

This approach also tends to produce a high-pass
noise transfer function, shifting the noise away from
the low frequencies of interest to higher frequencies
where the noise can be filtered away.  The
configuration of the integrators and the feedback
loops from the output of the quantiser determine the
noise-shaping effect of the modulator. It is common
to design the system to obtain low-pass noise-
shaping but it is possible to obtain band-pass noise-
shaping for use in high frequency applications [6].



The noise-shaping of the sigma-delta modulator can
be enhanced by using a more complex architecture,
increasing the number of integrators, and adding
additional feedback loops from the quantiser to the
inputs of these new integrators.

Figure 1: First order sigma-delta modulator

The most basic sigma-delta modulator is the first-
order single loop modulator, shown in Figure 1. It
consists of a 1-bit quantiser, a discrete-time
integrator (which is modelled by a unit delay and a
feedback loop), and a feedback loop from the output
of the quantiser to the input via a DAC.  A one-bit
DAC is very simple to implement, often no more
than a switch that changes the feedback path from
being connected to a high or a low voltage. The
behaviour of the first-order sigma-delta modulator is
given by a single difference equation:
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However this is an ideal representation of the first-
order sigma-delta modulator.  Practical implement-
ations will introduce errors which need to be
modeled.  These errors are common to all sigma-
delta architectures, though here they will be
described only in terms of the first order system.
This is for two reasons
• The first order system is the simplest yet retains

all the major sources of implementation error,
thus clarity of presentation is preserved

• In higher order systems, the most dominant
errors are those that occur closest to the input.
All other errors are reduced by the loopgain of
the system, and can often be ignored when
compared to those of the first integrator stage,
thus the first order system is a good working
model.

There are four main errors that can be introduced
when implementing a sigma-delta modulator.
1. Scalar error introduced between the input and

the integrator input.
2. Scalar error introduced between the expected

ideal DAC output and the integrator input.

3. Offset error introduced between the expected
ideal DAC output and the integrator input.

4. Non-infinite gain on the operational amplifier
which is used to form the discrete-time
integrator. [7]

By examining a typical implementation of a first
order system, the source of these errors will become
more apparent.  The more experienced engineers will
appreciate that these systems are implemented
generally as differential-mode circuits rather than as
single-ended circuits for noise purposes but the
dominant errors are the same.

A typical implementation of a first-order sigma-delta
modulator resolves about the discrete-time
integrator.  The most common implementation is that
of a switched-capacitor implementation.  (figure 2).

Figure 2: A switched-capacitor integrator.

This circuit implements a unit-delayed discrete time
integrator with the scaling factor given as the ratio of
the two capacitors.  For an ideal unit-gain discrete-
time integrator, the capacitors should be equal.  The
transfer function of this circuit is given below for the
case of infinite amplifier gain.
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However when the gain of the amplifier is not
infinite, the charge stored on the capacitor about the
integrator is not maintained correctly and on each
integration-step the charge decays slightly due to
incomplete settling [7].  This modifies the transfer
function of (2) to
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where
A = amplifier gain.

Examining (3) more closely, it is possible to see that
the integrator not only has a nonlinear scaling of its
own stored value due to the amplifier gain, but this
also introduces a small scaling factor on the input
value.  The non-linear effect of the amplifier gain is
actually more significant than this expression would
suggest due to its effect in the overall non-linear
system. Figure 3 shows the resulting distortion in
what should be an ideally linear relationship between
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the input and output.  This is often called the devils
staircase and is common in non-linear dynamics [7].

Figure 3: Non-linearities in the output transfer function due
to finite amplifier gain.

A more significant scaling effect will arise due to
mismatch in the capacitor values.  In typical chip-
manufacturing processes available today, it is
difficult to match any two capacitors better than 1%.

One of the reasons that switched-capacitor
implementations are more common is that the
addition function before the integrator (Figure 1) can
be easily implemented as shown (Figure 4)

Figure 4: Integrator combined with addition function

In this case, the scaling effect is more critical as it
changes the ratio of the input to the feedback value
from the DAC.  This is highly critical as the output
value actually represents the value of the input as a
fraction of the DAC feedback value.  Thus a
mismatch between CDAC and Cin would result in a
system gain error.

Another source of error that needs to be considered is
that this value produced by the DAC may be
incorrect.  It may not be the expected full range
signal due to a gain error, and it may be offset from
the expected range.  Any unexpected scaling from
the DAC will result in a system gain error, and an
offset will offset the input by the same amount in the
opposite direction.

These errors when combined can be included in the
system equation (1):
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where
G represents the leakage in the stored
charge 1/(1-1/A)

III PERFORMANCE VERIFICATION

In a production environment it is important to be able
to ascertain whether the system is operating
normally.  Typically the only values available for
measurement are the input and the output.  The input
is typically ramped across all possible output codes
and the output is then compared with the input.  If it
satisfies this test, and others, then it is deemed to be a
good device.

However this approach impedes rapid testing.
Typically a high-resolution sigma-delta modulator
converter will take 128 samples for each output and
will require three times that number before a typical
output filter (Sinc3 is optimum) will produce a valid
output.  If each code of a 16-bit converter is to be
test, 8 million clock cycles would be required.  This
is inelegant and is also an unrealistic expectation in a
production environment.  In practice only a small set
of sample codes are examined.  However this does
run a risk of missing an error.

This paper proposes a new test that will quickly
identify those devices that do not conform to the
required specification prior to more intensive testing.

IV SYSTEM IDENTIFICATION

This paper addresses the case where the failure is due
to non-linearities arising from finite amplifier gain or
offsets and scaling in one or more for the input paths
to the integrators as these represent the majority of
catastrophic failures.  These errors can result in
system gain and offset errors, instability and non-
idealities as shown in Figure 3.  If instead of
monitoring system output performance, the system
parameters can be characterised, limits on these
parameters can be used to provide initial indication
of overall system performance.

It is possible by the monitoring of the input value,
the digital output from the sgn function and one
additional internal variable, the output of the
integrator, to fully characterise the system by taking
advantage of the behaviour of the output bitstream
and how this corresponds to internal behaviour.  It is
shown that instead of requiring hundreds of cycles to
obtain a single output as in the traditional approach,
this approach will provide complete system
characterisation in fewer than one hundred clock
cycles.

Sigma-delta modulators, of all orders, have pseudo-
random output bitstreams from the sgn function. The
mean of this bitstream equals the mean of the input.
However these cycles for inputs within the centre
30% of the input range [8] have short cycles, rapidly
interchanging between high and low outputs (bits 1
or 0).  The approach being presented in this paper
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uses this behaviour to help simplify the system and
thus extract the system parameters.

a) Calculating KA and KB

The integrator output can be expressed as a
summation of previous inputs to the integrator. over
a number of iterations, it is possible to say that
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Or with the imperfections
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For simplicity, rename sgn(un) Qn..

It can be noted that un+1 can be expressed in term of
known components x(n) and Q(n) and thus (6) can
be expressed more fully.

























+

∆+

+

+=

∑

∑

∑

−

=
−+

−

=

−

=
−+

+

1

0

1

0

1

0

k

i
iknB

i

k

i
B

i

k

i
iknA

i

n
k

kn

QKG

KG

xKG

uGu (7)

In practice the gain of any system will be in excess
of several hundred if not in excess of a thousand.
Thus it can be easily seen that the deviation of G
from 1 will be small and for higher powers of G will
be insignificant.  For this reason, in the following
section, the value of Gn will be approximated as
being equal to one.

Presume that it is possible to identify a set of outputs
Qn such that the sum of these outputs equals zero
(ΣQ=0).  In such a case the summation of these
values in (7) equals zero.  It is shown in [9] that such
a cycle of length 6 exists and is frequently found in
the output bitstream for a centre-of-range input value
(a value in the centre 30% of the input range).
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M is measurable as u and x are known.  However
more data is needed before any progress can be
made in resolving M into its components.

Allow dU to be the change in u over the monitored
period and the summation of the values of input (x)
over the same period be ΣX.  If the input is constant

over this period, then multiple measurements will
reduce the effect of any noise in any measurements.
The measurement of a change in u over a number of
cycles is more dependent on noise but if the change
is large, the effect of noise is minimised.  Measure
dU and ΣX for two different values of input, giving
dU1, dU2, ΣX1, ΣX2.

Values for M can be found as being the equal to the
value of dU for a given period, or preferably the
mean value of dU over a number of monitoring
periods.  With these values, the following
expressions can be developed:
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Thus it is possible to isolate KA and KB∆.

Identifying the value of KB is a simple task.  Another
section of the bitstream is selected, except in this
case, let the summation of the quantiser outputs Qn

sum to two (ΣQ=2).  If the assumption is made that
Un takes an approximately equal distribution of
values for when ΣQ=0 and when ΣQ=2, then the
change in the measured change in U over an equal
sized period is solely due to the effect of a different
value of quantiser.  Then with the assumption of
|Q|=1, we can define KB as
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It can be shown that for a given input, the
distribution pattern for values of U are equally
distributed, given a large enough set of samples.
This is not a stringent requirement and simulations
indicate that within 100 cycles sufficient equality is
achieved.

In the coming diagrams, the results for this approach
are presented.  In any practical application there will
be a limit to the measurement resolution.  The
graphs will show that by the approach taken, the
results will degrade gracefully with reductions in
measurement resolution.   The graphs have been
calculated using a sample modulator with the
following parameters.

KA = 0.7123289
KB = 1.31123289
∆ = 0.0447  (offset)
X1 = 0.12117267;
X2 = 0.31234567;
A  = 100,000



There is no particular requirement on the two input
values used except that better performance results if
the two are not close.  However the values should be
chosen in light of the requirement that the required
bitstream segments must be present.

Figure 3 shows the error in the extracted parameters
as the errors are so small as be indistinguishable
when viewed with the original values.

Figure 5: Percentage Errors in extracted parameters,
averaged over 256 cycles.

As can be seen, the errors are small, less than 1%
even with a measurement resolution no better than
1% (compared to a maximum input value of 1.0) and
with noise at the 1% level.  The exact performance
would be improved in the absence of noise, however
this is not easily achieved.  Better performance can
be obtained by averaging over a larger number of
cycles.  As the monitoring period is extended, more
eligible bitstream segments are generated.  Noise
and measurement resolution are not a significant
factor in extracting these parameters.

b) Determining the Presence of Finite Gain
The final important characteristic to identify is the
gain value of the amplifier.  Though ignored earlier,
it is important to be able to determine whether the
value of the amplifier gain is sufficiently large to be
acceptable for the performance required.  The
approach used for this depends on the results already
previously obtained for KA, KB and ∆.  We propose
that the output bitstream should be matched with a
short series of outputs (length N) from a
mathematical model of an ideal sigma-delta
modulator using the discovered values of KA, KB and
∆ but with an ideal amplifier.  The mathematical
model is seeded with the measured value of the
integrator output.  Given the condition that the
output bitstream is identical (the quantiser feedback

contributions are equal), any difference in the output
of the integrator after N cycles will be due to either
errors in the extracted parameters or due to finite
amplifier gain.  Assuming parameter contributions
are small, the primary source of error will be finite
gain.   Consider the following expressions for the
integrator output.
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Assuming that we have the same period of time k,
and quantiser output pattern, then the difference in
the two is given as
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Thus finite gain effects will build up with increasing
segment length.  The errors will be particularly large
if the initial stage of the comparison sequence has
large values for the integrator output. However if
midrange values are used that experience rapid
changes in the output bitstream, the results may be
masked by negative and positive valued errors
destructively cancelling.  Simulation shows that a
relatively short period can be more effective
(Figure 6).  This graph shows the error for a range of
gain values and input values when the error values
have been averaged after a approximately 100
successful comparison cycles.

For practical purposes it is necessary to average the
magnitude of the error over a number of samples,
taking advantage of the variability of the integrator
out.  This provides a more consistent response.   It
should be noted that this response is only slightly
input independent (13).



Figure 5: Errors due to finite amplifier gain.

The results show that irrespective of input values
chosen, a similar result is consistently seen.  For
small values of gain, the error is large, tending
rapidly to a small value as the gain increases, at
approximately 20dB/decade.

The presence of noise, or measurement resolution
plays a significant role in calculating the gain error.
The measured error will always have some
component due to noise and this places a lower floor
on any measurement.  For a given resolution, there is
a maximum value of gain for which there is any
discernible error.  Figure 6 shows a typical example.
With a measurement resolution of only 0.001
(compared to an input value of 1) it is possible to
discern errors arising only due to gains less than
1000.

Figure 6: Finite amplifier gain errors with noise.

V CONCLUSIONS

The technique presented in this paper, though
demonstrated only on the first-order modulator, is
fully compatible with other sigma-delta modulator
systems.  It has shown itself to be capable of
extracting reliable values for many of the scalar and
offset errors in the system and as providing a useful

indicator for poor amplifier gain.  It has achieved
this with a measurement period of less than 256
cumulative cycles and a limited amount of computer
computation cycles.  This makes it viable for use in a
commercial production environment.  Compared to
existing techniques, this approach is highly efficient
and if used prior to more extensive testing
techniques could prove to be a highly cost-efficient
technique for screening out bad-devices prior to
more expensive tests.

Future work will involve applying this approach to
higher order systems and testing this approach with
real devices which may need custom circuitry to
provide access to the required circuit nodes.
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