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1. Introduction. The Markov Chain Tree Theorem is a well-known result that

relates the stationary distribution of an irreducible Markov chain with the weights

of directed spanning trees in its associated digraph. Before recalling this result in

Theorem 1.1, we introduce some necessary notation and terminology.

Let D(A) denote the weighted directed graph associated with an irreducible ma-

trix A ∈ R
n×n
+ . D(A) consists of the nodes V = {1, . . . , n} with a directed edge (i, j)

from i to j of weight aij if and only if aij > 0. We say the edge e = (i, j) is outgoing

from i and write t(e) = i. A spanning subgraph T = (V,E) of D(A) is said to be an

i-tree if the following conditions are satisfied:

(i) for every j 6= i in {1, . . . , n}, there is exactly one outgoing edge e ∈ E whose

beginning node is j;

(ii) there is no edge e ∈ E whose beginning node is i;

(iii) the subgraph (V,E) contains no directed cycle.
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Note that an i-tree is often referred to as a rooted directed spanning tree (RST) at

i ∈ {1, . . . , n}.

Given an i-tree T in D(A), the weight of T is given by the product of the weights

of the edges in T and is denoted by π(T,A) or just by π(T ) when A is clear from

the context. Let Ti denote the set of all i-trees of D(A) for 1 ≤ i ≤ n. The classical

Markov Chain Tree Theorem, also known as the Frĕıdlin-Wentzell formula [14, 23],

can be stated as follows.

Theorem 1.1. Let A ∈ R
n×n
+ be an irreducible (row) stochastic matrix. Define

w ∈ R
n
+ by

wi =
∑

T∈Ti

π(T ).

Then, ATw = w. In particular, w∑
n

i=1
wi

is the unique stationary distribution of the

Markov chain with transition matrix A.

This core result has appeared in a variety of different contexts [1, 2, 6, 14, 23, 24].

It was discovered by Shubert [22] in connection with flow-graph methods, and inde-

pendently by Kohler and Vollmerhaus [15] motivated by problems in biological mod-

elling. For another reference, which discusses its extension to general, not necessarily

irreducible Markov chains, see Leighton and Rivest [16].

The primary contribution of this paper is to extend the Markov Chain Tree The-

orem to the setting of the max algebra. We show this in two ways: first, we prove

a max-algebraic version directly using combinatorial arguments; we then provide an

alternative proof using dequantisation. We also relate the max version of the Markov

Chain Tree Theorem with max-algebraic spectral theory. In keeping with Bapat [4],

the max algebra R+(max) consists of the nonnegative real numbers equipped with

the two operations a ⊕ b = max(a, b) and a ⊗ b = ab. These operations extend to

nonnegative matrices and vectors in the standard way [3, 4, 7, 9].

2. Markov Chain Tree Theorem. In this section, we first show that Theorem

1.1 extends to the max algebra. We then provide an alternative proof of this result

using dequantisation.
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2.1. Markov Chain Tree Theorem in the max algebra. Let us first recall

standard observations on graphs and spanning trees.

Lemma 2.1. Let D be a digraph and i be a node of D, to which every other node

can be connected by a path. Then D contains an i-tree.

Corollary 2.2. If A ∈ R
n×n
+ is irreducible then for each node i ∈ {1, . . . , n}

there exists an i-tree in D(A) with nonzero weight.

Lemma 2.3. Let D be a digraph, i be a node of D and T be an i-tree. Then for

each node j 6= i of D, there exists a unique directed path from j to i in T .

We now consider an irreducible matrix A in R
n×n
+ which is row stochastic in a

max-algebraic sense. Formally, we assume that max
1≤j≤n

aij = 1 for 1 ≤ i ≤ n or using

max-algebraic notation

A⊗ 1 = 1,

where 1 denotes the vector all of whose entries are equal to one. In a convenient abuse

of notation, we refer to matrices satisfying the above condition as max-stochastic. We

now present the main result of this section.

Theorem 2.4. Let A ∈ R
n×n
+ be an irreducible max-stochastic matrix. Define

the vector w by

wi =
⊕

T∈Ti

π(T ), 1 ≤ i ≤ n. (2.1)

Then

AT ⊗ w = w.

Proof. We first show that AT ⊗ w ≤ w. To this end, let an arbitrary i ∈ V =

{1, . . . , n} be given. Then, as aii ≤ 1, it is immediate that aiiwi ≤ wi. Now consider

j 6= i such that aji 6= 0. Let Tj be a j-tree such that π(Tj) = wj , let Ej be the

set of edges of Tj and (i, k) ∈ Ej . Consider the set of edges formed by removing

(i, k) from Ej and inserting (j, i) instead, and denote it by Ei. Consider the subgraph

Ti = (V,Ei). Note that there is exactly one outgoing edge from every ℓ 6= i and no

outgoing edge from i. Further, Ti is acyclic as any cycle in Ti must contain the edge

(j, i) (otherwise it would define a cycle in the original j-tree Tj); however there is no

outgoing edge from i in Ti. It follows that the graph Ti is an i-tree. By construction

and since all entries of a max-stochastic matrix are not greater than 1, we obtain that

wi ≥ π(Ti) = π(Tj)aji/aik ≥ wjaji,

and since we were given an arbitrary i and took an arbitrary j such that aji 6= 0, it

follows that AT ⊗ w ≤ w.
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To complete the proof, we show that AT ⊗w ≥ w. Let an arbitrary i ∈ {1, . . . , n}

be given, and let Ti = (V,Ei) be an i-tree such that π(Ti) = wi. As A is a max-

stochastic matrix by assumption, we know that aik = 1 for some k. If k = i then

(AT ⊗ w)i ≥ aiiwi = wi. So let k 6= i. To show that
n
⊕

j=1

wjaji ≥ wi we will construct

a j-tree Tj such that π(Tj)aji = π(Ti). Consider a path connecting k to i in Ti. By

Lemma 2.3 this path is unique. Let j be the penultimate node on this path, meaning

that (j, i) ∈ Ei. Removing the edge (j, i) from Ei and inserting the edge (i, k) we

obtain the edge set Ej and the required j-tree Tj = (V,Ej). Indeed, there is exactly

one outgoing edge from each node other than j in Tj , and there is no outgoing edge

from j. Furthermore, if there exists a cycle in Tj, it must contain the edge (i, k)

as otherwise it would define a cycle in Ti. This would then imply that there exists

a directed path in Tj from k to i, all of whose edges are also edges in Ti. This is

impossible however, as the only such path in Ti contains the edge (j, i) which is not

an edge in Tj . Therefore, Tj is indeed a j-tree, which satisfies π(Tj)aji = π(Ti) by

construction (as aik = 1). Hence,
n
⊕

j=1

wjaji ≥ wi and AT ⊗w ≥ w, as i was arbitrary.

The proof is complete.

The vector w defined in (2.1) will be called the maximal i-tree weight (ITW)

vector of A.

2.2. Proof by dequantisation. In this subsection, we present an alternative

proof of Theorem 2.4 using a procedure that can be seen as an instance of the Maslov

dequantisation [17]. Note that the same procedure was used by Olsder and Roos [18]

to derive max-algebraic analogues of the Cramer and Cayley-Hamilton formulae.

Consider the set of nonnegative numbers R+ equipped with the operations a+p

b := (ap + bp)1/p and a ×p b := ab for 1 ≤ p < ∞. This is a semiring isomorphic

to the semiring of nonnegative numbers with the usual arithmetic, via the mapping

f(a) := a1/p. We denote by R+(p) the semiring of nonnegative real numbers equipped

with the operations +p, ×p defined above. We say that A ∈ R
n×n
+ is p-stochastic if

ai1 +p ai2 +p · · ·+p ain = 1 for 1 ≤ i ≤ n.

The ITW vector of A ∈ R
n×n
+ defined as in Theorem 1.1 using the arithmetic of

R+(p) will be denoted by w(p)(A), and when defined in R+(max) (i.e., the maximal

ITW vector), by wmax(A).

Theorem 2.5. Let A ∈ R
n×n
+ be max-stochastic. There exists an integer P0

and a sequence A(p), p ≥ P0 in R
n×n
+ , where each A(p) is p-stochastic, such that

lim
p→∞

A(p) = A and lim
p→∞

w(p)(A(p)) = wmax(A).
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Proof. Let Bδ(A) denote the set of matrices C such that |cij − aij | ≤ δ for all i, j

and such that cij > 0 if and only if aij > 0. We start by constructing a nondecreasing

sequence of p-stochastic matrices A(p) ∈ Bδ(A).

As A is max-stochastic, for each i ∈ {1, . . . , n} there are li entries aij = 1, where

0 < li ≤ n. We denote the set of other entries in each row by Ji := {j | aij < 1} for

each i. Denoting mi = max{aij | j ∈ Ji} choose P0 so that 1−mp
i (n− li) ≥ 0 for all

p ≥ P0. Then also 1−
∑

j∈Ji
apij ≥ 0 for all p ≥ P0. For p ≥ P0, define A(p) by

a
(p)
ij =

{

aij , if aij < 1,

δ
(p)
i , otherwise,

where

δ
(p)
i =

(

1−
∑

j∈Ji
apij

li

)1/p

.

It is readily verified that A(p) is p-stochastic and that apij ≤ aij for all i, j. We obtain

aik − a
(p)
ik ≤ 1− δ

(p)
i ≤ 1−

(

1−mp
i (n− li)

li

)1/p

(2.2)

for all i and k. As mi < 1 for all i, it follows that the right hand side of (2.2) converges

to 0 as p tends to infinity. Hence, A(p) converges to A.

Next, note that

|w
(p)
i (A(p))− wmax

i (A)| = |w
(p)
i (A(p))− wmax

i (A(p)) + wmax
i (A(p))− wmax

i (A)| (2.3)

≤ |w
(p)
i (A(p))− wmax

i (A(p))|+ |wmax
i (A(p))− wmax

i (A)|.

Since wmax
i (A(p)) = max

T∈Ti

π(T,A(p)), we see that

w
(p)
i (A(p))− wmax

i (A(p)) ≤ (M
1/p
i − 1)max

T∈Ti

π(T,A(p)) ≤ M
1/p
i − 1, (2.4)

where Mi is the number of i-trees in A (or A(p)).

It is obvious from the definition of A(p) that wmax
i (A) ≥ wmax

i (A(p)). Let T ′ be

an i-tree such that wmax
i (A) = max

T∈Ti

π(T,A) = π(T ′, A). It follows that wmax
i (A(p)) ≥

π(T ′, A(p)). Then

|wmax
i (A(p))− wmax

i (A)| = wmax
i (A)− wmax

i (A(p)) ≤ π(T ′, A)− π(T ′, A(p)). (2.5)

Let E′ = {(i1, j1), (i2, j2), . . . , (in−1, jn−1)} be the edges in the i-tree T ′. Then, it

follows from (2.5) that

|wmax
i (A(p))− wmax

i (A)| ≤ aiij1ai2j2 · · · ain−1jn−1
− a

(p)
i1j1

a
(p)
i2j2

· · ·a
(p)
in−1jn−1

(2.6)
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≤ C(A)max
i,j

(aij − a
(p)
ij ),

where C(A) is a fixed constant that depends only on the entries of A.

Using (2.4) and (2.6) in (2.3), we obtain

|w
(p)
i (A(p))− wmax

i (A)| ≤ M
1/p
i − 1 + C(A)max

i,j
(aij − a

(p)
ij ).

As we showed above that max(aij − a
(p)
ij ) → 0 as p → ∞ and M

1/p
i → 1 as

p → ∞, the claim follows.

As each of the semirings R+(p) is isomorphic to the nonnegative real numbers

with the usual operations, it follows from the classical Markov Chain Tree Theorem

(Theorem 1.1) that (A(p))T ×p w
(p) = w(p) for all p ≥ P0. Passing to the limit and

applying Theorem 2.5 yields another proof of Theorem 2.4.

We next present a numerical example to illustrate Theorem 2.4.

Example 2.6.

A =









1 3/4 5/6 0

1/2 1 1/4 9/10

0 0 1 7/8

1/3 0 1 4/5









(2.7)

1

1

23 /4
3

5 /6

1 /2

1

1 /4

4

9 / 1 0

1

7 /8

1 /3 1

4 /5

Fig. 2.1. D(A) for (2.7).

Let Ti be an i-tree with maximal weight for i = 1, 2, 3, 4. Then,

• T1 : (3, 4), (2, 4), (4, 1) w1 = π(T1) = a34a24a41 = 21/80;

• T2 : (3, 4), (4, 1), (1, 2) w2 = π(T2) = a34a41a12 = 7/32;

• T3 : (1, 3), (2, 4), (4, 3) w3 = π(T3) = a13a24a43 = 3/4;

• T4 : (2, 4), (1, 3), (3, 4) w4 = π(T4) = a24a13a34 = 21/32.

Hence, w =









21/80

7/32

3/4

21/32









and AT ⊗ w = w.
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As a final point for this section, we note the following consequence of Theorem

2.4 for nonnegative irreducible matrices that are not necessarily max-stochastic.

Proposition 2.7. Let A ∈ R
n×n
+ be irreducible and assume that for all i ∈

{1, . . . , n}, there exists some j with aij > 0. Consider the diagonal matrix X given

by

xii = max
1≤j≤n

aij .

Further let w be the maximal ITW vector for A. Then

AT ⊗ w = Xw.

Proof. Let Â = X−1A. Then Â is irreducible and max-stochastic. For 1 ≤ i ≤ n,

consider a spanning tree T̂ in D(Â) rooted at i. It is clear that the weight of T̂ takes

the form

âi1j1 · · · âin−1jn−1
=

1

xi1i1xi2i2 · · ·xin−1in−1

ai1j1 · · ·ain−1jn−1
,

where {i1, . . . , in−1} = {1, . . . , n}\{i}. In fact, it is clear that there is a bijective

correspondence between spanning trees Ti in D(A) rooted at i and spanning trees T̂i

rooted at i in D(Â) with

π(T̂i) =
xii

x11 · · ·xnn
π(Ti).

It follows that if we write ŵ for the maximal ITW vector of Â, then

ŵ =
X

x11 · · ·xnn
w. (2.8)

As Â is max-stochastic, we know from Theorem 2.4 that ÂT ⊗ ŵ = ŵ. Noting that

ÂT = ATX−1, we can use (2.8) to rewrite this as

1

x11 · · ·xnn
AT ⊗ w =

X

x11 · · ·xnn
w.

The result follows immediately.

The above result characterises the maximal ITW vector for a broader class of

nonnegative matrices in max-algebraic terms. In particular, it applies to symmetrical

reciprocal matrices, which arise in the Analytic Hierarchy Process : a widely used

framework for multi-criteria decision making [20]. In the spirit of [5, 12, 13], it would

be interesting to investigate the possibility of using the maximal ITW vector in this

and related applications. We hope to report on this in more detail in future work.
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3. Maximal ITW vectors and Kleene stars. We have seen that the maximal

ITW vectorw associated with the directed graphD(A) is always a left max eigenvector

of an irreducible max-stochastic matrix A. However, in contrast to the conventional

algebra, the irreducibility of A is not sufficient to guarantee uniqueness (up to scalar

multiple) of the max eigenvector. This naturally leads to the question of how to

identify the maximal ITW vector using the tools of max spectral theory such as the

power method or Kleene star. We next consider this question.

First, recall that for A ∈ R
n×n
+ with µ(A) ≤ 1 the series I⊕A⊕A2

⊗⊕· · ·⊕An
⊗⊕· · ·

converges to a finite matrix called the Kleene star of A given by

A∗ = I ⊕A⊕A2
⊗ ⊕ · · · ⊕An−1

⊗ ,

where µ(A) ≤ 1 [3, 7, 8, 9, 19]. Here, Ak
⊗ denotes the kth max-algebraic power of A

and a∗ij is the maximum weight of a path from i to j of any length in D(A) (if i 6= j).

In particular if A is irreducible, then A∗ is positive [3, 9].

A cycle with the maximum cycle geometric mean is called a critical cycle [3, 4, 7,

8, 9, 19]. The set of nodes that lie on some critical cycle are said to be critical nodes

and denoted by NC(A). The set of edges belonging to critical cycles are said to be

critical edges and denoted by EC(A). The critical matrix of A [10, 11], AC , is formed

from the submatrix of A consisting of the rows and columns corresponding to critical

nodes as follows. Set aCij = aij if (i, j) lies on a critical cycle and aCij = 0 otherwise.

Moreover, we use the notation DC(A) for the critical graph of A, the digraph which

consists of all critical nodes and edges.

The following well-known result shows the connection of A∗ with the max eigen-

vectors of A [3, 4, 11]. We adopt the notation A∗
i. for the ith row, and the notation

A∗
.i for the ith column of the matrix A∗.

Proposition 3.1. Let A ∈ R
n×n
+ be an irreducible matrix with µ(A) = 1. As-

sume that DC(A) has r strongly connected components. Then, the following are true.

(i) µ(A) = 1 is the only max eigenvalue of A;

(ii) A∗
.i is a (right) max eigenvector associated with µ(A) for i ∈ NC(A);

(iii) For i, j ∈ NC(A) (i 6= j), A∗
.i and A∗

.j are scalar multiples of each other if

they belong the same strongly connected component in DC(A).

If one takes r columns of A∗ from different strongly connected components of

DC(A), then none of them can be expressed as a max-linear combination of the other

columns. Moreover, any such set is strongly linear independent in the sense of [7].

For general (reducible) matrices, µ(A) is the largest eigenvalue of A.

A max-stochastic matrix has max eigenvalue 1, and aij ≤ 1 for all i, j. This

implies that µ(A) = 1, and that aij = 1 for (i, j) ∈ EC(A). Such matrices are
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said to be visualised [21]. Note that the max-stochastic matrices have an additional

property: each node in D(A) has an outgoing edge with weight 1. The spanning

subgraph of D(A) consisting of the edges of weight 1 defines the saturation digraph,

denoted Sat(A).

Observe that for any matrix A with a positive eigenvector x, the matrix B =

X−1AX , where X is a diagonal matrix formed from x, is max-stochastic. An analo-

gous property holds in nonnegative algebra, where it has many applications, and one

can consider a generalisation to semifields (i.e., semirings with invertible multiplica-

tion). Thus, a max-stochastic matrix can be considered to be “eigenvector-visualised”.

The Kleene star of a visualised matrix with µ(A) = 1 (and hence of a max-

stochastic one) has a very specific structure, as described, for example, in Proposition

4.1 of [21], which we now recall. Define DC∗(A) to be the directed graph consisting of

the nodes {1, . . . , n}, all critical edges and the loops (i, i) for 1 ≤ i ≤ n. We assume

that DC∗(A) has r′ strongly connected components with node sets N1, . . . , Nr′ .

Let Aµν denote the submatrix of A formed from the rows with indices in Nµ and

from the columns with indices in Nν for 1 ≤ µ, ν ≤ r′. Let Ared be the r′ × r′ matrix

with entries αµν = max{aij | i ∈ Nµ, j ∈ Nν}, and let E ∈ R
n×n
+ be the n×n matrix

with all entries equal to 1.

Proposition 3.2 ([21], Proposition 4.1). Let A ∈ R
n×n
+ be a visualised matrix,

µ(A) = 1 and r′ be the number of strongly connected components of DC∗(A). Further,

let Ared = (αµ,ν) be as defined above. Then

1. αµµ = 1 for all 1 ≤ µ ≤ r′ and αµν ≤ 1 (resp. αµν < 1 for µ 6= ν), where

µ, ν ∈ {1, . . . , r′};

2. for 1 ≤ µ, ν ≤ r′, the corresponding submatrix of A∗ is A∗
µν = α∗

µνEµν , where

α∗
µν is the (µ, ν)-entry of (Ared)∗, and Eµν is the (µ, ν)-submatrix of E.

We proceed with the following preliminary result.

Lemma 3.3. Let A ∈ R
n×n
+ be an irreducible max-stochastic matrix. Then, for

1 ≤ j ≤ n, min
1≤i≤n

a∗ij = min
q∈NC(A)

a∗qj .

Proof. Let j ∈ {1, . . . , n} be given. It is immediate that

min
1≤i≤n

a∗ij ≤ min
q∈NC(A)

a∗qj . (3.1)

To show the reverse inequality, consider some l /∈ NC(A). We claim that there

exists a path from l to some k ∈ NC(A) of weight 1. As A is max-stochastic, there

exists at least one outgoing edge from l of weight 1, alk1
= 1. Moreover, as l is not

critical, k1 6= l. If k1 is critical, we are done. If not, then there exists k2 6∈ {l, k1}
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with ak1k2
= 1. Continuing in this fashion, we must eventually arrive at some node

k = kp which was already on the path. Hence, this node is on a critical cycle, and k

is in NC(A). By construction, l, k1, . . . , kp = k is a path of weight 1, which we denote

by P1.

Next, note that a∗kj is the maximal weight of a path P2 between k and j. Con-

catenation of P1 and P2 yields the path P1 ◦ P2 with weight a∗kj connecting l to j. It

follows that

a∗lj ≥ a∗kj ≥ min
q∈NC(A)

a∗qj .

As this must hold for any l 6∈ NC(A), we have that

min
1≤i≤n

a∗ij ≥ min
q∈NC(A)

a∗qj . (3.2)

Combining (3.2) and (3.1) yields the result.

Recall that for a max-stochastic matrix A, each node has an outgoing edge with

weight 1. The spanning subgraph of D(A), which contains the edge (i, j) if and only

if aij = 1 is known as the saturation subgraph Sat(A) of A.

Lemma 3.4. Let A ∈ R
n×n
+ be an irreducible max-stochastic matrix. Assume that

DC(A) is strongly connected. Let w be the maximal ITW vector of A. Then for all

i ∈ NC(A), wi = 1.

Proof. Evidently wi ≤ 1 for all i, since it is obtained by multiplication of the

entries of A, all not exceeding 1. Hence, it is enough to show that for a given critical

node i, we can construct an i-tree in Sat(A). In Sat(A), each node is connected to a

critical node. As DC(A) is strongly connected, the result follows from an application

of Lemma 2.1.

In the next result, we denote by yC the critical subvector of y, i.e., the subvector

corresponding to indices in NC(A).

Theorem 3.5. Let A ∈ R
n×n
+ be an irreducible max-stochastic matrix and w be

the maximal ITW vector of A. Then, the following are true.

(i) wT ≤ min
i∈NC(A)

A∗
i.;

(ii) If DC(A) is strongly connected then wT = min
i∈NC(A)

A∗
i.;

(iii) If DC(A) has no more than two components then wT
C = ( min

i∈NC(A)
A∗

i.)C .

Proof. (i): Consider a j-tree T (1 ≤ j ≤ n), with weight wj . There exists a path

P in T from i to j for 1 ≤ i ≤ n, i 6= j, with weight w(P ). Then,

wj ≤ w(P ) ≤ a∗ij for all i ∈ {1, 2, . . . , n}.
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Thus, wj ≤ min
1≤i≤n

a∗ij , or equivalently (by Lemma 3.3), we have wj ≤ min
k∈NC(A)

a∗kj .

(ii): In this case, all columns of the Kleene star with indices in NC(A) are scalar

multiples of each other, and any eigenvector, including w, is a multiple of such a col-

umn. Let y be a column of the Kleene star with index in NC(A). By Proposition 3.2,

all the components of yC equal 1, and by Lemma 3.4 all the components of wC equal

1. Hence, y = wC .

(iii): Let DC(A) consist of two components, with sets of nodes N1 and N2 respec-

tively. By Proposition 3.2, there exist α and β such that A∗
12 = αE12, A

∗
21 = βE21,

A∗
11 = E11 and A∗

22 = E22. Hence, we need to show that wi = β when i ∈ N1 and

wi = α when i ∈ N2. We will give a proof only for i ∈ N1, the other case being

similar.

As we showed in part (i) that wT ≤ min
i∈NC(A)

A∗
i., it suffices to build an i-tree of

weight β, for i ∈ N1. Consider a path P of greatest weight connecting a node in N2

to i; by Proposition 3.2 this weight is equal to β. Let k be the first node on P where

it leaves N2 and let l be the first node on P where it enters N1. By optimality of

P , only the subpath P ′ of P connecting k to l may have weight less than 1, and this

weight is β. Using Lemma 2.1, construct a spanning tree directed to i in the first

component of DC(A) (with node set N1), and a spanning tree directed to k in the

second component of DC(A) (with node set N2). This makes an i-tree on the graph

consisting of nodes and edges of DC(A) and P ′. We need to complete this tree to an

i-tree in D(A) having the same weight. We can do this using the edges of Sat(A),

since all remaining nodes of D(A) can be connected by a path with edges in Sat(A)

either to a node of DC(A) or to a node of P ′. The resulting tree is directed to i and

has weight β.

It follows immediately that if all nodes in D(A) are critical and DC(A) has

two strongly connected components, then the maximal ITW vector w is given by

( min
i∈NC(A)

A∗
i.)

T .

The following example illustrates that point (iii) in Theorem 3.5 does not neces-

sarily hold when DC(A) consists of three components.

Example 3.6. Consider the matrix A given in (2.7). There exist three strongly

connected components in DC(A) and NC(A) = {1, 2, 3} such that NC
1 (A) = {1},

NC
2 (A) = {2} and NC

3 (A) = {3}. The Kleene star of A is given by

A∗ =









1 3/4 5/6 35/48

1/2 1 9/10 9/10

7/24 7/32 1 7/8

1/3 1/4 1 1









.
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The left max eigenvectors are A∗
1., A

∗
2. and A∗

3..

Recall that w =









21/80

7/32

3/4

21/32









. Then, w ≤ ( min
i∈NC(A)

A∗
i.)

T =









7/24

7/32

5/6

35/48









.

However, wT
C 6= ( min

i∈NC(A)
A∗

i.)C as there are three strongly connected components

in DC(A).
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