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Recent work has shown that if the coefficients of a first-order allpass filter are modulated
over time, it behaves as a dynamic Phase Distortion (PD) device. A key advantage of this
arrangement is that the filter input and the modulation signal can, within stability constraints,
be arbitrary. Furthermore, no heterodyning or interpolation, as used for the techniques of
Adaptive PD and Adaptive FM, respectively, is required. This now broadens the palette of
sound effects that allpass filters are capable of generating and opens up a new perspective
through which they can be configured for sonic modification purposes. However, a rigorous
analysis of this dynamic device is not available and the purpose of this paper is to draw
on the theory of time-varying filters to thoroughly understand its properties in the time and
frequency domains. The significant influence of filter topology on the transient behavior of
the output is also investigated. Finally, a procedure for mapping from a desired PD function to
a modulation signal is also illustrated. This can be applied to derive modulation functions that
impart particular timbral properties to the input, and it is used to create examples demonstrating
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the capabilities of this new technique.

0 INTRODUCTION

Allpass filters have a special place in musical signal pro-
cessing, particularly in the area of digital audio effects.
Their ability to delay an input signal by fractional sam-
ple values or in a frequency-dependent way means that
they are key components of many well-known effects algo-
rithms, such as reverberation [1-3], chorus [4], and flanger
[5] units, or can be cascaded together to create phasers [5]
or spectral delay effects [6]. Recent work has now added
the ubiquitous distortion effect to the list [7]. It was shown
in [7] that by modulating the coefficients of the allpass filter
a time-varying phase delay is created that when applied to
an input signal will result in the alteration of its waveshape,
leading to the appearance of new spectral components in the
output signal. This essentially creates a dynamic version of
the sound synthesis technique known as Phase Distortion
(PD) [8], which is a subset of phase or frequency modulation
(FM) synthesis [9], and is a phase domain version of wave-
shaping [10]. It is an efficient way for using simple mono-
component waveforms to generate others of a much more
complex timbral, and consequently musically interesting,
structure. This allpass filter-based approach is an alternative
to that of Adaptive PD given in [11] and Adaptive FM [12].
It is wholly flexible because the input and the modulation
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can be arbitrary signals but it does not require the hetero-
dyning operation for Adaptive PD or the interpolation nec-
essary for Adaptive FM, and thus is computationally more
efficient to implement. Furthermore, this extends the use-
fulness of the allpass filter structure for audio effects so that
it now indeed becomes a general-purpose signal processing
component that is configurable to achieve a wide variety of
sonic outcomes. Itimplies too that a typical sound effect unit
that has distortion and time-delay based effects could be de-
signed using allpass filter structures alone. This will inspire
new perspectives for generating dynamic sound effects.

The relationship between the coefficient-modulated all-
pass filter and PD was developed in [13]. Following this,
it was shown how to choose a modulation function to gen-
erate band-limited sawtooth and square waveforms [14].
The synthesis possibilities from chaining a number of time-
varying allpass filters were discussed in [15] and for second-
order allpass filters in [16]. The work in [11] discussed how
it performed as an adaptive effect with arbitrary input sig-
nals, and moreover, also illustrated the influence that the
implementation structure of the filter has on transients ap-
pearing in the output. Each of these contributions advanced
the understanding of these filters. However, it was clear that
a comprehensive study is required to fully grasp how to use
them effectively.
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These modulated allpass filters are time-variant filters
and their analysis must be different to that for time-invariant
filters for a number of reasons. Small variations in the fil-
ter parameters can change its characteristics dramatically
[17], and changing parameter values also can give rise to
transients [18, 19]. Additionally, topologies that are equiv-
alent in the time-invariant case are not when the filters
vary over time [20]. More importantly, a time-varying filter
whose coefficients at any given time are those of a sta-
ble time-invariant filter will not necessarily be stable [21].
Thus, analyzing time-variant filters needs a different set
of theoretical tools. The literature on time-varying filters
is diverse. Approaches include impulse response analysis
[17], state-space analysis [22], frequency domain analysis
[23, 24], and approximation [25]. The most comprehensive
work identified was [20], particularly for Periodic Linear
Time-varying (PLTV) Systems. Recently, this theory was
applied to Feedback Amplitude Modulation (FBAM) syn-
thesis systems [26, 27]. The coefficient-modulated allpass
filter is more complicated than the FBAM system but the
principles are similar, and for the remainder of this article
the term PLTV allpass filter will be used to refer to the
coefficient-modulated first-order allpass filter. However, a
caveat must be made, in that although the magnitude of
the frequency response of the unmodulated LTI filter struc-
ture is allpass, it will be shown that this is not strictly the
case for the time-varying version, but that it will be almost
allpass.

The article is structured as follows. A brief illustration of
the phase delay properties of the allpass filter is given first.
This is followed by an explanation in Sections 1 and 2 of
how it can be analyzed in the time and frequency domains
using PLTV theory. In particular, Section 1 will explain
constraints on the modulation function to ensure stability.
Section 3 will then examine various implementation struc-
tures and show how each realization influences the presence
of transients in the output. Section 4 will present two sound
synthesis examples to illustrate its operation. Section 5 will
then conclude the article.

0.1 The PLTV Allpass Filter

The transfer function of the standard first-order digital
allpass filter can be written as:

—a+z"

H@)= 1 —az™!

6]

where a denotes the allpass coefficient [28].

The equation for the relationship between the value of
the allpass coefficient and the phase shift introduced at a
particular frequency in the input signal is given by [29]

() @

—a

$(w) = —2tan"! <1

where o denotes the frequency in radians.

The upper panel of Fig. 1 shows a plot of the phase
shift introduced by the allpass filter for coefficient values
a € [0,1] at frequencies corresponding to those of the mu-
sical note C at various octaves. The lower panel is a plot of
the phase shift for coefficient values a € [—1,0], again at
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Fig. 1. Relationship between positive (upper panel) and negative
(lower panel) allpass coefficient value and phase shift at different
frequencies.

the frequencies of C. When the coefficient is positive the
size of the phase shift increases nonlinearly with increasing
coefficient value going from a value close to 0 up to—m. The
relationship is more nonlinear at lower frequencies. How-
ever, when the coefficient value is negative the size of the
phase shift is much smaller for all coefficient values, and is
0 at all frequencies for a coefficient value of —1. Therefore,
the effect of the coefficient-modulated allpass filter is most
pronounced when the modulation function is positive.

Now that the fundamental relationship has been shown,
Section 1 will give the relevant equations for analysis of
the PLTV allpass filter in the time domain. The theoretical
results will be illustrated with an example.

1 TIME DOMAIN ANALYSIS OF THE PLTV
ALLPASS FILTER

In[7], the PLTV allpass filter was originally implemented
as a time-varying difference equation with input x(r), output
y(n) and a periodic time-varying modulation function m(n),
where 7 is the sample index and whose period is given as
N:

ymy=m@m)yn—-1)—-—m@mxm+xn-1  (3)

The impulse response of a time-varying system is also
known as Green’s function [20]. Unlike linear and time-
invariant systems, the output response depends on the mo-
ment of the observation as well as the moment of the signal
application. Therefore, in a time-variant discrete system the
impulse response, denoted as h(p,n), is a function of two
time variables p and n, representing the sample instants at
which the impulse is applied and observed, respectively.
As shown in [20], a time-varying IIR filter can be decom-
posed into a cascade of a time-varying FIR filter with a
time-invariant IIR system whose overall impulse response
can be written

h(p.n) =Y hpr (p, k) huw (k, n) )
k=p
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The impulse response of the non-recursive element of
Eq. (3) can be expressed in matrix form as:

-m(0) 1 0 0
0 —-m() 1 0
hgr (p, n) = 8 8 —’7’6(2) _ml .

®

Also from [20], the impulse response of the recursive
element of Eq. (3) can be written as:

hur (p, n)
_Jm@®) hur (p,n —1)+38(p,n),for0 < p <n, (6)
" 10, forn <0& p > n.

Eq. (6) can also be written as [27]:

n
[T mk)y=22 0<p<n,

P gpy’ 7 — =

hir (p, n) = L, p=n, (7
0, p > n,
0, n <0,

where
k

g(k):l_[m(i) fork>1 and g(0)=1 (®)
i=1

As the modulation function m(n) is periodic with period
N, the coefficients of the recursive filter are also periodic.
This presents an advantage to the analysis as there is an
explicit relationship between coefficients of successive pe-
riods. If we define the current sample time 7 as the combi-
nation of an integer number of periods and fraction thereof,

n=uN +v )

where L is an integer and pN represents an integer number
of periods, and v is also an integer representing the number
of samples in the current incomplete period.

From Eq. (8), an expression can be written to take account
of this,

gn+N)=g(N)gn), (10)
where
N—1
gN) =[] m. (11)
k=1

Returning to Ay (p, n) it is possible to use Eq. (8) to
express it as:

hur MN 4+ &, N +v) = g" 1 (N) hir (€, V), (12)

where 1 is also an integer and nN represents an integer
number of periods, and & is an integer representing the
number of samples in the current incomplete period.

Eq. (12) says that to compute the recursive impulse re-
sponse at any point in time all we need to know is the
impulse response for the first period only and the product
of the filter coefficients. A further useful result is that we
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can verify the stability of the system by Eq. (11). For sys-
tem stability, the impulse response should decrease over
time [20], and from Eq. (11) this will be ensured if

g(N) <1 13)

Eq. (13) can be interpreted to mean that at any given
time within the period the value of a filter coefficient can
be greater than one and it will not disrupt system stability
as long as the product of all the coefficients within the
complete period is less than one.

Examining Eq. (12), it can also be understood that an
expression for the transfer function of the recursive part in
steady state mode could be written as:

i g (5, 0)7 78
I—gN)zV

where taking account of the periodicity of the impulse re-
sponse, we can define

Hyr (z,n) =

(14)

N|Z 15
c=n LNJ ’ (15)
and |.] represents the floor function

Eq. (14) shows that the transfer function is a combination
of a non-recursive numerator and an inverse comb filter
whose delay is N samples. This is a very interesting result
because considering Eq. (3) in light of Eqgs. (4) and (14),
it means that a significant element of the signal shaping
mechanism of the coefficient-modulated allpass filter is
purely FIR. Eq. (12) can also be expanded in a similar
manner to Eq. (5) and will result in

hyr (p, n)
1 m) m(Dm@) m)ym2)ym3)
0 1 m Q) m@)ym@3)
_lo o 1 m(3)
0 0 0 1

(16)

Then, by applying the matrix descriptions of Egs. (5)
and (16), it is possible to outline in matrix form how the
combined response of Eq. (4) will appear

h(p.n) = her (p. k) hig (k. n).

i
w0 1 m@-[n® m@One - [In® |
0 —-m(l) 1 *llgll_m(l) m(3)7]]2[1;1(l)

“lo 0 o @ - [ﬁ;m o
0 0 0 “m3)

a7

To illustrate using an example how an impulse response
of the form of Eq. (17) evolves over time we first define a
unipolar modulation as:

m(n) = 0.01 + 0.9((x(n) + 1)/2), (18)
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Fig. 2. One Period of the PLTV allpass impulse response for the
modulation function in Eq. (18).

where the input to the PLTV allpass filter is
x(n)=sin (0.0l tn). (19)

This input has a period of 100 samples, which corre-
sponds to frequency 441 Hz when the sampling rate is
44.1 kHz.

The format of the modulation in Eq. (18) was used to en-
sure that the minimum value of the modulation was slightly
greater than zero and thus prevent any divide by zero issues
occurring in the calculations. The numerical evaluation of
g(N) from Eq. (11) for this modulation signal returns a value
of approximately O which, from Eq. (13), indicates that the
time-varying filter is stable.

Substituting the modulation function of Eq. (18) into Eq.
(17), we can make a depth map image plot of the system
impulse response over one period N = 100. This is shown
in Fig. 2. The figure has a grayscale colorbar illustrating the
mapping between the actual numerical value of the impulse
response and the colors used, with white and black cor-
responding to the maximum (0.99) and minimum (—0.91)
values, respectively. The time-varying nature of the impulse
response can be observed in the variation of its numerical
values between the maximum and minimum on the depth
map. Also, looking along the diagonal its progression over
time is highlighted.

The matrix in Eq. (17) grows over time. However, many
of the entries of Eq. (17) will be formed from products of
samples of the input modulation signal suggesting that it
could be difficult to derive a tidy closed form expression
for the impulse response in most cases. Thus, in general a
computational approach should be used for its evaluation.
Finally, if the input to the PLTV allpass filter is denoted
x(n), then the output y(n) can be determined using [20]

y()=Y_"x(p)h(p.n). (20)

p=0

Using the input and modulation defined in Eqgs. (18) and
(19), along with the time-varying impulse response of Eq.
(17), we can compute the output as shown by the solid line in
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Fig. 3. Input (dashed line) and Output (Solid line) of the PLTV
allpass filter.

Fig. 3. The distortion in its shape from that of the sinewave
input, as given by the dashed line, can be seen in the plot
confirming that this is the consequence of modulating the
filter coefficient.

2 FREQUENCY DOMAIN ANALYSIS OF THE
PLTV ALLPASS FILTER

Moving away from the time-domain, it is also useful to
examine the PLTV allpass filter in the frequency domain.
It is very worthwhile to find the time-varying magnitude
and phase response of the filter. For actual synthesis appli-
cations, it is important to have an expression that relates
the modulation function to the time-varying phase. It is
also possible to draw on the theory of FM synthesis to
have an expression for the spectrum of filter output given a
time-varying phase function. This can be useful for evalu-
ating the bandwidth of the filter output. Another tool is the
Bifrequency function which is a visual representation that
illustrates the mapping between frequency components in
the input and output. All these are explained next.

2.1 General Analysis

In a similar manner to the previous section, the overall
frequency response needs to be written as a combination
of two cascaded PLTV systems. The general expression is
also available from [20], and can be written for our case as:

n

H(w,n) =Y Her (@, p)hug (p, )e’*P™  (21)
p=0

where the time-varying frequency response of the FIR part
is simply

Hpr (w0, n) = —m (n) + ¢/ (22)
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Fig. 4. PLTV allpass time-varying frequency response magnitude
(upper panel) and phase (lower panel).

Substituting Egs. (22) and (16) into Eq. (21) will lead
to an expression for the overall PLTV allpass frequency
response

i [_m(n)e.iwﬂ_;,_e.rm(/)fl)] hur(p.n)e=Ion
H(w,n)= = = (23)
1— [T x(k)e—iNe
k=0

where x(n) is the PLTV allpass filter input. It is worth
noticing here that the input signal is an important element
in the frequency response.

The frequency response in Eq. (23) is a complex quantity
and can be represented as a time-varying magnitude and
phase

H(w,n) = |H (0, n)| e/<H@m, (24)

Fig. 4 illustrates the time-varying magnitude and phase
responses for our example. The number of frequency in-
dices used to compute the frequency response was 1000,
which represents from 0 Hz to half the sampling frequency.
The upper panel shows the magnitude response and it ap-
pears to be almost flat with a magnitude of approximately 1,
but with a peak periodically appearing in the low-frequency
region. The phase response in the lower panel is changing
over time and varies between - and 1t within each period as
the modulation reaches its maximum and minimum value,
respectively. The nonlinear shape of the time-varying phase
response can be perceived from the plot.

To investigate further, it is worthwhile plotting the mag-
nitude and phase responses at the same frequency as the
input, that is, 441 Hz, for the example. These are given in
Fig. 5. Here, although the magnitude response in the up-
per panel is centered around 1, there is a fluctuation that
occurs as the phase response reaches its minimum value.
Thus, the magnitude response of the PLTV allpass filter
is not strictly allpass at every time instance when the co-
efficients are modulated. However, the RMS amplitude of
this fluctuation in the magnitude response was found to be
0.0091 which is almost zero, and it can be concluded that
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Fig. 5. Time-varying magnitude (upper panel) and phase response
(lower panel) at 441 Hz only.

the modulation effects of the PLTV filter are primarily due
to the time-varying phase response.

To establish the relationship between the modulation
function and the time-varying phase, it is necessary to make
some assumptions. Firstly, it is assumed that for the PLTV
allpass that the time-varying magnitude in Eq. (24) is

|H (w,n)| ~ 1 forall w,n (25)

and, with respect to Eq. (2), the phase shift, denoted
¢ (w, n), introduced by the filter at a given frequency
at time n is given by a time-varying version of the expres-
sion for the phase shift of a time-invariant allpass filter [13],
that is,

b, m) ~ —w+ 2tan! (2SO ) )
w,n) X —w an _).
1 —m(t)cos(w)
Additionally, the phase shift of Eq. (26) can be converted
into a frequency deviation by differentiation with respect to
time [13]
—2m (n) sin (w)

1 —2m (n)cos (w) +m? (n) @7)

b (w,n) ~

where m (n) is the differential of the modulation function.
Notice in Eq. (27) that if the modulation signal is not time
varying, that is, m (n) = 0, then the frequency deviation is
also zero, that is, ¢ (w, n) = 0.

The upper panel of Fig. 6 shows the actual time-varying
phase from Fig. 5 (solid line) plotted with the approxi-
mation of Eq. (26) (dashed line). There is a good match
between the two except that the approximation has deeper
notches at the minimum points. A similar plot showing
the instantaneous frequency deviations (centered around
441 Hz) is given in the lower panel. The actual in-
stantaneous frequency deviation is found by differenti-
ating the measured time-varying phase of Fig. 5 (solid
line) while the approximation is from Eq. (27) (dashed
line). They are broadly in agreement except most no-
tably at the minimum points. The advantage of the in-
stantaneous frequency deviation is that it can provide
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Fig. 6. Comparison of actual PLTV time-varying phase (solid line)
and approximation of Eq. (26) (dashed line) in the upper panel,
and PLTV instantaneous frequency deviation (solid line) with the
approximation of Eq. (27) (dashed line) in the lower panel.

a more intuitive means of visualizing how the time-
varying filter speeds up and slows down the signal dis-
torting its waveshape and introducing new frequency
components.

Complimenting Eq. (20), if the spectrum of the input to
the PLTV allpass filter is denoted as X(w), the time domain
output signal can be written as [20]:

y(n) = L /n X (0) H (w,n) e/"do. (28)
21 J

2.2 Spectrum Analysis using Complex FM

To make use of the theory underlying the analysis of
Complex FM signals, we assume that the output of the
PLTV allpass filter for a mono-component input of fre-
quency wy is given by

y (n) = |H (0o, n)| sin (won + 2 H (wo, n)) (29)

To simplify the analysis, we assume again that the mag-
nitude response of the allpass PLTV system is unity for all
w and n as per Eq. (25). Then, if the desired time-varying
phase modulation of fundamental frequency w,,, ¢ (w,,, n)
is known and can be expressed as a combination of har-
monically related sinusoids, the output y(n) can be written
as a Complex Frequency Modulated (FM) signal [30, 31].
The general expression is

y (n) = sin (won + ¢ (wp,, 1))

K
sin ((Don + Z Ik sin (k(x)m}’l + (Pk)> (30)

k=1

assuming |H (wg, n)| = 1 and 2 H (wg, n) = ¢ (0, 1).

In Eq. (30), the time-varying modulation is described by
K harmonics each with magnitude /;, and phase ¢;. From
[32] then, the Complex FM signal described by Eq. (30) can
be written as an additive equation in terms of its spectral
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magnitudes

K
ymy =y .3 (]'[ Ji (L))
kg ky i=1
K
x sin <won + (Z ki (koopn + (p,))) (1)

i=1
where the J; (/) is a Bessel function of the first kind of order
k with argument /. The indices ki, ..., kg are each deter-
mined by the number of Bessel values required to describe
each modulation spectrum. In theory these indices should
be infinite but in practice they can be truncated to a limit
such that the Bessel values are sufficiently small. Maximum
values for the indices &y, ..., kg, denoted ky ., ..., kg
could be determined such that the Bessel function terms
Jiy (s - Jiy,, (Ig) are less than -80 dB for example.

Eq. (31) has been described in [33] as illustrating that
sidebands produced by the modulation of the carrier by the
first modulating oscillator are modulated again as a car-
rier by the next modulation term. This process repeats for
each successive modulation term. The spectrum of y(n) de-
scribed in Eq. (31) can also be written as a series of spectral
convolutions [34-36] that can be conveniently rewritten as
a single Fourier transform of a product,

max ?

X {S [ej(won—n/Z)]] .
Iy J(kiomn+er)
Y((,O)ZANY_I XQ{\S kZl:Jkl (1])6 ! }}

xS {Z ‘le (IK)ej(kK(Kw,,,rl+wK))}}
kk
(32)
where Y(w) is the spectrum of y(n), I (.) denotes the Fourier
transform, and 37! (.) denotes the inverse Fourier trans-
form.
The component or term at the greatest distance in fre-
quency from the carrier can be found from Eq. (32) to be

‘Ikl I)... ‘]kx (Ix) ej(won_n/2+klmlr:+kln|ax(PI+---+kaamem"+ka;.x oK)
max max

(33)

By finding the complex magnitude of this furthest com-

ponent it is possible to determine the actual bandwidth of
the signal. Additionally, if

won +kjwy + ... +kg Ko, < 1fy, (34)

max

where f; is the sampling frequency in Hertz, and if the
magnitude

iy 1) oo Ty k) (35)

is sufficiently small, then it is certain that there will be
practically no aliasing distortion present in the output of
the allpass PLTV filter.

For output bandwidth assessment, there is a distinct ad-
vantage to employing this analytical approach over simply
taking an FFT of the PLTV output. The FFT-based spec-
trum is constrained to be within the Nyquist limit and this
obfuscates the true spectrum in the case where components
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Fig. 7. Comparison of Spectrum of PLTV allpass output using
FFT (solid line) and Complex FM equation (asterisks).

are being generated at higher frequencies than the Nyquist
frequency, while they are apparent when analyzing using
Eq. (32).

Returning to our example that was introduced in Section
1 with wg = w,, = 21100 rad/s, we first must take the
phase modulation computed by Eq. (26) and represent it
as a series of harmonics to fit with the expression on the
right-hand side of Eq. (30). The magnitudes and phases of
these harmonics will be I, ..., Ix and ¢, ..., ¢x respec-
tively. Seven harmonics (i.e., K = 7) and their parameters
were found using the super resolution CSPE algorithm [37].
The mean square error difference between the original and
harmonic series approximation was 5 x 10~® or —106 dB.

In Fig. 7, the spectrum of the PLTV allpass output com-
puted using Eq. (32) is shown using asterisks alongside the
spectrum of the time-domain output y(n), calculated using
an FFT. The length of this FFT was 44,100 points, resulting
in a frequency resolution of 1 Hz, and a rectangular window
was used. Although the results from Eq. (32) conform in a
general sense with those of the FFT spectrum computation
because both are lowpass in shape, according to Eq. (32)
the magnitudes of the higher harmonics should be greater
and it is thus inaccurate in detail.

The source of this discrepancy is due to the influence of
the PLTV allpass filter on both the magnitude and phase of
its input. By using Eq. (32), it is assuming that the output
of the PLTV allpass filter is the result of a pure phase
modulation. However, it was shown in Fig. 5 this is not
the case. This can be confirmed by synthesizing a signal
using the phase modulation shown by the dashed line in the
upper panel of Fig. 6 only, and comparing this to the output
computed using an inverse FFT on Eq. (32). The result is
given in Fig. 8. This figure shows that a synthesized version
of the output using the phase modulation only (upper panel),
and a time-domain signal obtained (lower panel) are the
same.

Interpreting Fig. 7, it can be seen that Eq. (35) does not
exactly predict the spectral bandwidth of the output of the
PLTV allpass filter but instead overestimates it. However, in
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Fig. 8. Comparison of signal synthesized using time-varying
phase only (upper panel) and the inverse Fourier transformed
output of Eq. (32). (lower panel)

practice this is more preferable as it implies that more spec-
tral space is needed than actually required, better protecting
against the occurrence of audible aliasing distortion.

2.3 Analysis using the Bifrequency Function

As shown in the previous section, the time-varying nature
of the PLTV system means that new spectral components
appear at its output. These new components are related to
the input signal’s spectral components. The PLTV system
shifts these to multiples of the fundamental frequency of the
coefficient modulation [20]. The Bifrequency function is a
two-dimensional function that describes this mapping be-
tween the spectral components of the input signal, which are
present at frequencies {, and the spectrum of the output at
frequencies w. The general expression for the Bifrequency
function is

oo oo
B w)=) Y h(p.melttm=er (36)

n=0 p=0

It can be computed by applying a series of FFTs followed
by a series of IFFTs to the matrix in Eq. (17). Fig. 9(a) is a
plot of the Bifrequency function for the example. A Kaiser
window (f = 3) was applied to the impulse response data
before taking the FFTs. From Fig. 9(a), if the input signal
has frequency components below 15 kHz there will be the
original and new harmonically related components in the
output. For higher frequency input, that is, above 15 kHz,
no new components will appear in the output.

To interpret the mapping between the input and output
as shown in Bifrequency function plot, a line can be drawn
from a particular input frequency on the left hand axis.
Where this line intersects the peaks along the diagonal in-
dicates the magnitudes of new components that will result
in the output. Then, dropping a line from the intersection
points to the bottom axis will give the frequencies at which
these new components will appear. Fig. 9(b) illustrates this
by zooming in on the bottom left corner of Fig. 9(a). A white
line is shown across the spectrum, and perpendicular to the
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input spectral frequency axis, which is at the frequency of
the input, that is, 441 Hz. It intersects the diagonals of the
Bifrequency function here at 441 and 882 Hz, correspond-
ing to a fundamental and second harmonic in the output,
highlighted using the three parallel white lines. Addition-
ally, its color tells that the magnitude of the fundamental
will be greater than that of the second harmonic.

If the Bifrequency function is available along with the
spectrum of the input, then the spectrum of the output can
be written [20]

1 s
Y (w) = 7/ X ()B (U, o) dyr 37

21 J_

3. PLTV ALLPASS FILTER REALIZATIONS

The topology of the time-varying filter was found to
have an impact on the filter output, as was demonstrated
informally in [11] where it was shown that the filter output
waveform depended on the particular implementation of the
difference equation. This phenomenon will now be inves-
tigated thoroughly here by drawing on the implementation
choices for a standard allpass filter, as given in [38], and
then replacing the fixed coefficients with their time-varying
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Fig. 10. Direct form implementations of PLTV allpass filter: (a)
direct form I, (b) transposed direct form I, (c) direct form II, and
(d) transposed direct form II.

versions. It is worth reiterating that the behavior of the time-
varying version may not be strictly allpass. The next section
will introduce a number of different topologies, illustrating
them in block diagram form, showing their difference equa-
tions and presenting expressions for the impulse response
of each.

3.1 Direct Form Structures

A direct form structure is when a digital filter is real-
ized so that the multipliers of both the feedforward and
the feedback parts of the realization are precisely the co-
efficients of the filter [38]. The direct form realizations of
the time-varying first-order allpass filter with modulation
signal m(n) are depicted in Fig. 10.

The direct form structures differ from each other by the
order in which the feedforward and the feedback parts of
the filter are accessed and by the order in which the delay
elements and the multipliers are within the filter parts. The
state-space representation of the direct form I realization of
Fig. 10(a) is given by

wir(n + 1) = x(n), wp(n + 1)
= —m(n)x(n) + wg(n) + mm)we(n), y(n)
= —m(n)x(n) + wg(n) + mn)wep(n)
=—mmn)x(n)+x(n—1)+mmn)y(n — 1)
(38)

where wg(n+1) and wy,(n+1) are the signals entering the
delays of the feedforward and feedback parts of the realiza-
tion, respectively. This filter has an impulse response given
by

n k=2
h(p,n) = —mmd(n — p)+ Y [ [mn i)
k=1 i=0
X [I —=mn —k+ )m(n —k)]3(n —k — p)
n+1 n

— [[mo = s+ 1)+ [ [ mn—k)s(p+2)
k=0 k=0
(39)
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For the transposed direct form I realization (Fig. 10(b)),
the state-space representation is expressed as:

wg(n + 1) = x(n) + wp(n), wa(n + 1)
= m(n)x(n) + mn)weyp(n), y(n)
= —m(n)x(n) — mn)wp(n) + wg(n)  (40)

The impulse response of this time-varying structure is

h(p,n) = —m(n)d(n — p) +[1 —m(n)m(n — 1)]

n k
xznm(n—i)?)(n—k—p)

k=1 i=2
n+1
+ [1 = mmm@ — D] [me = k)s(p + 1)
k=2

(41)
The state-space representation of the direct form II real-
ization of Fig. 10(c) is
w(n + 1) = x(n) + m(n)w(n), y(n)
= —m()(x(n) + m(w(n) + win)
= —m(mx(n) + (1 — m*(n))w(n) (42)

where w(n+1) is the signal entering the delay, and its im-
pulse response is

h(p.n) = —m(m)d(n — p) + [1 —m*(n)]
n k—1

x Y [ me— s —k — p)

k=1 i=1

n—1
+ [1=m’@][[me—3(p+1) 43
k=1

For the transposed direct form Il realization (Fig. 10 (d)),
the state-space representation is expressed as:
wn + 1) = (1 = m*(n)x(n) + m(nyw(n), y(n)
—m(n)x(n) + w(n)
—mm)x(n)+x(n — 1) +mm — y(n — 1)
(44

and the impulse response of this filter is

h(p,n) = —m(n)d(n — p)
n k—1
+ > [ [me=i) [1=-m*(n = )] 8(r — k — p)

k=1 i=1

+ [1=m* D] [mn = bs(p+ 1) (45)
k=1

3.2 Parallel Form Structures

Alternatively, the PLTV allpass filter can be realized in
a parallel form by writing the transfer function as a partial-
fraction expansion. In a parallel form realization, the trans-
fer function is expressed as a set of first- or second-order
filter sections in parallel. However, it can be shown that the
multipliers of a parallel form realization are more complex
than for the direct form realizations of Fig. 10. This in-
creased complexity for the multiplier structure discourages

604

PAPERS

Fig. 11. Allpass type I implementations of PLTV allpass filter.

the use of parallel form realizations for time-varying allpass
filtering. Therefore, they are not further investigated here.

3.3 Allpass Form Structures

Since the standard LTT allpass filter has identical coeffi-
cients in the numerator and denominator, another realiza-
tion that takes an advantage of this property can be derived.
For the first-order allpass filter, such a realization contains
only a single multiplier. These single-multiplier realizations
are called Allpass type I forms [38]. The Allpass type I re-
alizations of the time-varying first-order allpass filter are
given in Fig. 11.

For the allpass type IA realization (Fig. 11(a)), the state-
space representation is expressed as:

wi(n + 1) = x(n) + wp(n), wp( + 1)
= mn)x(n) +mm)wgp(n), y(n)
= wi(n) —mm)x(n) — mm)wp(n)  (46)

where we(n+1) and wg,(n+1) are the signals entering the
feedforward and feedback parts of the realization, respec-
tively. This realization is the same as the transposed direct
form I realization of Fig. 10(b) and thus its impulse response
is given by Eq. (40).

The state-space representation of the transposed allpass
type IA realization of Fig. 11(b) is given by

wir(n + 1) = x(n), wp(n + 1)
= —m(n)x(n) + wg(n) + m(n)we,(n), y(n)
= —m(n)x(n) + we(n) + m(n)wep(n)
=—mmn)x(n)+x(n—1)+mmn)y(n — 1)
47)

This realization is the same as the direct form I realization
of Fig. 10(a), and its impulse response is given by Eq. (38).

For the allpass type IB realization (Fig. 11(c)), the state-
space representation is

wn+1) =1 —mm)x(n) +mm)wn), y(n)
= —m(n)x(n) + (1 + m(n))w(n) (48)
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Fig. 12. Output of different allpass PLTV filter topologies: (a)
direct form I and allpass type IA transposed, (b) direct form I
transposed and allpass type IA, (c) direct form I1, (d) direct form II
transposed, (e) allpass type IB, and (f) allpass type IB transposed.

where w(n+1) is the signal entering the delay. The impulse
response of this structure is

h(p,n) = —m@m)3(n — p)
n k—1
+ [1 4+ m(n)] an(n )
k=1 i=1
X [I —mn —k)]dn —k — p)

+ [1+m@][1 —m(=1)]

x [Tmn—kd(p +1) (49)
k=1
The state-space representation of the transposed allpass
type IB realization of Fig. 11(d) is given by

wn + 1) = (1 + m@m)x(n) + mm)yw(n), y(n)
= (I = m@m)w(n) — m(n)x(n) (50)

and its impulse response is

h(p.n) = —m(n)d(n — p)
n k—1
+I=mm] Y []me—0
k=1 i=1
X [I+mn —k)]dn —k — p)

+[1 —m@®)][1 +m(—1)]

x l_[m(n—k)B(p-i-l) (51)
k=1

Fig. 12 gives plots of a few periods of the output of the
PLTV allpass system when implemented using, in essence,
the six different topologies given. It can be seen that the
Direct Form I (and Allpass type IA transposed), the Direct
form II transposed and the Allpass type IB have similar
shaped outputs that could be described as smooth. In con-
trast, the three remaining topologies produce a large tran-
sient in the output for each period. It is most pronounced
for the Allpass type IB transposed. This suggests that when
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selecting an implementation topology, it must be done care-
fully, particularly if there are other system elements that are
sensitive to high crest factor [39] input that follow the time-
varying filter in a specific application.

4 PLTV ALLPASS FILTER APPLICATIONS

In this section, we will examine two applications of the
PLTV allpass filter. The first example shows how the PLTV
allpass filter can be used to reproduce the sawtooth wave-
form associated with PD synthesis [8]. Second, the output
of a waveform distorter will be analysed to find a suit-
able phase distortion function to describe the waveform
deformation imparted to a cosine input. A version of this
function will then be used to modulate the PLTV allpass
filter to show that it can reproduce this distortion effect.

4.1 PLTV Allpass filter generation of PD
Sawtooth

Phase Distortion [8] is a synthesis technique that allows
the generation of complex spectra by modifying the phase
of a sinusoidal signal. A nonlinear phase distorting function
PD(.) is applied to the temporal phase of a cosine signal
with the result that the transformed output signal s(2) has a
complex spectrum and therefore a more interesting timbre

s (n) = cos (won + P D (won) — 1) (52)

where w( denotes the fundamental frequency. A phase shift
term of —t is included to invert the waveform in keeping
with the original patent [8].

This patent [8] demonstrated the technique by providing
an example of how it could be used to create a sawtooth
waveform, as is typically found in subtractive synthesizers.
This phase distortion function actually took the form of a
nonband-limited sawtooth ramp wave

P Dy, (won. d) = }(1 + saw (won, d)) (53)

where the extra parameter d is the inflection point of the
phase distortion function that determines the fraction of the
complete period during which the sawtooth is rising [8].
Knowing the phase distortion function, it is necessary to
convert this into a modulation function for the PLTV allpass
filter. To do this we need to manipulate Eq. (26) to give [13]
— (¢ (w,n) + o)

m(n) = 2sin(w) — (¢ (w, n) + w) cos (w) oY

where in this particular case the phase is
Psaw (00, 1) = P Dgay (w11, d) — 7 (55)

The range of the function in Eq. (55) is between —mt/2
and —m. When substituting this into Eq. (54), the maximum
and minimum of the modulation function m(n) were 0.9626
and 0.9248, respectively. It was found that the reproduction
of the PD sawtooth by the allpass PLTV filter was much
better if the phase in Eq. (55) was further shifted so that
it resulted in a wider numerical range of values for the
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Fig. 13. The phase distortion function of (61) shifted by 7/2 (upper
panel) and the generated modulation function (lower panel).
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Fig. 14. Instantaneous frequency deviation of phase distortion
function (solid line) compared with that given by using Eq. (27).

modulation function [13], thus a factor of 1t/2 was simply
added to achieve this, that is,

Qsaw (w0, 1) = P Dgyy (001, d) — 70+ 1/2 (56)

This effect of this added phase shift, done to improve the
numerical range of the modulation function, on the output
can be compensated for by shifting the phase of the input
signal by the opposite value of —1t/2.

Using a fundamental frequency of 441 Hz, a sampling
frequency of 44100 Hz and d = 0.25, the upper panel
of Fig. 13 shows the phase distortion function that was
substituted into Eq. (56) and the lower panel shows the
modulation function it produces. The nonlinear relation-
ship between the two is apparent from the waveshape of the
modulation function.

The respective frequency deviation, as given by Eq. (27),
can be computed for this example, and compared with the
frequency deviation of the phase distortion function found
by differentiating Eq. (56). This is shown in Fig. 14. Both
are centred at the fundamental frequency of 441 Hz. For
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Fig. 15. Phase distortion sawtooth (solid line) compared with
output of PLTV allpass filter (dashed line).

the phase distortion function (solid line), the instantaneous
frequency in the first quarter period is 882 Hz, which is
twice that of the input. The remainder is two thirds that of
the input, that is, 294 Hz. In contrast, the dynamic behavior
of Eq. (27) (dashed line), follows the solid line in a curving
manner in keeping with the earlier assertion in Section 2 that
it must be time-varying to introduce a frequency deviation
to the signal. The maximum of this instantaneous frequency
deviation does fall short of the maximum derived from the
phase distortion function. This is attributable to the fact that
Eq. (27) is an approximation.

Fig. 15 shows the sawtooth output of the phase distortion
algorithm found by substituting @y (0o, ) of Eq. (56)
for P Dg,y (won, d) — 1 in Eq. (53) as a solid line. The
dashed line shows the output of the PLTV allpass filter. A
Direct form II transposed topology was used. The input to
the PLTV filter was a cosine with a phase delay of —m/2
to compensate for the phase shift of the phase distortion
function of Eq. (56). There is a good match between the
two sawtooths with only a slight difference appearing at
the minimum points of both where the phase distortion
sawtooth is slightly faster. Notice that there is a small startup
transient for the allpass filter at the very beginning of its
output that quickly disappears.

Fig. 16 shows the spectra of the two waveforms given
in Fig. 15. The upper panel is that of the phase distortion
sawtooth. It exhibits a decaying spectrum like a textbook
sawtooth but with very noticeable spectral zeros, whose
presence was discussed in the original patent [8]. The lower
panel shows the spectrum of the output of the PLTV allpass
filter. No spectral zeros are present here, and thus the timbre
of the sound in this case is richer [13].

4.2 PLTV Allpass filter emulation of a Waveform
Distorter

Nonlinear distortion functions are commonly used to
emulate analog electronics guitar distortion effects. Prior
to advanced circuit models being used, for example [40,
41], simpler saturating nonlinear functions were applied
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[4]. One particular exponentially-based saturating function
presented in [42] produces a distorted waveform d(n) ac-
cording to

d (x (n)) = Asgn (x (n)) (1 — ™) (57

where x(n) is the input, and sgn(.) is the signum function

o= (1020,

and A is the maximum value of x(n) and Ac defines the
slope of the curve at the origin.

The nonlinear input to output transfer function for Eq.
(57) is shown in Fig. 17 for various positive values of ¢
only as it is symmetric around the origin. The shape of the
curves in Fig. 17 range from a very gentle slope to one
that is more abrupt, suggesting it can produce a range of
distortions, from a soft to hard clipping.

To find a phase distortion function that will emulate the
effect of Eq. (58), it is necessary to compute the deviation

(58)
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Fig. 18. Phase Modulation derived from distorter output (upper
panel) and the generated modulation function (lower panel).

of the phase of the output waveform from that of the cosine
input. It was found that a slightly more robust approach to
the one proposed in [10] was to use the inverse cosine func-
tion to find the time-varying phase ¢4 (n), of the distorted
waveform,

a (n) = cos™" (d (n) (59)
The phase distortion function can then be found by
P Dy (n) = ¢q (n) — cos™" (x (n)) (60)

There will be an ambiguity in the sign of the phase distor-
tion function in Eq. (60). This can be resolved by tracking
the way the waveform changes sign over time as it tra-
verses from positive to negative or vice versa. Taking this
into account produces an adjusted phase distortion function
PD) (n).

For this example the parameter was chosen to be ¢ =
6. This adjusted phase distortion function was found for a
cosine input of frequency 441 Hz and sampling frequency
44100 Hz. The adjusted phase distortion was found to be
symmetric around zero so, as in the previous example, it
was shifted to render it completely negative by subtract-
ing the value of w/4 radians along with the normalized
input frequency in radians. Fig. 18 plots the adjusted and
now shifted phase distortion function which is a smooth
sawtooth-like function. Eq. (54) was used then to find the
coefficient modulation for the PLTV allpass filter which is
given in the lower panel of Fig. 18. This has smoother tran-
sitions between the maximum and minimum of the function
than in the previous example.

The output of the distorter is shown with the solid line in
Fig. 19. It has the effect of converting the input cosine into
a smooth squarewave. The input cosine signal to the PLTV
allpass filter was first advanced by the same phase shift that
was applied to phase distortion function. The coefficient
modulation applied was that shown in the lower panel of
Fig. 18. This produced the output given by the dashed line in
Fig. 19. There is a very good match between the waveforms
in Fig. 19 with just a slight difference in waveshape at the
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Fig. 19. Comparison of output of the distorter (solid line) and
emulated version using PLTV allpass filter (dashed line).

Magnitude (dB)

‘|
0.5

L
1

‘||\|||||\|I
15 2
)

x10*

Frequency (Hz

Magnitude (dB)
L&
S S
T

|

-3

=]
T

|
@
S

T T T T
‘ ‘ ‘ . ‘ ‘ ‘ ‘ ‘ . | | | l | . | | Loy
0 0.5 15

1 2
Frequency (Hz) x 10

Fig. 20. Spectrum of distorter output (upper panel) and output of
PLTYV allpass filter (lower panel)

turning points of the wave. Again, there is a small transient
present at the start of the filtering. Thus, the allpass PLTV
filter is successful at synthesizing a clipping type distortion
effect to its input.

Lastly, Fig. 20 shows the spectra of two waveforms in
Fig. 19. The upper panel shows that of the distorter output
while the lower panel is that of the PLTV allpass filter. In
this case the bandwidth of the distorter output is greater
than that of the PLTV allpass filter. The reason for this is
because the PLTV allpass filter output is smoother at the
turning points of the distorter wave, and thus has less high
frequency content in comparison. However, there are no
significant aliasing components in this example as a result.

5 CONCLUSIONS

This paper has described how the coefficient-modulated
allpass filter can be analyzed in the time and frequency do-
mains. It explained how the time-varying transfer function
can decomposed into nonrecursive and recursive elements,
and illustrated the evolution of the 2D impulse response
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matrix. It also introduced the stability criterion for these
filters. A frequency domain analysis was also given which
included the 2D time-varying magnitude and phase. It was
shown that the magnitude response is not necessarily per-
fectly allpass across time and frequency. Approaches for
computing the spectrum of a Complex FM signal were also
examined and Eq. (32) in particular was determined to be
useful for assessing the bandwidth of the filter output signal,
from which the likelihood of aliasing distortion occurring
could be inferred. This was followed by an explanation on
how to interpret the Bifrequency function. A complete set
of filter topologies were used to investigate their impact on
the output waveshape and it was found that it is an important
consideration and that only certain configurations produce
outputs with a low crest factor. Lastly, two examples were
given to illustrate its operation as a dynamic phase distor-
tion device. Both examples showed that the output of the
PLTV allpass filter matched well with that of the original
distortion algorithm.

Overall, this article has explained how time-varying first-
order allpass filters can be manipulated to create signal
phase distortions which result in timbral modification. This
is a new advantage regarding allpass filters when applied to
the field of digital audio effects. These filters can process
arbitrary input and subject them to prescribed modulation
functions that could also be enhanced by the typical syn-
thesis modifiers of envelopes and low frequency oscillators
to form a complex signal effect chain. It is hoped that the
set of tools introduced can be applied by sound designers
wishing to take advantage of these versatile audio filters for
any new sonic experiments and applications that they can
imagine.'
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