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Abstract. Until relatively recently, the emphasis of spatial analysis was on the investigation of global
models and global processes. Recent research, however, has tended to explore exceptions to general
processes, and techniques have been developed which have as their focus the investigation ofspatial
variations in local relationships. One of these techniques, known as geographically weighted regression
(GWR), developed by the authors is used here to investigate spatial variations in spatial association.
The particular framework in which spatial association is examined here is the spatial autoregressive
model of Ord, although the technique can easily be applied to any form of spatial autocorrelation
measurement. The conceptual and theoretical foundations of GWR applied to the Ord model are
followed by an empirical example which uses data on ownsr-occupation in the housing market of Tyne
and Wear in northeast England where the problems of relying on global models of spatial association
are demonstrated. This empirical investigation of spatial variations in spatial autocorrelation prompts
a further discussion of several issues conceming the statistical technique.

Introduction
Over the last two or three decades, quantitative geographers and statisticians have tried
to model the effects of spatiai association in regression analysis. A well-known example
of this effort is that by Ord (1975) who has proposed the use of autoregressive and
moving average terms in regression models to account for spatial correspondences in
the response variable and the residuals, respectively. Although we appreciate the
contribution that this technique has made to the consideration of spatial process in
regression modelling, it, along with similar efforts to account for spatial autocorrela-
tion, can be criticised on the grounds of producing global results which assume that
spatiai processes operate uniformly throughout the study area. There has been a recent
shift in emphasis in spatial statistics away from such 'global' types of anaiysis to 'locai'

ones where the aim is to identify spatial variations in relationships (Fotheringham,
1997). One of the earliest attempts to model local relationships is that of the expansion
method (Casetti, 1972; Fotheringham and Pitts, 1995; Jones and Casetti, 1992)
although, as demonstrated by Fotheringham et aI (7997a), the expansion method
essentially fits trends to surfaces of local relationships and can therefore miss important
local variations which run counter to these general trends. Other examples of local
statisticai analyses include those of Anselin (1995), Brunsdon et a|(1996), Fotheringham
et al (I997b;7997c), Getis and Ord (1992), and Ord and Getis (1995).

It is our aim in this paper to present a methodology that addresses the need for
localised versions of spatially autoregressivs models by producing, as an example of
this type of modelling a iocalised version of Ord'S model in which the output appears
as a spatiai distribution of localised values indicating local autocorrelation rather than
a single global estimate. It should be noted that the method can be easiiy extended to
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958 C Brunsdon, A S Fotheringham, M Charlton

any framework in which local dependencies are measured and that the Ord model
considered here is just one example of this type of analysis.

In Ord's original autoregressive model, the regression equation can be expressed as

li : Pl.w,,Y, + e,, (l)' ./-/
j

where y, is an observation at point i, w,,is the yth element of W a contiguity matrix
representing the spatial arrangement of a set of zones for which the y s are attributes,
p is a coefficient of spatial cohesion, and e, is a normally distributed error. It is clear
that in this model the p term is fixed for all geographical locations. This implies that
the ievel of spatial association between all adjacent zones is fixed. To take an example
of the spatial distribution of house prices, the assumed form of equation (1) implies
that the degree of influence of house prices in surrounding areas is the same every-
where. An alternative conjecture might be that in some areas this spatial influence is
more marked than in others. To address this possibility we propose a modified model of
the form

\--a

l i :  P i  ) . * t i ! 1 + r , ,
j

where i indexes a location in geographical space where data are observed.
Below, an overview of Ord's method is given, together with a slight modification of

the model followed by a discussion of how this may be extended to a method for
calibrating models such as equation (2). This is then extended to models in which
predictor variables are added to the modelling framework. Finaliy, an example involving
the spatial distribution of owner-occupied housing in the metropolitan county of Tyne
and Wear in the United Kingdom from the 1991 population census is given.

Specifying the autoregressive model
A global autoregressive model, such as equation (1), encapsulates to some extent a
spatial diffusion process affecting the y-variable. In the case of equation (1), it is
assumed that each y-variabie can be modelled in terms of a spatial smoothing of its
neighbours, Dwuli, and an error term e,. If W is such that each of its rows sum to

l

unity, and if the distribution of each element of H the vector of the y,, has anlean p,
then each element of the smoothed vector Wy will also have the same mean vaiue. This
suggests that in a model such as equation (1) we have the following reiationship
between expectation values, E,

(3)

This contrasts with the more usual situation where the mean of the error term is zero,
unless the y-variate itself has a mean of zero. A more satisfactory rnodel might be

I t -F :  PLw, i (Y , - t i *e , .  (5 )
I

In this case it is the deviation about a mean level that is assumed to be autocorrelated.
This also gives a more reasonable meaning to the hypothesis F : 0 because this
impiies that the y-variate is independently distributed about a fixed mean vaiue pr.

(2)

E(y)  :  pE(y)  - tE(e)  ,

and by rearrangement this gives

E( v) : :Ef
I - p

(4)
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Spatial nonstationarity and autoregressive models 959

The model in equation (5) can be adapted to a model of varying spatial cohesion in the

same manner as equation (1) and can be transformed into a form equivalent to

equation (2):

l i -  l t  :  p ,Lw, i ( y , -  t t ) *e , . (6)

J

In this paper, models (2) and (6) will both be considered in order to investigate the degree

of advantage gained by adopting equation (6) instead of equatiort (2).

Calibrating the autoregressive model
Clearly, in order to expiore the geographical structure of spatial cohesion for a given

data set, it is necessary to consider methods of calibrating equations (6) and (2). As

will be seen below, approaching this task is best done by first considering the calibration

of equations (5) and (1) for a given set of data. First, consider the simpler model (1)'

In vector notation this may be rearranged to give

y :  ( I -pW)- " ,
or

AY:  t '

If we can assume that E(y) : 0, then it may be seen that y will be multivariate normal

with a zero vector mean and a variance- covariance matrix of (AA.)-1. From Ord (1975)

and Mead (1967), the likeiihood function for an observed set of y-vaiues, y, would be

given by

l(o', p) : constan t -: h@2l1lary") , (8)

where 62 is the maximum likelihood estimate of o2,62 : y'{l'yln.

Because the scale parameter expression may be substituted into the likelihood

function, the only remaining problem is the estimation of p.This is a problem of

univariate optimisation for which there exist a number of numerical soiutions. Ord,

for example, suggests the use of Newton's method. Another possibiiity might be a

golden section search (see, inter aiia, Greig, 1980). In either case, the problem is

equivalent to finding p which minimises
a

- 1 mhl +rn(ere). (9)
n

Both terms in equation (9) depend on p-the first is a function of the determinant

of A in equation (7) and the second is the logarithm of the residual sum of squares of

modei (l) for a given p . For further discussion of this expression of the iikelihood

function, see Anseiin (1988).
Minimising equation (9) is computationally intense because of the first term, in

which a determinant is computed. Ignoring this term is equivalent to selecting p on the

basis of a least squares criterion. Again, Ord considers this option but finds that unless

p is close to zero this leads to a notable degree of bias in the estimation. I{owever,

noting that

lAl : lr - pwl : fl(t - 1,p) ,
i : 1

where ,1, is the lth eigenvalue of W, we may express equation (9) as

n

\-,u
j - l

(7)

(10)

_?
n

.  r T

in(l - p1,) + ln(e'e) , (1 l)
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960 C Brunsdon, A S Fotheringham, M Charlton

thus avoiding the computation of a determinant. The eigenvalues of W need only be

computed once. Thus, the value of p minimising equation (11) is a maximum likelihood

estimate from which the scale parameter may be derived by using equation (8).

It then remains to be seen how this technique may be adapted for a model in which

p is not fixed over space but is allowed to vary with i. One approach would be to use a

geographical weighting technique to estimate p, as described in Brunsdon et al (1996)

and Fotheringham et al(1997a; 1997b;1997c).In such a technique, a weighted estimate

of p, is obtained for each point i by using data weighted according to location around

point i and the weights being a monotone decreasing function of distance from i. For

each point at which p, is estimated, different sets of weights will therefore apply

according to the location of i.
One way of applying a weighting scheme to model (1) is to allow the errors-the

elements of the e vector-to have different variances. In maximum likelihood estimation

the influence of zones for which a large error variance exists will be downweighted.

Thus, in vector notation, model (1) now becomes

!  :  p iW!  *D i€ , (r2)

where D, is a diagonal matrix of standard deviations of error terms which is used mainiy

as a device to introduce a weighting scheme emphasising observations around i. For

zones near to the sample point i the standard deviations are low (and corresponding

weights are iarge) whereas for zones further from i the standard deviations are high
(and corresponding weights are small). This may then be rearranged so that

KtA; . /  :  € , (13)

where K,D; : I. The maximum likeiihood expression for equation (13) is simpiy

equation (8) with K,A substituted for A. Noting that the determinant of KrA is the

product of the determinants of K, and A , and that the determinant of K, is constant for

any given p,tobe estimated, we find that amaximum likelihood estimator will minimise

the expression

f t"1t - pii) *tn(ere),

where ,1, is theTth eigenvalue of K,A.Thus if we make K, a function of distances

between pairs of points, on the basis of a distance-decay function, n different weighting

schemes will be generated with each K, being used to estimate a corresponding p,. Note

that K, is essentially a matrix representing a spatial kernel function. TheTth diagonal

element of K, is a kernel function of the distance between the centroid of theTth zone

and the point i at which a locai value of p, is to be estimated. This process will be

relatively costly in computational terms because each p, must be estimated iterativeiy

but the eigenvector 'trick' for evaluation of determinants reduces the number of

operations required considerabiy. Note also that the eigenvalues used are those of W

and do not vary with iocation (uniike the vaiues of K,) and need only be computed

once at the outset of the anaiysis.
Next, the method may be extended from models of the form (2) to those of the

form (6). Again if we look to Ord (1975), explanatory variables may be incorporated

into an autoregressive model to give a new model of the form

y:  pWy+XB+e. (15)

Model (5) is a special case of this in which X is simply a coiumn of ones. Maximum

likelihood estimates of p may be obtained in a similar manner to those in model (1)

_?
n
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Spatial nonstationarity and autoregressive models 961

by finding p which minimises the expression

1 n
- : th ( l - i l ) - r tn (ere) .

n 4
l : l

It is then possible to estimate B by using

(x'x)-'x'(I - pw)y ,
where estimates of B and p arc both maximum likelihood estimates.

As before, the next stage is to extend these models so that p is allowed to vary

spatially. As with equation (12), this can be done by assuming a distance-based multi-
plier on the error variance, giving

(16)

(r7)

(18)

(1e)

!  :  p iW!  *X f  ,  1D ie  ,

which can be expressed as

K ,Ay  -K ;XB, :  s ,

where K;D; : l.
As before, it is then possible to hnd the maximum likelihood estimates of B, and pt

by substituting K,A for A and K,X for X. Again, this is equivalent to applying a spatial
kernel multiplier to the rows of A and X, centred around the point at which the
parameters are to be estimated.

To apply a model of the type (6), X will simply be a coiumn of ones, as suggested
earlier. In this case, B, is a scalar which varies over space so that the model is

equivalent to a trend surface plus a spatially smoothed variation about this surface
in which the degree of smoothing may vary locally.

An example based on owner-occupation housing data
To demonstrate the operation of the localised autoregressive models shown above, the
spatial distribution of the percentage of home owner-occupiers in Tyne and 

'Wear, 
a

metropolitan county in the United Kingdom, is examined. Over the past two decades,
there have been notable increases in the United Kingdom in the number of people

buying homes, as opposed to renting. There are several explanations for this phe-
nomenon, particularly the UK government's'right-to-buy'initiative in which occupiers
of council-owned housing were encouraged to buy their homes at subsidised rates.

Although some may argue that it has been advantageous to purchase housing in
relativeiy a{Iluent council estates, it has also been observed that the process has ied to a
'ghettoisation' effect where many of the better council estates are now almost entirely
owner-occupied leaving counciis with only the less desirable housing stock in more
problematic estates. From a modelling viewpoint, the notion of 'clustering'in housing
sales is of interest here. The observations made above would suggest that there should
be at least some autocorrelation in rates of homeownership-it is often the case that
councii estates are perceived as a whole, so that exercising the right to buy council
housing will be manifested in spatial clusters.

However, these observations apply only to council housing and there is aiso a
sizeable private rented sector. In some areas the ghettoisation model may still apply,
but there are other areas, particularly those with a high proportion of wealthier short-
term residents, where affluent privately rented homes exist alongside owner-occupied
'homes, and where there is less of a tendency to cluster. "It may also be the case that in
some geographical regions there is not as strong an 'owner-occupier' culture as in
others so that even in the more desirable estates there is still a mix of rented and
owned housing, again exhibiting less of a tendency to cluster.

Draf
t O

nly



962 C Brunsdon, A S Fotheringham, M Charlton

The above serves to suggest that levels of homeownership may exhibit different

levels of clustering (or autocorrelation) in different areas. Using a technique such as

that described above provides a means of exploring this phenomenon by fitting locally

varying estimates of p over a rarLge of geographical space. Linking maps of this

variation to other socioeconomic indicators in the region should provide some insight

into the process of spatial variations in autocorrelation.
The data are the 199i proportions of owner-occupied households as a percentage of

all households for census wards in Tyne and Wear (OPCS, 1992). These values are

mapped in figure l. A value of 0.5 has been subtracted from each proportion so that

the data have a mean close to zero which facilitates the fitting of equation (1). Hence, the

index is positive if the majority of housing in a ward is owner-occupied and negative if

it is not. The pattern is one where rented accommodation dominates the wards towards

the city centre and along the river Tyne and owner-occupied housing dominates in the

peripheral wards. The autocorreiation in model (1) can be interpreted as assuming that

areas surrounded by higher rates of owner-occupation are likely to have higher rates

themselves, and vice versa for high rates of rented accommodation. Applying the above

Owner-occupation index
r----r < -0.3

r-r -0.3 to -0.1

rFr -0.1 to 0.1
rrr=rl 0.1 to 0.3
r,. r > 0.3

Figure L. Levels of home owner-occupation in Tyne and Wear.

0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5

Owner-occupation index

Figure 2. Histogram of the owner-occupation index displayed in figure 1.
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Spatial nonstationarity and autoregressive models 963

transform gives the histogram shown in figure 2. Frorn this it may be seen that zero is

a plausible central point here and that the index follows a roughly normal distribution.

Fiom this standpoint it is reasonable to fit either of models (1) or (2).

Fitting model (1), a global Ord model, produces an estimate of P : 0'55 and a

variance of 0.031. A graph of predicted versus actual owner-occupation rates is given in

figure 3 and a map of the residuals in figure 4. From this latter map it may be seen

that prediction errors seem to have greater magnitude in some regions than in others-

suggisting perhaps that a smoothed index of owner-occupation is a better predictor of

actual owner-occupation in some areas than in others.
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Figure 3. Predicted versus actual owner-occupation levels.

Figure 4. Ord model residuals.
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The next stage is to consider a geographically weighted model for p and for this a

kernel function must be chosen. Initially, a Gaussian kernel is chosen:

(20)

where d is the distance between the centroid of each ward and the point at which p is

to be estimated. Initially k was chosen to be 5 km so that the weighting of zones 5 km

from the point of estimation will be about one third (compared with unity in an

unweighted estimation) and zones more than about 10 km away from i will have

negligible influence on the estimation of pt. Estimating pt at the centroids of each

census ward (and shading in the ward according to this value) gives the map in

figure 5. Cleariy, some degree of variation in the estimated values of p, is evident

with some zones having considerably higher vaiues than others. Plotting p, against

p
r---r < 0.0
r.:-.-.t Q.Q 1e $.1
F.rr 0.2 to 0.4
Erlrfi 0.4 to 0.6
wmr > 0.6

20 km

Figure 5. Geographically weighted p (Ord model).
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levels of owner-occupation (figure 6) shows two groups of wards: those, primarily the

inner-city wards, where low owner-occupation rates are combined with a high spatial

autocorrelation; and those, primariiy in the northeastern coast area and southwestern

areas where high owner-occupation rates are associated with equally high spatial

autocorrelation. Other areas of the region show less evidence of geographical cohesion.

p
<  -0 .1
-0.1 to 0.1
0.1 to 0.3
0.3 to 0.5
> 0.5

Figure 7. Estimates of p for model with intercept term'

Intercept
r-----r < -0.05
r:'=r -0.05 to 0.05
tEr 0.05 to 0.15
tFtr 0.15 to 0.25
rffi,rtffi > 0.25

20 km

965

Figure 8. Intercept map for model with intercept term.
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966 C Brunsdon, A S Fotheringham, M Charlton

A fina1 analysis of these data is carried out with model (6), the model in which the

mean is calibrated rather than being input exogenousiy. Using the same kernel as

before, we can estimate localised estimates of both p, and B, as in equation (19) and

these are shown in figures 7 and 8. The map for p, shows similar patterns to that for the

simpler geographically weighted model. The range of values tot fl, and their magnitudes

suggests that, once the proportions of homeownership have been centred around 5004,

the zero mean assumption is not unreasonable.

Further issues L: choosing a kernel bandwidth
Although the above example demonstrates how techniques proposed in this paper may

be used to explore the spatial variation in spatial association and investigate the extent

to which spatial diffusion processes vary between areas, there are stili several issues

which need to be addressed. TWo of the most pressing problems are the choice of

kernel bandwidth and the provision of a formal test as to whether global models

hold. In this section attempts to address both of these questions will be made.

First consider the problem of kernel bandwidth. Clearly, the choice of k in equation

(20) will affect the overall pattern of local calibration. For example, if model (2) is

recaiibrated with a k-value of 10 km (see figure 9), it can be seen that the spatial

distribution of p, appears smoother than the original in figure 7' Although both

maps display similar patterns, it would be helpful if some optimal value of ft could

be iound. Often in exploratory model fitting a simple paradigm such as a least-squares

fit may be applied. Inthe case of model (2) this is equivaient to minimising the squared

differences of the observed y-values and the smoothed y-vaiues multiplied by a localiy

varying estimate of p with respect to k. In each case the modei is caiibrated on the

centroid of the ward for its respective y-value. An alternative but similar approach is to

find k maximising the likelihood of each observed y. There is, however a problem,

similar to that found by Brunsdon et al (1996), with these approaches. Suppose k is

allowed to become extremely small so that the influence of all y-values except the one

in question is neglible. In this case a perfect fit can be obtained by setting Pito be the

p
r----r < 0.0
ri-:= 0.0 to 0.2
r-= 0.2 to 0.4
F-T.m 0.4 to 0.6
@r > 0.6

Figure 9. Estimates of p made by using a latger bandwidth.
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ratio between the actual and smoothed y-values for that zone. Thus, in terms of least

squares (and maximum likelihood), the 'best' fit corresponds to a zero bandwidth

which is clearly unsatisfactory. Applying similar techniques to those of Brunsdon

et al (1996), one way to address this problem is to use a cross-validation scoring

technique. In this method, each y-value is omitted from the data set, which is then

calibrated, and then a fitted y-value based on this caiibration is used for a least-squares

goodness-of-fit statistic. This is not unreasonable because it is perfectly possibie to

estimate a p, value at any point in the study area. Thus, if a given zone is omitted

from the calibration process, it is still possible to estimate p, at its centroid and then to

compute a fitted value of yt.

One major alteration that will need to be made, however, is to the W matrix. This

contains information about the connectivity (or some other facet of spatial arrange-

ment) for all of the zones, including the one omitted. For the '1eave-one-out' model,'W

must be modified by striking out the i th row and column if zone i is to be omitted.

After this, the rows must be restandardised to sum to one if W is to remain a mean-

smoothing matrix. Although all of this is possible, it does require a new set of

eigenvectors to be computed for each calibration of the model with a concomitant

increase in computing overheads. As the sum of squared errors will require computation

several times in order to find an optimal k, itis worth computing all n lists of eigenvalues

(one for each zone omitted) in advance and choosing the appropriate one in each

computational case. An alternative is not to consider the cross-validation error for

all zonesbut to use a subset of zones. This could either be strategically chosen (with some

from urban areas and some from rural areas) or taken as a random subsample of zones.

With the random subsample method applied to the owner-occupation dala,

figure l0 shows the relationship between the sum of squared errors and k for the 10

wards shown in figure 11. This would suggest that, with the cross-validation approach

to choice of k, an optimal value is about 5.5 km. Again, it should be noted that this

does not mean that zones 5.5 km away from a point of estimation are ignored but that

they are downweighted to about one third of full weighting. Zones up to about l1km

away from point i contribute to the local caiibration of p, in some nonnegligible way.

Another approach to choosing suitable k-values by means of cross-validation,

avoiding the computation of several sets of eigenvalues, would be to caiibrate the model

(2) or model (6) with least squares techniques instead of maximum likelihood. This is

equivalent to calibration with an ordinary regression model using a smooth y-variate as

though it were a predictor variable and ignoring the effects of spatial autocorrelation.

This can be calibrated with the geographically weighted regression (GWR) techniques

of Fotheringham et a\(1997b; 1997c) and Brunsdon et al (1996)-in this case, pi is the

0.46

0.455

0.45

0.445

0.44

0.435

967

()
I

v)

Figure 10. Cross-vaiidation scores.
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968 C Brunsdon, A S Fotheringham, M Charlton

Figure 11. Sample points for significance test.

equivalent of the coefficient of the smoothed /-value. Finally, with the cross-validation
techniques introduced for GWR, it is possible to select an optimal bandwidth.

The advantage of the above method is that it is eflectively optimising the second
term in (14)-the one without the eigenvalues. However, this is not without a price. The
inconsistency of the least squares estimator of p has been noted by Whittle (1954) and
it may also be shown that its asymptotic efliciency (the ratio between the variance of
the maximum likelihood estimator and the least-squares estimator) is also poor for
larger values of pi.The main hope here is that, although the actual values of p,
provided by this method may be poor, the estimate for an optimal k may still be
reasonable. This area will require further investigation.

Further issues 2: testing stationarity of the autoregressive coefficient
Another issue which needs to be addressed is that relating to formal tests of non-
stationarity. Clearly, a nonstationary autoregressive model is more complex than a
stationary one and if there is only poor evidence of nonstationarity then effort would
be expended attempting to interpret essentially random fluctuations in p,. Any analysis
of nonstationarity should be preceded by some formal significance test. This test could
be based on the null hypothesis that

pr : constant for all i, (2r)
that is, the oniy fluctuations observed in p, are those attributable to chance. This is a
relatively diflicult test to implement because the sampling distribution for the estimates
of p, is not known anaiytically. As the estimates used are maximum likelihood, the
asymptotic distribution of p, is well known so tests comparing p, values in two differ-
ent subregions of study may be a valid approach. However, it is not determined for a
given arrangement of zones whether asymptotic conditions have been approximately
achieved. To paraphrase Besag (1974), it is difficult to imagine the number of census
wards in Tyne and Wear tending to infinity, but a further problem is that it is equally
diflicult to tell whether the actual number of wards in Tyne and Wear is suflicientlv
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Spatial nonstationarity and autoregressive models 969

close to infrnity to apply tests based on asymptotic assumptions. Further objections to

this technique could be raised on the grounds that, if geographically weighted estimates

of p, inad already been mapped, this would be a post-hoc rationalisation of the null

hypothesis. A final objection is that finding that the chosen subregions do not differ

significantly in p, does not imply that p is fixed everywhere. It is possible that a

different choice of subregions may have successfully identified differences. This suggests

that such a test is not very powerful in testing the full implications of the iogical

negation of hypothesis (21).
Monte-Carlo or Hope testing (Hope, 1968) might be a more fruitful approach

because it does not reiy on the parametric assumptions for the sampiing distribution

of p, required by the method suggested above. To counter the other two objections, p,

should be measured at a series of sample points spread homogeneously across the

study area and the variability of these estimates used as a test statistic for hypothesis
(21). This approach, by covering most of the study area, should be better able to detect

deviation al an unknown point in the study area. Also, because a reasonably uniform

distribution of sampling points is used, one cannot be accused of comparing a post-hoc

choice of subregions.
There are some issues that must be deait with here. First, as with the approach

suggested for choosing the k-value, it is important to choose the sampling points wisely.

In particular, a set of sampling points representing both urban and rural areas should

be used. Two approaches are suggested: one is that sampling couid be based on centroids

of wards (or whatever areal units are used in a given example); the second is that it couid

be based on a regular lattice covering the study area. In either case, care should be taken

to ensure that the sample of points is in some way representative of the geography of

the area under investigation. One possibiiity when using wards may be to select sample

centroids randomly by means of a sampling process in which the probability of selec-

tion for a given zone is proportional to the population of that zone.
A further matter arising relates to the Monte-Carlo methodology itself. In previous

works the authors have used a randomisation-based methodology for tests of spatial

association (Brunsdon et a1,1996;Fotheringham et al,l997c).In this approach, attributes

of zones are pennuted randomiy amongst the zones in each randomisation. If a statistic,

such as a Pearson correlation coeflicient, is space invariant, then such randomisation

brings no change. If a statistic is dependent on the spatial arrangement of the data-such

as Moran's .I-statistic (Moran, 1950)-then clearly some variation will be observed.

However, under a null hypothesis of no spatial association in the data, any of the

permutations obtained would be equally likely so that the variation in the statistic will

be a result of its null distribution. Comparing the actual value of the statistic with a

sample of permutation-based values forms the basis of the Hope test.
There are, however, difliculties with this technique in the current case. The main

problem is that the null hypothesis here-equation (21)-is not one of no spatial

association, but of a uniform degree of spatial association What this suggests is that

the'random permutation'approach is no longer vaiid. The null hypothesis in this case

demands that one form of spatial association (the uniform model) is tested against

another (the nonuniform model). It is an irrelevance to compare the degree of variation

of p, in the observed sampie against the degree of variation expected were there no

spatial pattern at all. How, then, might a more desirable test be devised? One possibility is

to identify a phenomenon which would have no spatial association under hypothesis (21),

and permute this, rather than the observed zonal attributes. This is indeed a possibility

because equation (7) shows that e is a matrix transformation ofy-but of course a is a set

of independent variables. That is, under a null hypothesis that equation (1) holds,
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it may be stated that

Y :  L - t e ,
or

.y : (I - pW)-'e . (22)

Thus, by permuting e it is then possible to derive a vector of variables y which may

then be used for the Monte-Carlo simulation. The variance of the estimated p,values in

these simulations will then provide a reference distribution with which to compare the

observed vartance of p.
Thus, the Monte-Carlo algorithm for testing hypothesis (2T) may be set out as

below:
1. Estimate p, al the samPle Points.
2. Compute the variance of the estimated values obtained above and call it v.

3 .Compu tee :LY .
4. Compule e*, a random permutation of e.

5. ComPute Y' :  A-'e.
6. Estimate pi * the sample points, based on /*.
7. Compute the variance of the estimated values obtained above.

8. Repeat steps 4-7 n- 1 times.
9. Compare v against the n - 1 randomised values to yield a significance level.

A further refinement could be achieved by employing Besag and Clifford's (1991)

method for sequential Monte-Carlo testing. In this approach the test is applied until

either / tests give a test statistic more strongiy opposed to the nul1 hypothesis than the

actual statistic, or a given number of simulations have been achieved. Typically / would

be 10 or 20.In cases where the null hypothesis is true this tends to reduce the number

of simulations needed to perform the test, and so improves computational efliciency.

A final observation must be made about the use of p, in this algorithm. Strictly, the

null hypothesis in this test is that equation (i) holds for a known value of p. That is, it

tests, say p : 0.5 everywhere against ahypothesis that p * 0.5.Inpractice, thevalue

of p wiil not be known in advance but an estimate will be computed with methods

given in this paper. This suggests that there will be some extra level of variability in the

sampiing dislribution of the variance of the local estimates of p, because of the

standard error of the giobal p estimate. Thus, a test which is just significant should

be treated with some caution. It is hoped that in future studies, a more satisfactory

approach to this testing procedure may be developed.

The results of applying this test to the owner-occupation data arc shown in table 1.

From this table it may be seen that the observed variance, at 0.229, is in the lower tail

of the randomisation distribution, ranking 98th in 100 trials. This suggests that there is

some justification in the adoption of a spatially nonstationary Ord model'

Table 1. Monte-Carlo simulation results to test for nonstationarity: variance of p,.

Distribution Variance

Observed
Experimental

minimum
lower quartile
median
upper quartile
maximum

0.229

0.060
0.123
0.155
0 .191
0.234
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Further issues 3: adding explanatory variables

The Ord modei. as used above, is a useful tool for modelling the degree to which a

given variable exhibits spatial association. However, although spatial self-association

ptuyr an important r61e in many geographical processes, it is seldom this alone which

""piaitrr 
varlations in many phenomena. For example, aithough rates of owner-occupa-

tion in surrounding areas may well have some bearing on the rate of owner-occupation

in a given ur.u, lh.r, may well be other factors such as unemployment levels or

househoid composition which would also affect levels of owner-occupation. For this

reason, a logical extension of the methodology is to incorporate explanatory variables

in the modei, as in equation (15). A simple exampie of this is considered above when an

offset is added to the model.
Applying a geographically weighted approach to this model gives a regression

modei in which coeflicients vary over space and the degree of autocorrelation alters.

This would suggest, in the owner-occupation versus unemployment model discussed

above, that not only could the effect of the surrounding level of owner-occupation vary

over space but also that the linkage between the rate of owner-occupation and unem-

ploymlnt may exhibit spatial nonstationarity. The latter may be caused by the actual

ptice of housing-if owning housing is relatively cheap in one region then there may

te a greater take-up rate than in other more expensive areas having similar levels of

prosperity.^ 
An analysis of the model suggested above is carried out in figures 12 an.d 13-

showing the p, estimates and the coefficient for maie unemployment in the rnodel,

respectively. It can be seen that the ievels of autocorrelation vary in a siightly diflerent

*uy on." ievels of male unemployment have been accounted for and that the coeffi-

cient for male unempioyment is steepest in the central areas. As with the simple Ord

model, it is possible to use a cross-validation method to choose an optimal k-value and

to test hypotheses of spatial nonstationarity.

o
r----r < -0.1

r::i::t -0.1 tO 0.1
F=r- 0.1 to 0.3
c.- r 0.3 to 0.5
Ei-- t > 0.5

20 km

971

Figure 12. Estimate of p mode from model 3.
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Unempioyment coefhcient
r----r < -1.5

ri : in -1.5 to -0.5

r;rrr -0.5 to 0.5
nqr,a 0.5 to 1.5
rwtm > 1.5

Figure 13. Unemployment coefficient from model 3'

Conclusions
In this paper we explore the possibility of examining spatial nonstationarity in a

particuiar form of spatial regression, the Ord model, although the technique can easily

be applied to any other framework in which estimates of spatial autocorrelation are

obtained. Our findings include a method for calibrating such a model and some tenta-

tive approaches to testing the model against a stationary nul1 hypothesis. It should be

noted that at present the development of such tests is in its early stages and it is hoped

that more robust methods may suggest themseives after a more rigorous analytical

treatment of the problem. For example, one notable characteristic of the calibration of

the Ord model with spatially reweighted maximum likelihood is the high computa-

tional overhead. This could be reduced if a least squares approach were adopted. In

this study the maximum likelihood approach was chosen on the grounds that this

would provide a consistent estimate in the case where a global Ord model did hold

(assuming the kernel bandwidth remained fixed as the sample size increased); a ieast

squares estimator would not ensure this consistency. However, it is hoped that more

detailed study of the behaviour of the two kinds of estimator should eventually lead to

a less ad hoc choice of estimator.
To gain a greater understanding of the spatially varying autoregressive model

described here, a comparison with the work of Anselin (1995) might be helpful.

Whereas Anselin disaggregates the weighting matrix into spatial components (a loca1

area decomposition) and examines the influence of these local weighting matrices on

the globa1 model, in our method each zone may be thought of as responding to a

different model so that the autocorrelation measure varies over space. The essence of

our model, therefore, is not to search for any giobal statement of relationships but to

examine iocal variations in such relationships.

We feel that this approach represents an important breakthrough. The advent of

GIS has brought about a much greater awareness that spatial location is often a very

important explanatory factor in geographical processes (a fact quite amazingly ignored
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Spatial nonstationariff and autoresressive models 973

in many analyses of geographical data), and this had led more people to turn to spatial
methods of data analysis and given rise to publications such as that by Fotheringham

and Rogerson (1993). There is currently a great interest in 'local' as opposed to 'global'

statistics and spatial variations are increasingly being recognised as important facets of

analysis with spatial data, rather than as irrelevances to be ignored in the search for
general laws. This paper adds to the growing literature in the field of truly spatial
statistics.
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