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Abstract: This paper is concerned with the analysis of phase gratings as
passive quasi-optical multiplexing devices. One important application of
such components is in the local oscillator injection chain of heterodyne
array receivers. Gaussian beam mode analysis can be applied as a
powerful tool when modelling the optical performance of phase gratings
in a real submillimeter system of finite throughput and bandwidth. In our
experimental investigations we have concentrated on the Dammann
Grating (DG) which is a binary optical component and thus
straightforward to manufacture. A number of quartz gratings were
fabricated and carefully tested to evaluate the practical limitations of
such quasi-optical components. Because of its convenient refractive
index quartz can be used to produce gratings with very low reflection
losses. The results presented confirm DGs to be particularly suitable
multiplexers for sparse arrays of finite bandwidth.
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1. Introduction

Phase gratings are useful as low loss multiplexer devices in
submillimeter and terahertz quasi-optical systems, where there is a
requirement for the generation of multiple images of a single input beam
[1]. The development of transmission phase gratings is straightforward,
as there are a number of dielectric materials with suitable mechanical and
optical properties in the far infrared. At such wavelengths both
transmission and reflection gratings are relatively easy to manufacture as
the required tolerances are readily achieved in contrast to their visible-
wavelength counterparts. In this paper we present the results of our
investigation into the quasi-optical analysis of phase gratings and discuss
some recent experimental measurements of Dammann phase gratings
manufactured from fused quartz.

The Dammann Grating (DG) is a binary optical component (the optical
path length through the grating taking on just two values ideally
separated by half a wavelength) and consists of a regular arrangement of
milled slots or recesses [2,3]. The use of DGs as quasi-optical
multiplexers in heterodyne array receivers was proposed by Murphy et
al. in [4], and they have since been incorporated into real systems, e.g.
[5,6,7]. For quartz, which has a refractive index close to the ideal value
of 2.0, it is possible, by adjusting the thickness of the grating, to obtain
the resonant no-reflection condition for both the recessed slot and raised
non-slot sections. This is because the extra thickness in the non-slot
sections corresponds to one wavelength in the medium for n = 2.

The theoretical analysis of quasi-optical systems incorporating phase
grating multiplexers is important in determining the practical limitations
of such devices. For the local oscillator injection chain of a heterodyne
array receiver, for example, it is important to achieve quasi-uniform
power coupling across an array of mixer feed horns with high efficiency.
The multiplexer may also be required to operate over some useful
bandwidth (typically of the order of 10% for ground based astronomical
systems covering a submillimeter atmospheric window). Gaussian Beam
Mode Analysis (GBMA) was chosen as the quasi-optical analysis tool
ideally suited to beam guide configurations of finite throughput [8,9]. An

1470 Murphy et al.



important point to note is that with a careful choice of the mode basis set
the array of beams produced by the grating can be efficiently modelled
with this technique [10]. Furthermore, the quasi-optical power coupling
of the multiplexed source feed to an array of horn antennas can be easily
calculated for an array system [11]. Gaussian beam mode analysis of the
performance of a grating multiplexer in general is discussed in Section 2,
while in Section 3 the DG is considered as an example.

In Section 4 of this paper we also report on experimental measurements
made on transmission DGs. Three different gratings, designed to produce
2 x 2 , 3 x 3 & 5 x 5 uniform two-dimensional arrays of images at
100GHz, were manufactured and tested as quasi-optical multiplexers. It
was decided to test the principles involved at this frequency since both
the manufacture and experimental measurements are easier. Such phase
gratings can, of course, be designed for the submillimeter/terahertz
wavebands.

2. Modal Analysis of Phase Grating Multiplexer
Performance

Consider the case of a grating illuminated by a quasi-collimated incident
field Ei(x, y) in a simple Fourier 4-f optics set-up as illustrated in Figure
1. A regular phase grating consists of a two dimensional array of
identical basis cells, with the transmission function of the basis cell being
given by t(x,y) = exp(iP(x, y)). The transmission of an entire grating with
rectangular symmetry is then given by a sum of the form: Em,n t(x-mDx,
y-nDy), where Ax and Ay are the grating periods in the x and y directions,
respectively. The grating then produces a strong corrugated modulation
of the quasi-planar wavefront of the incident field, severely affecting the
resulting beam pattern. The output plane of the 4-f system corresponds to
the Fourier plane of the grating. An array of beams is produced with the
beam intensities modulated by the Fourier Transform of a single cell
T(u,v) according to:

Phase Gratings 1471



where Eo(u, v) is the Fourier Transform Ei(X, y) [12]. The spatial
frequencies u and v are related to the co-ordinates in the output plane (x0,
yo) through u = xo /Lf and v = yo /Lf, with f being the focal length of the
lens (see Figure 1). The inter-beam separations are given by: Du = Dxo

/Lf= 1/Dx and Dv = Dyo /Df= 1/Dy.

Figure 1 Optical set-up for beam multiplexing with a Dammann Grating.

This simple Fourier analysis however fails to take into account the finite
size of the grating and any truncation in the optics between the grating
and the output plane. A consequence of compact optics is the disruption
of the spatial frequency spectrum of the beam in the optical train.
Furthermore, what is actually important in determining the efficiency of
a practical configuration is the coupling at the output plane to the
subsequent quasi-optical system (which might be an array of horn
antenna feeds, for example). GBMA is ideally suited for this kind of
analysis.

From a multimode beam viewpoint the grating has the effect of seriously
disturbing the lower order modes making up the incident beam, thus
scattering significant power into very high order modes. Because of the
Cartesian symmetry of the grating the fields can be most conveniently
expressed in terms of Hermite-Gaussian beam modes, Smn:
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where Smn(x,y) are given by the usual expression [13]:
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with

and Hm, a Hermite polynomial of order m. The beam width parameter,
W, phase radius of curvature, R, and phase slippage terms, DPmn, are all
functions of position z [13].

Crucial to the efficiency of the GBMA approach in analysing the system
is the choice of the optimum beam mode set. We require that the array of
beams scattered by the grating can be described accurately by a finite
sum of as few modal contributions as possible. As shown in [15] there
exists a mode set of modest size in terms of which one can to a good
approximation describe all of the off-axis beams with adequate accuracy.
The beam waist radius for the best choice mode set at the output plane is
given by:

where A is the area covered by the array of beams at the output plane,
Woh is the corresponding equivalent waist width of a simple Gaussian
approximation to one of the beams on the output plane and N is the
maximum "diffraction" order of the beams that we want to describe.

The mode coefficients for the source field are determined by performing
the relevant overlap integral at the aperture of the source feed: amn = II
Smn(x,y)*Es(x,y) dxdy, e.g. [14]. The change in the form of the beam as
it propagates away from this plane is determined by the evolution of the
phase slippage term exp(iDPmn(z)). This term does not depend on (x, y)



and can conveniently be included in the amplitude coefficient Amn =
amn exp(iDPmn(z)).

As already noted the effect of the grating on the incident source beam
E i (X , y) can be described in terms of the scattering of the power carried
by the component modes into higher order modes because of the effect of
the phase modulation introduced by the grating P(x,y). Thus,
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where

The mode coefficients for the transmitted (scattered) beam are given by
bm'n' = Emn Sm'm,n'n Amn. As the beam then propagates away from the
grating the phase slippage terms exp(iDPmn) further evolve. For
propagation to the Fourier plane of the grating, DPmn = (m+n+1)n/2, so
that on the output plane the amplitude coefficients are given by Bmn =
i(m+n+1)bmn. However, the optics between the grating and the output
plane will truncate the system of diffracted beams to some extent further
scattering the modes.

To evaluate the performance of a grating as a multiplexer, one can
calculate the coupling efficiency of the system of image beams to a test
receiver horn moved about the output plane. We can conveniently
represent the beam pattern of such a test receiver horn using the same
mode set as for the multiplexer. Thus, Eh = EcmnSmn. For optimum
coupling to the array of image beams the phase centre of the horn should
be located at the image plane, and the beam width should closely match
those of the array of images. The coupling of the horn antenna to the
field is then given by: n= | Zmn Bmn* Cmn | 2, where Cmn =
exp(iDPmn)cmn, takes into account the phase slippage between the horn
aperture and its phase centre.



A phase grating will only operate correctly over a finite bandwidth and
this may pose a limitation for certain applications. Two effects occur if
the wavelength of the LO beam is not at the design wavelength of the
grating: (i) The grating will only produce the required phase modulation
of P(x,y) at the design frequency, since the phase delays for the grating
are wavelength dependent, (ii) The actual inter-beam diffraction order
separation in the output plane Axo = Af /Ax will change implying
misalignment relative to any following optics. Realignment, however,
can be achieved by designing in some variable magnification.

Gaussian beam mode analysis can again be applied to determine the
deterioration in the power coupling characteristics across the band for a
test horn placed in some fixed position in the output plane as the
wavelength is varied. An example involving a Dammann grating is
discussed in the next section.

3. Design and GBMA of Dammann Gratings

The DG is a binary optical component in which the modulated phase
delay takes on just two values separated by P. The grating will usually
possess rectangular symmetry, so that one can write the transmission
t(x,y) = t(x)t(y) = ± 1. In the example of the one-dimensional basic period
of t(x) shown in Figure 2, the free parameters are ±x1, +X2, +x3, etc.
These are chosen so that as much of the power as possible is diffracted
into a two dimensional array of uniformly intense non-overlapping
images of the source beam of Figure 1.

Thus, if a 2M+1 array of non-overlapping images in the x-direction is
required, then |T(mDu)|=|T(0)| for |m| < M, and T(mDu) ~ 0 for |m| > M.
This is discussed in detail in [2], where various solutions are tabulated
for different values of M. If an even number of output spots is required
then neighbouring elements must be out of phase by P. This will cause
the grating maxima to lie in the direction given by (m + 1/2) Du, rather
than mDu, and an even number of equal intensity diffraction spots is
obtained.
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Figure 2 One-dimensional, symmetric binary function with period Ax.

The number of gratings cells illuminated by the source beam shown in
Figure 1 determines the ratio of the output beam spacing to beam width.
Assume for simplicity Gaussian field illumination of the grating, Ei(x, y)
A exp(-(x2+y)/WG

2), where WG is the usual Gaussian beam waist radius.
At the output Fourier plane Eo(xo,yo) A exp(-(xo

2+yo
2)/WF

2), where WF

= Lf/PWG . This implies Wg/Dx = [P(WF /Axo)]
-1, so that the incident

beam width to cell size ratio at the grating is inversely proportional to the
beam width to inter-beam spacing for the array of images at the output
plane.

Consider as an example coupling the multiplexer output to an array of
closely spaced diagonal horns. The best-fit Gaussian beam to the field at
the mouth of a diagonal horn has a radius given by: W= 0.43a [14]. For a
horn of moderate length the beam waist radius at the horn phase centre
will be somewhat less than this, typically: Woh = 0.38a. Thus, for
optimum coupling to the array one requires WF = Woh = 0.38Axo. The
corresponding beam width, WG, at the grating must be: WG = Lf/PWF

= 0.837Dx. The Gaussian beam radius is of order the grating period! The
implication of this is that we only need a small number of periods in the
grating, reducing its size.

For the case where WG/Dx - 0.837, the theoretically predicted resulting
set of image Gaussian beams is shown in Figure 3. The grating is
designed to produce a 5 x 5 array of images and the total number of
periods in the DG equals 4 x 4 . The slot edges of the basis cell in the x-
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direction are at x1 = ±0.132Dx and X2 = ±0.480Ax. For comparison, a set
of 5 pure Gaussian beams is shown.

Figure 3 Array of Gaussian beams (dotted line) superimposed on DG
beam array.

About 77.4% of the power is contained in the central orders for the one-
dimensional case, the total coupling to a two dimensional array is of the
order of 60%. This power is lost into diffraction orders higher than 2, and
so some power spills round the side of the array of diagonal horns, and
can be easily terminated using an absorbing microwave material around
the array. It should also be possible to reduce the loss by having a basic
grating cell with more grooves (more degrees of freedom).

We have also investigated a frequency detuning of a Dammann grating
multiplexer using Gaussian beam mode analysis. These effects disturb
the idealised coupling to an array of test horns placed in the output plane
both in terms of the uniformity of the intensities and the displacement of
the array of image beams with wavelength. The results of the analysis
for a 5 x 5 grating are presented in Figure 4. It is worth noting that, in
terms of local oscillator multiplexing applications, SIS mixer sensitivity
to local oscillator power for optimised performance is usually not so
critical that such a variation would cause a significant deterioration in
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performance across the array. Away from the design wavelength more
power is proportionally coupled to the central beam.

Figure 4 Power coupling to horns at six distances from the centre of a 5x5
array (b) with and (a) without variable magnification.

4. Experimental Measurements of Dammann Gratings

The practical feasibility of manufacturing and testing DGs was evaluated
using a 100-GHz quasi-optical test facility. Gratings to produce 2x2,
3x3 and 5x5 beam arrays were designed (Figure 5 shows a cross-section
along one of the axes for each grating). The gratings were manufactured
from 112mmx112mm slabs of fused quartz by the Lithuanian optics
company, Eksma.

The DGs were optically measured using the Fourier 4-f set-up shown in
Figure 6. A 100-GHz Gunn oscillator was used with a conical horn-
antenna feed as the source. The horn phase centre was placed at the focal
point of an off-axis ellipsoidal mirror, Ml, with an angle-of throw of 45°.
The gratings were mounted on a Perspex holder at the common focal
point of the two mirrors Ml and M2 where the source beam had a waist.
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The mirror M2 was used to image the output of the grating onto the
detector plane. The crystal detector was mounted on a computer-
controlled XY raster-scanner centred on the focal point of M2. The
scanner was capable of covering an area of 550 mm x 550 mm with a
step resolution of 0.03 mm. Eccosorb was used to avoid unwanted
reflections from component mountings.

Figure 5 Designs for 2x2, 3x3 and 5x5 DGs. Designs for the 3x3 and 5x5
gratings were based on the calculations of Dammann & Klotz [5]. 6x6 grating

periods were used in the 2x2 grating, and 4x4 periods in the other two. The
efficiencies, n, refer to the 1-dimensional case. (The tolerance on each

dimension was ±0.1 mm).

The beam patterns obtained with the three gratings are presented in
Figure 7. These are to be compared with the theoretical patterns predicted
using the Gaussian beam mode analysis discussed previously and shown
in Figure 8.
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Figure 6 4-f set-up to test the Dammann gratings.

In all cases a 2-dimensional grid of beams is obtained. The long focal
length of our mirrors meant that the beam waist at the grating was ~2Ax.
From the previous discussion, the predicted beam-separation to
beamwidth ratio at the output plane is then ~ 3:1, in agreement with what
was found. For our particular choice of 3x3 grating both the theoretical
and experimental plots show that the next highest order diffraction peaks
are not completely suppressed. The output grid spacings are as expected
for a square array reflected through 45° by an ellipsoidal mirror. The
overall efficiency of the 2x2 and 5x5 gratings is higher and in these cases
the central grid of peaks is far more intense than the higher orders.



Figure 8 Cross section of the expected beam pattern from the 2x2, 3x3 and
5x5 gratings

In practice we found that for the 5x5 array, one row of 5 beams was
consistently of a lower intensity than the other four rows, this we
attribute to off-axis aberrations and beam clipping. For the 5x5

Figure 7 Output intensity patterns obtained with the 2x2, 3x3 and 5x5 gratings
(contours are linear)
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measurements, therefore, we replaced the mirrors M1 and M2 in Figure 6
with HDPE lenses (f= 250mm).

Figure 9 Cross-section of the measured and predicted beam patterns from the
3x3 grating. The output for the design wavelength and a 9.6% detuning are
shown. Calculations were made using the Gaussian beam mode analysis

discussed in this paper.

In order to investigate the bandwidth limitation of DGs, the 100-GHz
Gunn oscillator was replaced with one whose frequency could be varied
over the range 90 - 105 GHz. Measurements on the 3x3 grating at 90.4
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GHz are presented along with the theoretical prediction in Figure 9. As
expected the inter-beam spacing increases by a factor of DL/Lo and the
intensity of the central beam increases at the expense of the other eight.
The uniformity of the 2x2 and 5x5 beam patterns was also found to
remain high over the bandwidth investigated. Figure 10 shows the
output from the 5x5 grating at DL/Lo= 5%.

Figure 10 Output intensity patterns (linear contours) obtained
with the 5x5 grating at 95.2 GHz.

5 Conclusions

In this paper we have discussed the analysis of a quasi-optical
multiplexer based on phase gratings. It was shown how Gaussian beam
modes could be used to efficiently describe the diffraction at the grating
and subsequent propagation for compact quasi-optical systems of finite
throughput.

As an example we have looked at Dammann Gratings (DGs) which are
relatively simple structures. We have presented a study of the feasibility
of using DGs for beam multiplexing at millimeter and submillimeter
wavelengths. We have shown from a theoretical study that at the design
wavelength we get good diffraction efficiencies of around 60% for a 5 x



5 array, with the missing power being channelled into higher diffraction
orders which can easily be terminated. The theoretical bandwidth of
such a grating was found to be of the order of 15%, which is typical of
astronomical array receivers operating in the submillimeter waveband.
We also investigated the practical feasibility of producing a 2x2, 3x3 and
5x5 DGs, and presented measurements of prototype gratings.

In the case of the astronomical receiver, an LO multiplexing scheme
would work best for the case where mixer characteristics are very
similar, so that the LO requirement of individual mixers is the same. The
scheme is particularly suitable for sparse arrays.
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