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1. Introduction 
A Digital Elevation Model (DEM) is a representation of geographic reality. The 
elevations recorded within DEMs have been shown to contain errors pertaining to 
sampling, measurement and interpolation (Fisher, 1998). Even a small amount of 
elevation error can greatly affect derivative products (Holmes et al., 2000). This can 
potentially have a significant impact on the application of DEMs in Geographical 
Information Systems (GIS) where first and second order derivatives are considered.  
 
DEM vendors generally provide users with a measure of vertical accuracy in the form 
of the Root Mean Squared Error (RMSE) statistic only. However many papers have 
reported on the limitations of a single value of accuracy, stressing that DEM error is 
spatially autocorrelated (e.g. Kyriakidis et al., 1999). Arguably, the best method for 
error modelling is based on conditional stochastic simulation (Fisher, 1998). 
Conditioning the simulation model includes sample observations of error and thus 
allows consideration of spatial autocorrelation. Unfortunately computation is 
complex.  
 
The main aim of this research was to simplify existing procedures to enable the 
‘average’ DEM user to perform his/ her assessment on the implications of choosing a 
particular dataset for their work. User requirements were identified and a 
methodology was designed to adhere to the essential requirements, whilst maintaining 
the option of modifying defaults (Table 1). As an application the use of a DEM for 
landslide susceptibility modelling was considered to add context to discussion and 
demonstrate the relevance of the propagation of error consideration.  
 

2. Methods 
The study area occupies approximately 25km2 of north western Slovenia and focuses



 
Requirement type Description Necessity 
Data: Test DEM(s) 

Higher accuracy data for reference surface 
Essential 
Essential 

Variables: Sample size and point locations  
Grid resolution for display of results 
Number of simulations (N) 

Essential 
Optional (default) 
Optional (default) 

Knowledge/ skills: Variogram interpretation 
Interpretation of results 

Essential basic 
Essential 

External 
Software: 

Manipulation of data (e.g. MS Excel) 
Further visualisation (e.g. Surfer, Golden 
Software) 

Essential 
Optional  

 
 
 
Two independent test DEMs were provided by the Environmental Agency of the 
Republic of Slovenia at 12.5m and 25m grid spacing. A Light Detection and Ranging 
(LiDAR) dataset was used as a surrogate for the ‘true’ elevation, from which 100 
sample points were randomly selected to be representative of the reference elevation 
surface. Error is defined here as the disparity in the elevation value projected by a 
DEM and its true value, and is given by subtracting the DEM value from the reference 
surface (after Heuvelink, 1998). The geostatistical modelling and simulation was 
performed with the GSTAT package used in the R software environment (Pebesma, 
1999). This is freely accessible software copyrighted under the General Public 
Licence (GPL). Prior to evaluation an algorithm was written in R that would 
automatically set up grid nodes for calculation, dependent on the bounds set by the 
minimum and maximum coordinate sample values (grid resolution defaults to 100m2). 
There were four main stages to represent the uncertainty and demonstrate the 
propagation of error to the landslide model.  
 

1) Modelling spatial dependence 
A variogram was used to show the spatial autocorrelation of error. A model 
was achieved in GSTAT by a two-step procedure of first calculating the 
sample variogram from raw data and then fitting a model. Interpretation was 
required to select an appropriate model (Table 1).  
  

2) Stochastic simulation 
The variogram model determined above was preserved and used with Inverse 
Distance Weighted (IDW) interpolation and sequential Gaussian simulation to 
generate N error map realisations. Each error realisation was added to the 
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Table 1 User requirements in the error assessment methodology  



4) Propagation to landslide susceptibility modelling 
The landslide susceptibility model defined areas of slope angle greater than 14 
degrees as susceptible to the hazard of landslide. Discrete valued categories 
(such as ‘susceptible’ and ‘non-susceptible’) can contain errors due to 
misclassification (Zhang and Goodchild, 2002). To examine the probable and 
possible uncertainties in classifying the landslide hazard, two frameworks 
were adopted: probabilistic and fuzzy. 
 

i. Probability of susceptibility classification: A nominal value of true was 
given to the simulated cell if its slope value exceeded the critical angle 
and false if it did not. Counting up the true and false declarations for 
each cell and dividing by N gave the probability of that cell being 
susceptible to landslide. 

 
ii. Fuzziness in susceptibility: For the N simulations the minimum and 

maximum simulated values of slope (for each grid cell) were recorded. 
Each value was then tested against the critical angle as before and the 
cell attribute was set to true if it was greater than 14 degrees and false 
if it was equal to or less than. A three-tier classification system was 
used to define each cell. For each cell if both minimum and maximum 
values were true then that cell was given a value of 1 and was 
susceptible to landslide. If either minimum or maximum was true then 
the node was given a value of 0.5 and classified undecided. If neither 
was true, the cell was not susceptible and given a value of 0. 
 

3. Results and analysis 
The spatial distribution of error was similar for the DEMs of differing resolution, 
although the magnitude was slightly higher for the 25m DEM. The relative spatial 
variation of mean error for the 12.5m DEM is shown in Figure 1a. Graphics were 
created using the Lattice package in GSTAT and (optionally) projected onto a 
topographic map. The mode of formation was different for each DEM so a similar 
spatial distribution may imply a terrain-dependent error causal factor (e.g. Liu and 
Jezek, 1999). To demonstrate the propagation of error, slope values directly derived 
from each DEM (no consideration of uncertainty) were compared to the mean values 
of the slope realisations (Figure 1b). This provided an indication of how slope 
estimation would vary were it derived directly from the DEM or from the multiple 
equally likely realisations. The main region of slope discrepancy was adjacent to the 
peak in mean elevation error, thus supporting the hypothesis of error propagation and 
the previous work of authors such as Murillo and Hunter (1997).  



comparison with the 25m DEM, the 12.5m DEM classifies a greater number of cells 
as ‘susceptible’ or ‘non susceptible’.  
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Figure 2 Fuzziness in defining cells as susceptible; darkest cells = 1 susceptible, 
lightest cells = 0 not susceptible, other = 0.5 undecided; 

a) 12.5m DEM; b) 25m DEM  
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4. Conclusion 
The methodology developed here provides an instrument for error quantification, 
demonstration of propagation, and visualisation that is a simplification on existing 
techniques. Publicly available software has been used to facilitate a universally 
distributable and pliable tool. On the basis of this study a fuzzy framework proved to 
be the most useful approach for highlighting the consequences of using different 
DEMs for landslide hazard assessment. The existing code for stages 1 to 3 of the 
methodology could be used for any application. Following minor modifications, the 
work could be integrated into fitness for use assessment, risk management studies and 
cost benefit analyses etc. The necessity of user expertise was successfully minimised 
but it is obligatory for the user to have a general understanding of uncertainty analysis 
and variogram modelling. Uninformed interpretation of these aspects could add a 
further dimension to error propagation.  
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