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Abstract

This paper describes a set of experiments, which use different levels of hierarchical shortest
path computations. We investigate a graph-subgraph structural hierarchy as a mechanism
imposed on an input data set, allowing a human or computer to access only a subset of the
data necessary for a task like path retrieval. It challenges the selection of relevant data further
used by people and, in turn, by computers for a particular analytical purpose. Consideration
of the main principles for the design of such hierarchies raises a number of theoretical and
practical research questions related to spatial information. The paper introduces the idea of
adapting the principles of hierarchical wayfinding to modeling decision making, which is
becoming increasingly important for advanced applications like Geographic Information
Systems (GIS). The results of the experiment, which utilizes three kinds of synthetic graphs,
are described. A number of important conclusions are presented, not leastwise that the bene-
fits of hierarchical wayfinding over non-hierarchical wayfinding algorithms increases as the
number of nodes in a graph increases, particularly in graphs with recognizable form. © 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The shortest path problem arises in various disciplines, and therefore, has received
a lot of attention in the literature (see Ahuja, Magnanti, & Orlin, 1993) for a review
and analysis). Many of the developed algorithms have been used for querying spatial
graph databases in advanced applications such as geographic information systems
(GIS) and time-critical Intelligent Transportation Systems (ITS; Collier & Weiland,
1994). Although proven useful, these algorithms are often inefficient due to the
growing size of graphs. This is where the need for modifying the existing strategies
or developing new ones to improve performance of these algorithms emerged.

In this paper we discus the use of hierarchy to overcome this problem. In path
finding and navigation, hierarchy has been used for partitioning the underlying
network into smaller networks. This speeds up path computation, but the resulting
paths are not always guaranteed to be optimal (Shapiro, Waxman, & Nir, 1992).
Our approach considers hierarchy as a method humans use for organising spatial
information and retrieving its relevant bits in spatial tasks like wayfinding (see for
example Allen, 1999; Golledge, 1995; Hirtle & Hudson, 1991; Hirtle & Jonides,
1985; Tversky, 1992). To design a conceptual model for hierarchical wayfinding, we
used the hierarchical spatial reasoning method to combine human knowledge and
experience in wayfinding with standard shortest path algorithms. Detailed discus-
sion of the theoretical background, the conceptual model, and the formal specifica-
tion of the model available as program code written in the functional programming
language Gofer can be found in Car (1997).

We have been developing a computational model for hierarchical wayfinding
using the formal specification of the concept as a guideline. The model has two main
components: a hierarchical graph contains a set of subgraphs, each of which is
formed according to some criteria like road classes, travel speed, scenery, or a com-
bination thereof; a hierarchical wayfinding algorithm consists of a general-purpose
shortest path algorithm (in our case the Dijkstra algorithm) and a set of reasoning
rules for path retrieval in the hierarchical graph. The basic idea of the hierarchical
wayfinding is the stepwise reduction of the original graph causing the general-
purpose shortest path algorithm to operate on a subgraph. This idea follows the
assumption that hierarchical wayfinding occurs in a subgraph with higher-speed/
time segments. Hence, hierarchy is used to reduce the graph size and so significantly
decreases the path retrieval time, but at possible loss of optimality.

In this paper we argue that the principles of hierarchical wayfinding can be adopted
in modelling decision making. Consider the following example: solving a set of
shortest paths using a full network would represent a person with perfect or complete
information and decision making capabilities. Such a person can be a taxi driver or a
local citizen living in that area for a long period of time. Systematic reduction of the
original graph would model less and less perfect information and, in turn, decision
making. A level containing the least detail, i.e. the smallest sub-network, can repre-
sent knowledge of a person visiting a town for the first time and knowing nothing
about it. Such an approach allows for reasoning to be simpler at levels with fewer
details (Fotheringham, 1992). The idea discussed in this paper is to use different levels



A. Car et al. | Comput., Environ. and Urban Systems 25 (2001) 69-88 71

of hierarchical shortest path computations to approximate decision making and
potentially missing information. The major questions asked here are:

1. How does processing on such a graph structure affect the calculated path, in
particular for different types of networks, e.g. random, radial, Manhattan?
2. Which conditions lead to suboptimal wayfinding?

This is where the currently developed computational model of hierarchical way-
finding will be used. A series of experiments is conducted on different kinds of syn-
thetic graphs to observe the model’s behaviour, and preliminary results will be
presented. We expect the test results to allow for deriving hierarchization parameters
for spatial networks. The hierarchization parameters appear to be highly important
for deriving at least rough default behaviour of the hierarchical wayfinding algo-
rithm. Real networks may have many special cases, and therefore make the deriva-
tion of general case behaviour difficult to achieve. This is why in the first instance we
decided to test the hierarchical algorithm on synthetic graphs only. Consideration of
the main principles for the design of such hierarchies raises a number of theoretical
and practical research questions related to spatial information in general, and spatial
hierarchical reasoning in particular. Our long-term goal is to develop a tool for
simulation of hierarchical reasoning in networks.

2. Related work

Using hierarchies of abstraction for reducing the computational cost of particular
operations is an old idea and common to many disciplines and application areas:
graph theory and spatial databases (Agrawal & Jagadish, 1994; Erwig, 1994), spatial
reasoning (Papadias & Egenhofer, 1996), spatial search (Miller, 1993) and planning
(Glasgow, 1995); GIS and ITS (Jing, Huang, & Rudensteiner, 1996; Shekhar, Kohli,
& Coyle, 1993). There is a number of proposals to design and develop computational
theory of the cognitive map which also include hierarchy as an important organising
principle (Chown, Kaplan, & Kortenkamp, 1995; Gopal, Klatzky, & Smith, 1989;
O’Neill, 1991), and which have been used in robotics for map building and navigation
(Kuipers & Byun, 1991; Remolina, Fernandez, Kuipers, & Gonzales, 1999).

An important aspect of shortest path determination deals with selection of relevant
data. Best-first search or heuristics', e.g. in A* algorithm, are used to eliminate
nodes which do not satisfy some heuristic measure like a distance or cost, or some
rule of thumb. A* is considered to be significantly important to the research of path
finding problems in ITS due to its good performance (Shekhar et al., 1993). Another
approach applies hierarchy mainly to partition a base graph into smaller graphs, and

! “Heuristics are criteria, methods, or principles for deciding which among several alternative courses
of action promises to be the most effective in order to achieve some goal. They represent compromises
between two requirements: the need to make such criteria simple and, at the same time, the desire to see
them discriminate correctly between good and bad choices” Pearl, J. (1984). Heuristics. Reading, MA:
Addison-Wesley.
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so save storage and decrease computing time. Two groups of hierarchical algorithms
emerge: one guarantees optimality of path retrieval (Jing, Huang, & Rundensteiner,
1998; Shekhar, Fetterer, & Goyal, 1997) while the other does not (Huang, Jing, &
Rundensteiner, 1995; Shapiro et al., 1992). In all suggested solutions precomputed
paths in a two-level graph are used, except for Huang et al. (1995) who propose a
multi-level graph which classifies edges according to road types with preference of
high-speed roads. Sungwong and Pramanik (1996) propose another hierarchical
multi-graph model for representing topographic maps, which is based on the
assumption that humans usually read maps in an increasing scale order. The path
retrieval is faster due to precomputed paths, but the optimality is not discussed. The
authors touch an important modelling aspect relevant also for our study: con-
sideration of human factors in solutions for the shortest path problem. This is in line
with research by Elliot and Lesk (1982) on algorithmic solutions producing optimal
results which are non-satisfactory for humans. Their problem on giving driving
directions combining a street map and yellow pages, involves both human factors
(choice of the best kind of route) and algorithmic problems (choice of a good
shortest path algorithm). The investigation shows that humans combine different
search methods, suggesting hierarchical search as the right answer, .. .as it shares
many clements with what people do, and is reasonably comparable with computer
requirements”’ (p. 261).

The approach often taken in the reviewed literature (e.g. Huang et al., 1995), uses
rather sophisticated data structures and precomputations of shortest paths to
improve the efficiency of the algorithm. Our approach uses a simple data structure,
that of graph—subgraph structural hierarchy. Furthermore, it uses no precomputa-
tion, that is, it creates subgraphs on-the-fly according to the reasoning rules for that
particular structural hierarchy. Hierarchization is based on the assumptions that
people divide graphs in smaller subgraphs according to some classification criteria
like speed or travel time (Hirtle & Hudson, 1991). In such a case wayfinding occurs
in smaller but relevant datasets. The basics of our model are briefly discussed in the
following section.

3. Hierarchical wayfinding

The conceptual model of hierarchical wayfinding, based on the theory of hier-
archical spatial reasoning (HSR), describes the hierarchical structure of a network
and explains how to reason on such a structure. The modelling process follows the
requirements of hierarchical reasoning with structural hierarchies (Car & Frank,
1994):

1. design a model for the non-hierarchical case consisting of a single-level model
of a network and a general-purpose, non-hierarchical wayfinding algorithm,;

2. introduce a hierarchical structure and a set of rules stating how to form sub-
graphs, when to change levels, and how to turn single-level partial paths into a
final result; and
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3. compare the results achieved by the hierarchical algorithm to those achieved
by the non-hierarchical algorithm to find out if the investment in hierarchiza-
tion pays off.

The last requirement represents quality control for reasoning with structural
hierarchies. The comparison of the results is necessary because the errors produced
in hierarchically organised systems approximate the ones observed in humans per-
forming similar operations (e.g. Reno-San Diego problem, Stevens & Coupe, 1978).
Hence, hierarchical spatial reasoning follows patterns of human cognition, as it
computes approximations either to compensate for missing information or to sim-
plify reasoning by selecting only necessary information (Fotheringham, 1992).
Hence, hierarchical algorithms producing suboptimal solutions are also of interest.

A question arising then is “What is a good enough result?” rather than ‘“What is
the optimal solution?””. This is similar to the economics’ term satisficing, related to
discovering any qualified object with as little search effort as possible (Simon, 1956).
For example, Timpf and Frank (1997) and Winter (1999) address this issue showing
that hierarchical spatial reasoning can compute increasingly better results and stops
the computation when the good-enough result is achieved.

The model of hierarchical wayfinding is developed in accordance to the require-
ments of HSR. In the next subsections we briefly discuss the non-hierarchical and
hierarchical case using parts of the formal specification for illustration (written as
Gofer code).

3.1. Non-hierarchical case

1. In the ontology? for the non-hierarchical case a road network is represented as
a graph containing nodes and edges all being on a single level:

2. type Name = String
data Pos x = Pos X X -- 2d position
data Node = Node Name {Pos x) -- node has a name and a
position
data Edge n = Edge Name n n -- edge has a name and 2
nodes
data Graph e n = Graph [e n] -- graph is a list of
edges

3. Item 2 (above): a part of the formal specification: type- and data-declarations
indicating structures of objects.

2 An ontology is an abstracted, idealized model of reality containing only those objects, relations
among them, and rules that govern them, which are of interest in a particular reasoning system being
designed Davis, E. (1990). Representations of commonsense knowledge. San Mateo, California: Morgan
Kaufmann Publishers. A definition which is the closest to our use of the term ontology is ““An ontology is
a specification of a conceptualization.” (Tom Gruber, http://ksl-web.stanford.edu/kst/what-is-an-ontolo-
gy.html, the web site was accessed on 10 April, 2000).
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4. The graph is (a) embedded in Euclidean space allowing for edge length com-
putation; (b) is planar excluding the cases like underpasses and overpasses; (c)
is bidirectional allowing for traversing edges in both directions; and (d) has
edges with assigned weights. This graph is abstracted from any further detail
that a road network may have, in order to preserve the simplicity of the model.
A part of the formal specification for graphs is given in items 5 and 6.

7. Items 5 and 6 (above): a part of the formal specification of the conceptual
model of wayfinding shown for the object Graph.

8. We use the Dijkstra algorithm as the non-hierarchical wayfinding algorithm
(NHWA). The Dijkstra algorithm is the best-known general-purpose shortest
path algorithm (Dijkstra, 1959). The algorithm determines the lengths or
weights of the shortest paths between the given node and any other node in a
graph. Dijkstra produces an optimal solution result because it can search
in the entire graph. The algorithm is implemented with adjacency matrix as
the graph representation and the pseudo-code can be found in (Sedgewick,
1992, p. 466).
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3.2. Hierarchical case

The ontology for the hierarchical case includes the non-hierarchical graph enri-
ched by hierarchical levels. The non-hierarchical graph must be included so that the
NHWA can be applied to each level independently. The bottom-up hierarchization
method is used to create a graph—subgraph structural hierarchy with L levels: the
lowest level L in the hierarchy contains the entire dataset; the highest level, also
known as root or 0O-level, contains the smallest dataset. A subgraph at level i<L
contains all the edges at that level and higher (4 i).

A criterion is used to assign edges to different levels in a hierarchy. In our example
we use the road classification as the criterion: 0-level represents motorways, 1-level
main roads and 2-level local roads (Fig. 1). Edges have nodes in common, at which
it is possible to switch between different levels.

An important property of a hierarchical graph is the level ratio k, which is specified
by a classification criterion. In the case of wayfinding the ratio can be translated to the
ratio of e.g. average travel speeds v in different levels: k = v;/v; ;. With the help of this
ratio, it is possible to make statements about paths found by hierarchical and non-
hierarchical algorithm, and this will be used in the analysis of the test results.

The hierarchical algorithm (HWA) is a non-hierarchical algorithm enriched by a
set of rules stating how to process a hierarchical graph (Car, 1998). It involves the
creation of a subgraph from the original graph and path retrieval. HWA performs
bidirectional search. The structure of HWA is presented in Fig. 2. NHWA can be
any algorithm used to retrieve the shortest path in a subgraph. It terminates the
search when the goal node or the first node with access to a higher level is reached.
Graph reduction, i.e. creation of a subgraph from an initial graph, is a stepwise
process: as soon as NHWA finds a node with access to a higher level (i), a new
subgraph is created containing all edges of this (i) and other higher levels (4 i). The
operation subGraph creates a subgraph (Graph [e | e  es, p ¢]) by selecting the
edges from the input graph, which satisfy the condition p (Section 3.1, items 5 and
6), e.g. to select the smallest subgraph, the condition p is that level=0.

G13 G13_01
— G13_0Ivl
0 0 N

Fig. 1. A graph with three hierarchical levels: (left) full graph containing all nodes and edges (lowest
level); (middle) a subgraph containing only two levels of detail; (right) the smallest subgraph containing
only the highest level (0-level).
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Fig. 2. The structure of the hierarchical wayfinding algorithm.
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Fig. 3. ArcView application for hierarchical wayfinding: The graph G13 is presented in the View area
together with paths calculated with NHWA (Nhw_res) and HWA (Hw_res). The sequence of nodes in
both paths differs slightly just in the neighborhood of the node 202. The level combination is 0—1 meaning
that the start node has access only to edges of level 1 and the goal node only to the edges of level 0. The
window called “Dijkstra’s shortest path’ provides values for path weights and CPU times, respectively.

3.3. Computational model

We implemented the hierarchical graph structure and the wayfinding algorithm
in C+ + (Borland) and integrated it in the software package ArcView (Fig. 3).
ArcView has been selected as the application development environment primarily
because of its customisation abilities: it supports GUI modification and integration
of the DLLs using Avenue (Mehner, Car, & Taylor, 2000). The computational
model is initially tested using the same graphs that were used to test the behaviour
captured in the specification. It traces the same paths as the prototype (executable
Gofer code) proving the success of the implementation so far. With the achieved
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GIS application, a basis for further experiments with hierarchical wayfinding is
provided. The achieved results are reported in the following sections.

4. Experiment set-up
4.1. Data sets

Table 1 contains a list of graphs used in the experiment. Random graphs have no
particular form: a countryside road network or a town developed with hardly any
planning are such examples. Radial graphs have a centre node whose outgoing edges
are usually the more important roads: cities such as Vienna provide good examples. In
a Manhattan graph, roads form a perpendicular and often regular grid, which is the
case with road networks in a number of the US cities. The graphs G10, G11, G12 are
smaller versions of G13. This holds for radial (G3x) and Manhattan graphs (G4x).

The edges in each graph were classified according to the average travel speeds. In a
3-level hierarchy the following level ratios are used:

1. 50:80:130 km/h
These speeds represent local roads, state roads and motorways and corre-
sponds to travelling by a car, i.e. car transportation.

2. 1:10:100 km/h
These speeds correspond closely to public transportation, e.g. pedestrian:
bus/tram:regional transport/high speed trains

4.2. Data sampling

Both NHWA and HWA retrieve a path which has the minimum path weight. The
path weights WNH;; and WH; between the nodes i and j are calculated as the sum of
weights of all edges in the path:

Table 1

Synthetic graphs used in the experiment

Graph Id Form No. of nodes No. of edges
G10 Random 41 81
Gl1 Random 101 177
Gl12 Random 97 204
G13 Random 264 370
G3 Radial 207 392
G31 Radial 325 565
G32 Radial 511 809
G41 Manhattan 280 445
G42 Manhattan 351 574
G43 Manhattan 518 876

G44 Manhattan 693 1184
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X
WNH; a edge length [ weight

X
WH; a edge length [ weight

Note that the total path weight for WH;; is the sum of the partial minimum weight
paths retrieved at each hierarchical level.

Sample data consisted of paths calculated by the HWA and NHWA for 30 to 120
pairs of nodes per graph, total of 730 observations for all graphs. The choice of the
node pairs depended on the level combination and graph coverage. For every cal-
culation the following data was collected: start node, end node, level combination,
path weight and CPU time for NHWA, path weight and CPU time for HWA,
sequences of nodes in the corresponding paths. All calculations were conducted on a
Pentium 233MHz PC, physically on the same machine under the same circum-
stances. Values for path weight and CPU time were calculated three times, and their
means used as sample data. This procedure was adopted in order to eliminate as
much as possible the instabilities of the operating system. No other applications
were running during the testing time.

5. Analysis of the results

The analysis-step is the fulfilment of the third HSR requirement (see Section 3). It
is expected to show whether the introduction of hierarchization pays off, and if so,
to what extent. The analysis is based on comparison of the differences in path
weights (DW) and in CPU-times (DCPU).

1. Difference in path weights (DW)
Let WNH;; be the weight of the optimal path between the nodes i and j
retrieved by NHWA, and WH;; be the weight of a path retrieved by HWA,
then the difference between these paths is

DW;a WH; " WNH; anitsa
and its sub-optimality rate (SOR) can be measured:
SORl'j é WHU' v WNH,,=WNHU O IOOé%)a

2. Difference in CPU times (DCPU)
Let CPUH;; be the CPU time for a path computed by HWA between
the nodes i and j, and CPUNH;; be the CPU time for a path computed
by NHWA for the same pair of nodes, then the difference between these
times 1s:

DCPU; a CPUNH;~ CPUH;

DCPU will be positive when HWA is faster than NHWA.
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Furthermore, we intended to derive parameters for spatial hierarchization in net-
works. The assumption is that the size and form of a graph, number of levels, and
level ratio combination are the good candidates for parameters for hierarchization in
graphs. Therefore, the results are presented in four major groups: general findings,
dependence on graph size, dependence on levels and dependence on graph form.

Statistical analysis® was based on mean values for differences in path weight (DW)
and the CPU times (DCPU) which were calculated per graph and for level combi-
nations within each graph.

5.1. General findings

Generally, HWA finds longer paths but needs less CPU time than NHWA. Path
weight differences (Fig. 4) vary from approximately 10 to 26% for the 50:80:130
ratio, and only up to 2% for the 1:10:100 ratio. This seems to be better performance
than, for example, that of up to 50% for graphs with only two levels reported in
(Shapiro et al., 1992).

Differences in CPU times (Fig. 5) for both level ratios are quite similar. They
range from 0 seconds indicating that both algorithms need the same time, to
approximately 0.25 seconds. This is equivalent to 0-28% difference indicating that
generally HWA is faster than NHWA. Actual mean CPU times per graph are given
in Fig. 6.

A deviation in behaviour is noticed for the largest random graph G13 and the
smallest Manhattan graph G41 for the 1:10:100 ratio: negative DCPU (7 0.02 s)
indicates that NHWA performed faster than HWA. This deviation in behaviour is
explained by the overhead of introducing the hierarchy (creation of subgraphs) into
the processing. Very small graphs do not benefit from that as our results show.
Further explanation is given in the following subsection.

—#— SOR 50:80:130 —&— SOR 1:10:100

30.00%
25.00% ___f\
20.00%

15.00% _,/ \ i
10.00% Mm_m

5.00%

0.00% _#ﬂ:m*‘—@

G10 G11 G12 G13 G3 G31 G32 G41 G42 G43 G44
Graph

SOR [%]

Fig. 4. Suboptimality rate (SOR) for path length differences.

3 We used the statistical package R (the R Development Core Team, http://www.stats.bris.ac.uk/R).
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-0.05

CPU time
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Fig. 5. Differences in CPU times.
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CPU time [sec]

Gl0 G11 GIZ G13 G3 G31 G32 G41 G42 G43 G44
Graph

Fig. 6. Mean CPU times per graph for both level ratios: 50:80:130 — the two bars from the left,
1:10:100 — the two bars from the right.

5.2. HWA performance wrt graph size

The performance of a shortest path algorithm depends on the size of a graph, i.e.
it increases with the increasing number of nodes in that graph. We investigated a
general trend of HWA performance with respect to the graph size. Figs. 7 and 8
both show that the graph size does influence the performance of HWA, which con-
firms our expectations.

For the 50:80:130 level ratio path weight difference (DW) tends to vary sig-
nificantly for smaller graphs with not more than 300 nodes. The variability then
calms down but shows a tendency to increase with the increasing graph size. In the
case of the level ratio 1:10:100 no dependence of DW on the graph size can be
observed. This is explained by the fact that for large level ratios like 1:10, NHWA
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—i— SOR 50:80:130 —&—SOR 1:10:100

30.00%
25.00%
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10.00%

5.00%

0.00%

SOR %

G10- G12- Gl11- G3- GI13- G41- G31- G42- G32- G43- G44-
41 97 101 207 264 280 325 351 511 518 693

Graph size

Fig. 7. Suboptimality rate (SOR) wrt the graph size.

—i—dcpu 50:80:130 —k—dcpu 1:10:100
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Fig. 8. Difference in CPU times wrt graph size.

will behave in the same way as HWA because the edges it chooses will correspond to
those HWA chooses to switch levels.

Difference in CPU times grows with the increasing size of a graph and this holds
for both level ratios. Again the size of 300 nodes seems to be a break-point indicat-
ing that the introduction of hierarchization for smaller graphs is not beneficial. On
the contrary, HWA can perform worse than NHWA as in the cases of G13 and G41
for the 1:10:100 level ratio.

5.3. HWA performance wrt levels

This step of the analysis investigates the influence of the level ratio (50:80:130 and
1:10:100) and the level combination (0-0, 0-1, 1-1, 0-2, 1-2, 2-2) on the performance
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of HWA. The level combination indicates the lowest level the start node has access
to and lowest level the goal node has access to (see example in Fig. 3).

5.3.1. Level ratios

Generally, DCPU varies very little with the change of the level ratios as we
observed in the previous subsections. This is not true for DW: it decreases with the
increasing level ratio. Furthermore, the observations indicate that the sequences of
nodes in the paths retrieved by NHWA and HWA depend on the level ratio. The
analysis shows the following (note that the level ratio 50:80:130 translates to 1:1.6
ratio and 1:10:100 to the 1:10 ratio):

1. 1:1.6 level ratio: HWA and NHWA hardly ever find the same path, except
when path search occurs in the smallest subgraph (e.g. containing only
motorways).

2. 1:10 level ratio: in most cases HWA and NHWA find the same paths, i.c.
consisting of the same sequence of nodes.

5.3.2. Level combination

The t-test shows that the HWA produces paths which are statistically significantly
different from the paths produced by NHWA with respect to both DW and DCPU.
Furthermore, the F-test shows that these significant differences depend on the level
combinations involved.

5.3.2.1. Analysis for 50:80.:130 ratio. For the t-test the null hypothesis states that the
mean value of the path weight difference is zero (Hyp:mean(DW)=0). This hypoth-
esis was rejected at a high significance level (0.01) for the level combinations
excluding 0-0 and 0-1. In the 0-0 combination HWA and NHWA behave the same:
in both cases the shortest path algorithm is applied to the smallest subgraph
retrieving the same path. In less than half of the graphs the 0—1 combination influ-
ences the performance of HWA but at a low significance level (4 0.05). The same
test was performed on CPU-time difference. The null hypothesis (Hy:mean(DCPU)
=0) is rejected at even higher significance level (0.001) across the level combinations.

For the F-test the null hypotheses state that in each graph the mean values of DW
and DCPU for each level combination are all the same, i.e.

Ho: mean®@W( o a mean®WU, a ... a mean®WU,,

Ho: mean®CPUL,, a8 mean®CPU(, & ... a mean@®CPUY,,

The null hypothesis for DW was rejected at the highest significance level (0.001)
for all graphs. The null hypothesis for DCPU was rejected at the highest significance
level (0.001) for all graphs except the smallest random graphs G10 (no significance at
all) and G11 (0.01). This means that the values of DW and DCPU depend on
the level combinations. Figs. 9 and 10 present the mean values calculated for
individual level combinations for 50:80:130 ratio. The mean value of DCPU for the
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Fig. 9. Path length difference wrt level combination for the 50:80:130 ratio (note that mdw stands for the
mean value of DW for a particular level combination).
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Fig. 10. CPU time difference wrt level combination for the 50:80:130 ratio (note that mdcpu stands for the
mean value of DCPU for a particular level combination).

level combination 2-2 shows deviation in general behavior of the HWA: the algo-
rithm’s performance deteriorates for all graphs over 100 nodes if the lowest level is
involved being the worst behaviour observed.

5.3.2.2. Analysis for 1:10:100 ratio. The same test scenario was used here. The dia-
grams for 1:10:100 are very similar and are therefore not included here. In the -test,
the null hypothesis was not rejected for level combinations involving the top two
levels (0-0, 0—1, 1-1). For the level combinations involving the 3rd level the null
hypothesis was rejected at a low significance level 4 0.05 (02, 1-2) for less than half
of the graphs, and at a slightly higher significance level of 0.01 for six graphs (2-2).
In the case of the DCPU the null hypothesis was rejected at the highest significance
level (0.001) for the majority of the level combinations and for all graphs again
excluding the two smallest random graphs.
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The F-test results for DW are slightly different from those reported for the 1:1.6
ratio: the null hypothesis is rejected at a low significance level (4 0.05). The null
hypothesis for DCPU was rejected at the highest significance level (0.001) for all
graphs except the smallest random graphs G10 and G11 (0.01) which is similar to
the behaviour for the 1:1.6 ratio.

5.3.2.3. Summary. These results prove that the performance of the HWA depends
on the level combination:

1. When the path transcends more of the levels, HWA is more likely to find a path
different to that found by NHWA wrt the actual path weight (different route).

2. HWA is faster than NHWA in the most cases.

3. The sensitivity of HWA to the level ratio is more significant to the path length
differences than it is to the CPU time.

4. The statistical significance of DW and DCPU is highest for the smaller level
ratio (1:1.6).

5.4. Dependence on graph form

Further analysis has shown that there is statistical evidence that the performance
of HWA depends on the form of a graph. The same testing scenario is applied and
the same null hypotheses were stated but this time wrt to the graph forms.

The t-test shows that the HWA produces paths which are statistically significantly
different from the paths produced by NHWA. Furthermore, the F-test shows that
these differences statistically significantly depend on the form of graphs involved.

5.4.1. Analysis for 50:80:130 ratio

The t-test for DW rejected the null hypothesis at the highest significance level
(0.001) except for the smallest random G10 and radial G3 graphs (0.01). For DCPU,
however, the hypothesis is rejected at the highest significance level only for three
graphs G31, G43, G44, at 0.05 level for G31 and is not rejected for all other graphs.
The F-test rejects the null hypothesis at the highest significance level for both DW
and DCPU, and proves though the dependence of the graph form and the perfor-
mance of HWA.

5.4.2. Analysis for 1:10:100 ratio

The t-test for DW rejects the null hypothesis for majority of the graphs (eight out
of 11), but at significance levels varying from 0.001 to 0.05. The #-test for DCPU
rejected the hypothesis for only four graphs (at 0.001-0.01 levels) and does not reject
it for the others. However, the F-test shows the same results as for the 50:80:130
ratio confirming the dependence of the graph form and the performance of HWA.

5.4.3. Summary
There is statistical evidence that the graph forms influences the performance of the
HWA. In the results presented here, radial and Manhattan forms seem to be the
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influential ones. We conclude that HWA outperforms NHWA in graphs of a
recognisable structure. However, to make more specific statements further experi-
ments are necessary.

6. Conclusions

We proposed a model for decision making which uses wayfinding in structural
hierarchies. The theoretical background for this model is in hierarchical spatial
reasoning. Its implementation offers an environment for testing the model on var-
ious graphs. A series of experiments was conducted on different kinds of synthetic
graphs to observe the model’s behaviour. Statistical analysis of the results proves
that our hierarchical model is significantly more efficient than a non-hierarchical
solution in graphs with recognisable structure.

A challenge of modelling decision-making is to develop a natural network hier-
archy which can represent individuals’ perceptions and abilities when wayfinding.
The first step in that direction is to answer the question: How does processing on such
a graph structure affect the calculated path, in particular for different types of net-
works and which conditions lead to suboptimal wayfinding?

From the test results we derived a number of parameters for hierarchization of
spatial networks. These parameters influence the performance of the hierarchical
algorithm and thus the behaviour of the model. They are graph size, level ratio, level
combination, and graph form:

1. As the graph size (i.e. the number of nodes in a graph) increases the benefit of
using HWA over NHWA increases. For graphs with less than 300 nodes hier-
archization does not make any significant difference.

2. The level ratio has little effect on CPU times. Difference in path weights
decrease with the increasing level ratio. For 1:1.6 (50:80:130) ratio HWA and
NHWA hardly ever find the same path, whereas for 1:10 (1:10:100) ratio HWA
and NHWA find the same paths in most cases.

3. The level combination significantly influences the performance of HWA:

the more levels transcended, the more likely that HWA and NHWA find
different paths; and

HWA is faster than NHWA, but is inferior to NHWA only when the level
combination includes the lowest hierarchical level (the worst performance is
observed for 2-2, Fig. 10).

4. The graph form influences the performance of HWA, i.e. it outperforms
NHWA in graphs of a recognisable structure such as radial or Manhattan.

A remaining open question, which we hardly touched in this paper, is that of sub-
optimal, i.e. satisficing results produced by a hierarchical spatial reasoning method.
Can we measure the goodness of a result? If so, what are the good candidates?
Are they related to a particular application, or are they application-independent?
This is worth a separate study.
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The hierarchization parameters are important component in the description of the
behaviour of the hierarchical wayfinding algorithm. Real networks may have many
special cases, and therefore make the derivation of general case behaviour difficult to
achieve. This is why we tested the hierarchical algorithm on synthetic graphs to
determine default behaviour.

The long-term goal of this line of research is to develop a more generalised model
for hierarchical reasoning in networks. Further experiments with HWA are needed
to establish default behaviour:

1. vary the number of levels (the number of levels is fixed at three in this experi-
ment); and

2. achieve stable behaviour wrt the set of reasoning rules by experimenting with
different algorithms (e.g. A*) and using real datasets (to capture special cases
and add them to the rules).

Hierarchical wayfinding is useful for GIS applications where a non-hierarchical
solution can be improved through the proposed hierarchization, for example when
dealing with large data sets or incomplete data and approximate reasoning. It can be
used in a planning process as a reverse engineering tool to discern the most useful
hierarchy for a network: e.g. to determine the location of exits from motorways,
converting a road from one class to another, or investigate the effects of additional
nodes/edges on the network behaviour.

The current model is inappropriate for time-critical applications like ITS but can
be useful in commercial route finding and networking modules for calculating
alternative routes, or in investigations of in-vehicle navigation techniques as a
mechanism for selecting relevant data (Taylor & Blewitt, 1999). Application areas
that could benefit from this model are transportation, tourism and any kind of
spatial planning.
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