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A Bayesian Approach to Schools’
Catchment-based Performance Modelling

CHRIS BRUNSDON

ABSTRACT A Bayesian model for predicting schools’ performance in SATS is proposed,
in which geographical explanatory variables are averaged over a radius centred on each
school. The coefficients for the explanatory variables, and the averaging (or smoothing)
radius are treated as unknown variables, whose prior and posterior distributions will be
considered in the Bayesian analysis. Posterior distributions cannot be determined
analytically, and will be investigated using simulation via Gibbs sampling.

1. Introduction

It is sometimes asserted that performance of schools can be assessed in terms of
pupils’ success in exam results, and in the ‘league tables’ that may be generated from
these. Whilst this is true to some extent, one cannot reasonably judge a school on this
evidence alone. It is also well known that the social background of pupils attending the
school will have some bearing on exam performance. Given the differences between
social backgrounds of pupils attending different schools, the competition for a high
placing in the league tables does not take place on a level playing field. It would
perhaps be more helpful to take this into account when assessing schools. One way
of achieving this is by modelling the relationship between social background and
schools’ performance in a probabilistic way—that is, one would like to obtain a
probability distribution of some indicator of school exam performance given a set of
social and economic indicators relating to the catchment area of the school.

However, at this stage a new problem is faced. It is wished to measure social
conditions in the catchment area of the school, but it is not known exactly where
this catchment area is. In fact, catchment areas pose some interesting problems in
the British context. The principle of parental choice implies that it is quite possible
for two children living in the same area to attend different schools. One cannot
simply divide the map into zones, and then assuming that all children living in a
given zone attend a particular school. In some countries this is a reasonable approach,
as this is the basis for the assignment of pupils to schools, but in Britain, although
distance from home does play a practical role in school choice, catchment areas are
fuzzy, and overlap.

A typical approach to modelling the linkages between school exam performance
and other explanatory variables is to use multi-level models (Goldstein, 1995). This
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allows variables measured at different hierarchical levels, such as individual pupil,
class, school, education and authority to be used to predict exam performance at
any of these levels. While this has proved extremely useful, particularly in modelling
performance at the pupil level, it is felt that this approach adopts an unrealistic
approach to the geography of school catchment area characteristics. Essentially, the
discrete, hierarchical nature of the explanatory variables sits uneasily with the fuzzy,
overlapping nature of catchment geography described above. In this paper, an attempt
to address this shortcoming will be made.

This will be done by using spatially smoothed census ward data to predict school
performance. The smoothing window applied to the data is intended to reflect the
catchment area around each school. The window will take a kernel form, as this
reflects the fuzziness of catchment area boundaries. The performance itself is
measured by the number of pupils in each school reaching a certain level of
achievement in attainment tests in English.! This can be thought of as a binomial
variable with the number of trials corresponding to the number of pupils taking the
test, and the number of successes corresponding to the number of pupils achieving
the required grade. Thus, the model will take the general form:

z; ~ Bin(logit(Sx;B), n,)

where X is a matrix of census variables, so that {X};, is the Ith census variable for
zone j, and x; is the jth column of this matrix, S is a smoothing matrix, z; is the
school performance for school i and B is a vector of regression coefficients. Assume
also that there are m; schools, m, census zones and n15 census variables. Thus, S has
m; rows and m, columns, X has m, rows and m; columns, and therefore SX has m1,
rows and m; columns.

The smoothing matrix S has rows that provide a vector of weights, summing to
unity, which are used to provide a weighted mean of the census variables. Typically
s;; will be a monotone decreasing function of the distance between the centroid of
census zone i and school j. Note that the dimensions of X and p (the vector of
binomial probabilities) need not match, as they do in a standard general linear
model. This is because the smoothing matrix, S, is not square (unless the number of
schools equals the number of census zones), so that SX plays the role of the usual
design matrix in a general linear model. In a more informal notation, the model
used here takes the form:

school performance =/ (smoothed census variables, random error)

In this paper, S will be assumed to depend on a number of parameters in a vector k
say, where k is unknown. Thus, in the following analyses it is intended to make
inferences about both B and k. These correspond to the relationships between the
census variables and schools’ performance, and the size of the catchment areas (or
more directly the area of smoothing) over which the latter should be measured. In
its simplest form k will be replaced by a scalar &, a universal smoothing bandwidth
for all schools.

A Bayesian approach will be used for this analysis, using Monte-Carlo Markov
Chain (MC)? methods to simulate the posterior distributions for 8 and k. There are
a number of reasons for adopting this approach. Firstly, one may wish to investigate
posterior distributions of some functions of f and k, and secondly, one may wish to
replace fixed effects of B and k by random coefficients—this will be discussed in the
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next section. Although this may be addressed in a non-(MC)? framework, this
approach allows the exploration of models which do not provide convenient analytical
forms for the posterior distributions of unknown coefficients.

In the following sections, a more detailed formulation of the model will be given,
followed by a brief outline of the (MC)? methodology. The ideas in these sections
will then be combined in a subsequent analysis of the data. Finally, the implications
of the analysis and related ideas will be discussed.

2. Model Formulation

There are three factors that complicate the issue of school performance assessment.
Firstly, although a school catchment area can be defined in terms of the home
addresses of pupils, it has also been suggested that it is not only the home
characteristics of pupils that affects performance, but also that of their neighbourhood
(Coombes & Raybould, 1997). For the furthest-flung pupils, then, it is possible that
social characteristics of places even further away from schools than the outside edges
of the catchment areas might have some effect on exam performance—see Figure 1.

This simply reinforces the ‘fuzziness’ of the situation—it is known that overlapping
fuzzy zones are linked to school performance, but not how large these zones are. In

’ School

Catchment Area

@ Wards

Figure 1. How areas beyond schools’ catchments could affect school exam per-

formance: social conditions in the neighbourhoods of pupils could affect their

performance. If the school’s catchment above is the light grey zone, it is seen that

neighbourhoods whose social conditions could affect school performance (black
boundaries) extend beyond this.
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set theoretical terms, the union of the areas in Figure 1 is the area likely to influence
school performance, but one does not know the extent of this area. This is something
that will need to be considered in the model.

This has more implications for the interpretation of the model than for the
calibration. Suppose that initially one assumes that a universal smoothing parameter
can be specified, say k. Then treat k& as an unknown model parameter and calibrate
it in the analysis. This way, some information about the size of the area around a
school whose social conditions affect performance will be gained. However, one does
not know whether this size corresponds to the schools’ catchment area, or to an
area extending beyond this, as in Figure 1. A calibrated value for k gives a general
idea of the overall area size, but not of its decomposition into catchment area and
‘outer ring’. This could only be understood with further data about home address
for the pupils of each school. Essentially, the catchment boundary on Figure 1
cannot be explicitly determined without this data.

The second issue relates to the distribution of pupils in the catchment area and
surrounding neighbourhoods. It is unlikely that the students are uniformly distributed
within their catchment area. Although parental choice is the guiding principle for
school allocation, in part this choice will be based on the distance between home
and school—so it seems reasonable that there will be some fall-off of density of
pupils’ home addresses as one moves away from any school.

This is reflected in the shape of the kernel smoothing function. It is unlikely that
the spatial distribution of a school’s pupils will be uniform over a catchment area—
it is more likely that as one moves away from a school, there will a decrease in the
number of pupils per unit area. Thus it seems reasonable to weight the census
variables closer to a school more highly than those further away. Essentially, this
justifies a kernel smoothing approach. For any given school, an individual perfor-
mance predictor will be a weighted average of all values of a single census variable,
with the weighting greater for census wards close to the school. Suppose the census
variable is x;;, where j runs from 1 to m,. Then the /th predictor for school i is

nmy
+ 8 X 2
Jj=1

A kernel-based approach is achieved if one sets, for example
s; =aexp( —d}/k?) (3)

where ais chosen so that Rz s5; =1, and d,j is the distance between the centroid of
zone j to school i. A model of this form ensures that the /th predictor for school i
depends on the values of nearby values of x;;,. Although a Gaussian form for the
kernel is chosen here, other choices may work equally well. Much research into
smoothing operators has shown that specific functional form for the kernel is
unimportant, so long as a monotone decrease with d;; occurs.

3. Bayesian Inference and (MC)*

Models of the above kind may both be calibrated using Bayesian techniques and
(MC)? methods. Since these approaches are less commonly used than standard
classical inference and maximum likelihood techniques, this section provides a brief
overview.



Schools’ Catchment-based Performance Modelling 13

Bayesian analysis is essentially simple. Suppose one has a probability model for a
set of observations {z;...z,}, dependent on some unknown parameter h. For
example, {z,...z,} could be drawn from a binomial distribution with unknown
parameter h and known parameter n;, as in the schools’ performance example.
Although one does not know the exact value of h, suppose one can at least provide
a probability distribution for this value. Then there are two probability statements
to consider: the probability distribution for h, p(h) say, and the probability distribution
for the {z,...z,} given h. Refer to the latter as f{(z, ...z, h). What one would like to
do is to use {z;...z,} to find out more about h. That is, one would like to find out
the probability distribution of h given {z,...z,}, written as p(hlz,...z,). Bayes’
theorem gives exactly this:

phlzy...z)oc p(h) f(z ...z, h) @]

Here the convention of denoting probability distributions for the parameters as p(.),
whilst probability distributions for the observations are denoted as f{.) will be
followed. The constant of proportionality is chosen to ensure that p(hlz,...z,) is
normalized—that is, that it integrates (or sums, if h is discrete) to unity over the
allowable range of h. On many occasions, finding the value of this constant can be
difficult or even impossible to solve analytically. However, this problem can be
circumnavigated by simulation. In particular the technique of rejection sampling
(Gelman et al., 1997) allows random sampling from an unnormalized distribution.

At this stage, the analytical and computational basis to make inferences about a
single scalar parameter h given a set of observations is provided. It is also possible
to compute point estimates of h based on the mean or mode of the posterior
distribution. However, in real-life problems one usually needs to consider several
parameters. For example, in (6) one needs to estimate | and the elements of B.
Theoretically, the Bayesian framework can be extended to this situation. One
simply needs to consider the prior distribution and the data model as multivariate:
p(h,...h )and p(z;...z, h;...h,). As in the univariate case, simulation provides a
useful way to overcome the often difficult problems of normalization. Since it is
convenient to consider non-normalized probability expressions, this suggests that
rejection sampling should again be used.

However, although this is theoretically possible, for high-dimensional probability
distributions this is extremely computationally inefficient. A more workable alterna-
tive is to make use of the Gibbs sampler (Geman & Geman, 1984). This provides a
technique for simulating draws from the posterior distribution of the parameters,
p(hy...h,lx;...x,) given expressions for the univariate conditional distributions of
each h;, say p(h;|h;...h,_;, h;4;...h,, x;...x,,). This expression is essentially the
posterior distribution for h;s assuming all of the other parameters are known. Clearly
one can use rejection sampling to simulate random h;s in this case, as this distribution
is univariate. Given that this can be done for each i€{l...m}, the Gibbs sampling
procedure is set out below:

1. Supply initial guesses for {h,...h,}. Call these {h{?)... h{"}.
2. For each h;: Simulate a random h; from the distribution
p(hl‘hﬁo) . hg(ﬂhhg(yl .o .hg’)),zl .o .Zm).

3. Call the new simulated parameter set {h{"...h{D}.
4. Return to step (2) a number of times, each time simulating a parameter set
{h{...h%)} from the previous set {h{=D...hJ =D},
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If this cycle is repeated a sufficient number of times, it can be shown (Geman &
Geman, 1984) that the process ‘forgets’ the initial guesses for {h,...h,} and the
final {h{)...h)} is distributed as p(h; ...h,, [x; ...x,). Thus, by a series of univariate
simulations, the multivariate posterior distribution for {h;...h,} can be simulated.
Furthermore, for future Gibbs samples, the output of the previous run, {h{’...h{)}
can be used as the initial guess for the next run. After this, there should be some
checking to see when the initial guesses for {h;...h,} have been ‘forgotten’—see for
example Gelman et al. (1997). The early simulation cycles over which the initial
conditions have influence are known as the burn-in. The simulated values from the
burn-in should be discarded. It is sometimes also useful to check for serial correlation
in the simulations. If this is apparent, the final simulated values should be produced
by thinning the series, that is selecting only every gth simulation, where ¢ is some
small positive integer.

Once the above procedures have been followed, it is possible to investigate the
properties of multivariate posterior distributions empirically, by examining the output
of the simulation. Typically, one can consider the joint probability distribution of a
subgroup of parameters, or one can consider the marginal distribution of each
parameter in turn.

4. Analysis of Schools’ Data

The following section outlines how the above methodology may be applied to the
schools’ data, and lists results. The analysis takes place in three stages. Firstly the
universal bandwidth model is fitted. Using the output from this, geographically
smoothed patterns in explanatory variables can be derived. Finally, a variable
bandwidth model is considered. Results are considered for each stage in turn.

4.1. The Basic Approach

For an initial analysis of the schools’ data model, a universal catchment model will
be considered. The performance data considered is the 1997 Primary School (Key
Stage 2) Performance Results in English for schools in Tyne and Wear (The Times,
1998). As a predictor variable, ward-based male unemployment rates (as proportions
between 0 and 1) in Tyne and Wear are used. There are 120 wards in the study area,
and 403 schools. The locations of schools and wards are shown in Figure 2.

In this instance, B is a two-element column vector, (b,, b;)’, where b, is an
intercept term and b, is a regression coefficient for (smoothed) unemployment rates.
As discussed earlier, it is these coefficients together with &, the universal smoothing
bandwidth, which must be estimated. Using simulation, it is intended to draw from
the distribution p(by, by, k z, ...z, ) to make inferences about the three parameters.
The results presented below are based on (MC)? simulation techniques using a Gibbs
sample r as discussed in the previous section.

4.2. Results of Basic Model

For the schools’ data, 1050 simulations were run based on the methodology stated
above. The first 50 simulations were discarded as ‘burn-in’. Thus, 1000 random draws
from the joint posterior distribution of by, b, and k were produced.

For the basic analysis, one is interested in the marginal posterior distributions of
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Figure 2. Relationship between census wards and school locations in Tyne and Wear:
ward boundaries are shown as outlines and each circle represents a school.

by, b, and k. These can be summarized by the means of the simulations (giving point
estimates of the parameters), and by the standard deviations of the parameters
(giving posterior standard deviations, the Bayesian equivalent of standard errors).
These are shown in Table 1.

From this it can be seen that it is unlikely that any of the parameters are equal to
zero on the basis of posterior distributions. This is a Bayesian statement similar to
stating that all parameters differ significantly from zero in a classical framework.
Note also that b, is negative—suggesting that higher surrounding levels of unemploy-
ment tend to affect school performance adversely, as one might expect. Finally, the
universal catchment area bandwidth is about three-quarters of a kilometre. How
may this figure be interpreted? Consider the smoothing process as taking a weighted
average of unemployment rates. If a census ward is a distance d from a school, its
weight is exp( — d?/2k?). If the weight is 0.01, then d is about three times k. Thus, it
is reasonable to state that the effective extent of the kernel is about three times k.

Table 1. Results of the basic model calibration using (MC)?2.

Estimate 1 and Std. Dev. 1 use an upper limit of 10 km on the

prior for k. Estimate 2 and Std. Dev. 2 use 20 km. k is measured
in metres. Note that results agree to two significant digits

Parameter  Estimate 1 Std. Dev. 1 Estimate 2 Std. Dev. 2
k 764 10.6 767 10.6
by 1.4 0.06 14 0.06

b, =50 0.30 -5.0 0.3
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Here, the extent is about 2.2 km. This may seem like a very low figure, but it should
be considered that the data here relate to primary schools and typically these tend to
serve relatively small neighbourhoods. It is speculated that for secondary schools the
bandwidth would be larger.

More detailed information about the marginal posterior distributions of the
parameters can be obtained by drawing histograms. This will produce images of the
estimated posterior distributions. These histograms are shown in Figure 3. The
production of this kind of plot is one of the advantages of a Bayesian approach.

o T L L L L
12 125 13 135 14 145 15 155 18

Probabiity Density
3

0058 D0s6 0054 0052 D05 D048
Unemglayment Coaflicient

Figure 3. Posterior distributions of model parameters: from top to bottom by, b,
and k.
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Rather than simply obtaining a point estimate or confidence intervals for the
unknown parameters, richer information is provided by the posterior distribution.
For example, it can be seen here that the posterior distribution for k is skewed to
the right, whilst those for b, and b, are closer to symmetry.

Finally, the goodness of fit of the model is assessed. To do this, standardized
residuals are mapped. Since the values of z; for each school are assumed to follow a
binomial distribution, we can compare the actual proportion of pupils attaining the
desired grade in English z,/n;, against p;, the predicted proportion using the basic
model. The variance of z,/n; is p,(1 —p,)/n;, so the standardized residual is

r :’zll/ni_pi (5)

 Ra-_p)n

The pattern of r;s is mapped in Figure 4, showing where either r;<< —2 or r;>2.
Here it can be seen that high positive and high negative values of r; tend to cluster
(suggesting there is further spatial grouping than explained in the basic model). The
high number of residuals whose standardized absolute value exceeds 2 also suggests
that there is some extra-binomial variation in the model. One approach to modelling
this is to include a random intercept coefficient in the basic model, allowing for an
individual school’s effect in addition to the environmental effect modelled above. An
alternative approach, which may also address the geographical grouping, is discussed
in the following section.

+ Positive z
- Negative z

Figure 4. Standardized residuals for the basic model.
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4.3. Mapping Geographical Effects

In the universal catchment model the smoothing parameter is the same for any
location. This suggests that one could pick any location (u, v) in the study area and
obtain a predictive distribution of the performance for a hypothetical school sited at
this location. More specifically, one can obtain estimates of the mean of this
distribution. Since the mean is a scalar, it may be considered as a function of the
two location variables, say fu,v). This function can then be mapped, illustrating
expected school performance patterns given the geographical data relating to un-
employment. Alternatively, one can consider the smoothed unemployment index
evaluated at the hypothetical school location (u, v). This can also be thought of as a
function, say U(u, v). A map of this shows the ‘best’ smoothed unemployment surface,
in the sense that it provides the best predictor of performance. The latter approach
is useful if there are several indicators, since the geographical effect of each indicator
may be mapped in turn.

All of the above would be straightforward if one knew the values of k, b, and b,.
However, we only have probabilistic information about these—as shown in Figure 3.
This leads to ‘fuzziness’ in our estimate of fu,v) and u(u,v)—and analytical
difficulties in finding a closed form expression for E(U(u, v)) or E(f(u,v)). However,
the fact that an (MC)? simulation approach is being used can be of help here. To
estimate E(U(u,v)) one simply computes the smoothed indicator u(u,v) for each
simulated k value, and takes the average. Doing this over a grid of (u, v) points leads
to a surface estimate. A similar approach may be used to estimate E(f(u,v)), where
the simulated values of b, and b, are also used. To illustrate the method, estimates
of E(U(u,v)) are computed, for (u,v) points positioned on a hexagonal grid and
shown in Figure 5. Notable features in the map are the higher levels of unemployment
around the city centres of Newcastle and Sunderland, particularly following the line
of the River Tyne.

4.4. The Local Catchment Area Model

Having considered the basic model above, and noted the degree of extra-binomial
variation, one has to consider other possible sources of variation in the model. For
example, one could ask whether the same catchment area characteristics apply to all
schools. It is quite possible that some more popular schools have a wider catchment
area. This could be due to a number of reasons—for example Roman Catholics may
be more willing to send their children to a Roman Catholic school in favour of a
closer non-denominational school. Similarly, one might expect rural schools to have
a wider catchment area than urban schools. For this reason, one must seriously
consider the possibility of applying different catchment areas to each school.

This can be tackled in a number of ways. In all of these, one must replace the
scalar k in the model by an m,-dimensional vector k, where {k}, is a kernel bandwidth
for the ith school. If some details of each school were available, such as whether the
school was independent or state-funded, or whether it was associated with a
particular religious denomination, then it might be possible to model each k; as a
function of these factors. This would lead to a number of subgroups of the data
each having a separate value of k estimated. Unfortunately, such information is not
available in the data set supplied. It is also possible that appropriate values of k
might vary geographically—for example rural state schools are likely to have larger
catchment areas than urban ones.
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Unemployment %
Il >28.800
-20.463
[@>15.579
E>12.250
[CJ>7.604

Figure 5. Smoothed unemployment figures. Note the use of a hexagonal grid, rather
than the usual rectangular grid. This was found to give a more easily readable map.

These complications make it necessary to assume that each school has its own
catchment area. In this case, there could be m; distinct values of &; in k. This leads
to complications in itself—there are now a very large number of parameters to
estimate.> One way of overcoming this is to adopt a hierarchical model (Good, 1965).
In a model of this sort, the elements of k are assumed to be random variates from
some distribution, and the parameters for this distribution are estimated. Typically,
there will be only one or two parameters in this distribution, which will greatly
reduce the dimensionality of the parameter estimation problem. Here k; is modelled
as exponentially distributed, with mean I. Thus, model (1) is extended to become

z; ~ Bin(logit(S,x;B), n;) where k; ~ Exp(l) (6)

Note the smoothing matrix is written here as S, to emphasize its dependence on k.
There is now only one k-related parameter to estimate, 1. It is, however, possible to
obtain conditional distributions for the individual k;s given the data and g and 1—
so that conditional estimates of individual catchment area sizes can be computed.
The original model (1) is thus extended to (6). (MC)? analysis applied to the
extended model is quite similar to the simpler case. To simulate a draw of the random
vector B given I, one firstly generates a set of m; k-parameters. Each of these
produces a set of weights for each of the m; schools. Using these, a set of m,
unemployment indicators is computed. On the basis of this, using the technique in
Section 4.1, a simulated {b,,b,} pair is generated. The second part of the (MC)?
cycle is to simulate I given {b,,b,}. This is done using the inverse-CDF method, in
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Table 2. Results of the local catchment model

calibration using (MC)?. 1 is measured in

metres. Note that posterior SDs are greater
than for the universal catchment model

Parameter Estimate Std. Dev.
1 978.0 63.2
by 1.5 0.10
b, =57 0.53

the same way that k& is generated in Section 4.1, with the posterior density distribution
modified to take into account the random coefficients.

Carrying out simulations in the above manner allows the investigation of b, b,
and I in the local catchment model. However, it is also useful to estimate the
individual bandwidths for each school, {k;}. It is possible to derive the expression
for p(k,;/1,by, by, z;)* and to generate a draw of k; from this distribution for each i
during each cycle of the simulation. Averaging these gives individual estimates of k;
for each school.

The results of the (MC)? simulation are given in Table 2.

Note that the regression coefficients both have slightly higher estimated values,
and that posterior standard deviations are now greater for all parameter estimates.
This is perhaps unsurprising as the random catchment assumption adds greater
uncertainty to the model.

The individual k; estimates are now shown in map form (Figure 6). From this it
can be seen that although there is some tendency for schools further from urban

O k=1200m
o k=600m

1

1 Km

Figure 6. Local catchment area results. Note that size of catchment does not seem to
relate to geography in a simple urban/rural way. This suggests catchment can vary
greatly even between proximal schools.
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centres to have larger catchment areas, this is by no means the only factor to affect
catchment area. It is possible, for example, that some relatively remote schools have
their catchment in one small village, and conversely, that some more popular urban
schools attract pupils from relatively large distances.

5. Conclusions

In this paper, a model for schools’ performance has been proposed, based on social
and economic characteristics of a geographical area surrounding the school. Clearly,
the technique need be applied exclusively to modelling school performance—there
are a wide number of geographical problems that could be addressed using this kind
of model. There are a number of further ways in which the model could be extended.
For example, if they were available, some variables measured at the individual school
level (say Y) could also be used to predict performance. This could be quite simply
incorporated into the Bayesian framework, by replacing SX with

SX

Y
in model (1) or (6). There are also a wealth of Bayesian diagnostics and model
comparison methods (Kass & Raftery, 1995; Rubin, 1981) which could be used in
this context.

Rather than prescribing the extent of the area, this quantity is treated as a
parameter in the model to be inferred from the data. This is believed to be important
in a methodological sense. In most quantitative geographical studies, the zones over
which quantities are aggregated are fixed before statistical analysis takes place.
However, an effect first noted by Gehlke and Biehl (1934), later popularized as the
modifiable areal unit problem (MAUP) (Openshaw, 1984) implies that geographical
patterns can change when these zones of aggregation are altered. This variability
introduces a degree of uncertainty into the model not acknowledged when the
standard practice is adopted. It seems reasonable that statistical models of geograph-
ical processes should make some attempt to analyse the geography itself, rather than
treating it as an a priori certainty. It is hoped that this and related techniques will
provide a means of addressing this issue.

Notes

1. It might be preferable to measure the actual test scores, but the data are officially released in this
format.

2. The exact number is m; +myj, for only m; observations.

3. Note that k; only depends on the observed data {z;...z,,} only through z since the values of z and k
are both independently distributed.
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