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Local Forms of Spatial Analysis

Local forms of spatial analysis focus on exceptions to the general trends repre-
sented by more traditional global forms of spatial analysis. There is currently a
rapid expansion in the development of such techniques but their history almost
exactly parallels that of Geographical Analysis, with the first examples of local
analysis appearing in the late 1960s. Indeed, Geographical Analysis has pub-
lished many of the significant contributions in this field. This paper reviews the
development of local forms of spatial analysis and assesses the current situation.
Following a discussion on the nature and importance of local analysis, examples
are given of local forms of point pattern analysis; local graphical approaches; local
measures of spatial dependency; the spatial expansion method; adaptive filter-
ing; multilevel modeling; geographically weighted regression; random coefficients
models; autoregressive models; and local forms of spatial interaction models.

Throughout its history, quantitative human geography has been faced with a
difficult question and a potential dilemma: are there any “laws” that govern spa-
tial processes, and if there aren’t, does the subject matter have any validity? The
exuberances associated with a youthful, and to some extent, “revolutionary,”
subject matter perhaps blinkered some geographers into thinking that, just as
in the natural sciences, there were laws awaiting discovery that would explain
most, if not all, aspects of human spatial behavior. This was always going to be
a very difficult position to defend, especially when it became clear that results
derived from one system could generally not be replicated in another. While we
could claim some success in deriving new types of spatial analytical procedures
and new forms of spatial models, the application of these new techniques
seemed to pull us back to our descriptive, nonquantitative roots by often yield-
ing quite different results in different systems which demanded unique explan-
ations. Vexingly, certain explanatory variables would be highly relevant in some
applications and seemingly irrelevant in others; parameters describing the same
relationship would sometimes be significantly negative and sometimes be signif-
icantly positive; and the same models would replicate spatial patterns extremely
accurately in some systems but not in others. Quite understandably, in the light
of such findings, quantitative geographers came under attack from their non-
quantitative colleagues for their pursuance of global statements of spatial
behavior [see Jones and Hanham (1995), for a fuller discussion of this issue
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and a link between realists and positivists through local analysis]. Partly as a
response to such attacks, there has been a recent surge of interest in what are
known as “local” forms of spatial analysis and modeling that involve spatial dis-
aggregations of the more traditional “global” approaches (Fotheringham 1992,
1997; Fotheringham and Rogerson 1993; Openshaw 1993). However, the ear-
liest works on local spatial modeling predate this recent interest considerably
(Linneman 1966; Monmonier 1969; Casetti 1972; Greenwood and Sweetland
1972; Chisholm and O’Sullivan 1973).

Models of spatial processes and methods of spatial analysis have usually been
applied at a global level, meaning that one set of results is generated from the
analysis and these results, representing one set of relationships, are assumed to
apply equally across the study region. Essentially, what is being undertaken in a
global analysis, but is rarely acknowledged, is the generation of an “average” set
of results from the data. If the relationships being examined vary across the
study region, the global results will have limited application to specific parts of
that region and may not, in fact, represent the actual situation in any part of it.
Calibrating a global model is therefore akin to being given the information that
“the average precipitation in the United States last year was 32 inches.” This is
a “global” statistic in that it provides information about the study area in gen-
eral but not necessarily about any specific part of it. Consequently, it is of little
use if precipitation does vary locally.

In this paper, we review the powerful movement within spatial analysis,
termed local analysis or local modeling, where the focus of attention is on iden-
tifying spatial variations in relationships rather than on the establishment of
global statements of spatial behavior. The movement encompasses the dissec-
tion of global statistics into their local constituents and the concentration on
local exceptions rather than the search for global regularities. This is important
not only because it brings issues of space to the fore in spatial analysis, but also
because it demonstrates that some forms of quantitative geography are not con-
cerned with the search for global generalities and “laws,” a point made elo-
quently by Jones and Hanham (1995).

THE NATURE OF LOCAL VARIATIONS IN RELATIONSHIPS

In spatial data analysis, the data about which relationships are to be examined
are drawn from spatial units. In a univariate analysis, these data are used to es-
timate a single relationship, such as the degree of spatial autocorrelation within
the data. In a multivariate analysis a set of relationships is estimated. In either
case, the relationships being estimated are typically global and are assumed to
be stationary over space. That is, for each relationship a single parameter esti-
mate is implicitly assumed to depict the nature of that relationship for all points
within the entire study area. Clearly, any relationship which is not stationary
over space, and which is said to exhibit spatial nonstationarity, will not be mod-
eled particularly well by a single parameter estimate and indeed this global es-
timate may be very misleading locally.

It is useful to speculate on why relationships might vary over space. In fact,
this issue raises an interesting and as yet unsolved puzzle in spatial analysis. Are
the observed spatial variations in relationships simply due to model misspecifi-
cation or are they due to intrinsically different local spatial behavior? In a nut-
shell, can all contextual effects be removed by a better specification of individ-
ual level models (Hauser 1970)? The idea that human behavior can vary
intrinsically over space is consistent with postmodernist beliefs on the impor-
tance of place and locality as frames for understanding such behavior. However,
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is the role of place simply a surrogate for individual-level effects which we can-
not recognize or measure? This view, more in line with the positivist school of
thought, assumes a global statement of behavior could ultimately be made but
that the structure of our model is not sufficiently well formed to allow us to
make it. That is, the model from which the relationships are measured is a gross
misspecification of reality and one or more relevant variables are either omitted
from it or are represented by an incorrect functional form. When the nature of
the misspecification is identified and corrected, the local variations in relation-
ships will disappear.

Local forms of spatial analysis and local spatial models attempt to provide ev-
idence on the nature of possible significant spatial variations in relationships.
The spatial distribution of local relationships can inform on potential causes of
misspecification bias so that ultimately all misspecification bias could, in theory,
be eliminated. We can still only speculate on whether if one were to achieve
such a state in human geography, all significant spatial variations in local rela-
tionships would be eliminated. The reason for this is that we can never be com-
pletely confident that our models are correct specifications of reality because of
our lack of theoretical understanding of the processes governing human spatial
behavior. In some ways, there is a chicken-and-egg dilemma here. We can
never completely test theories of spatial behavior because of model misspecifi-
cation but model misspecification is the product of inadequate spatial theory.

However, all is not lost: in specific applications of any form of spatial model,
we can ask whether the current form of the model we are using produces sig-
nificant local variations in any of the relationships in which we are interested.
If the answer is yes, then an examination of the nature of the spatial variation
can suggest to us a more accurate model specification or the nature of some in-
trinsic variation in spatial behavior. In either case, our knowledge of the system
under investigation will be improved, in some cases dramatically.

Given the potential importance of local statistics and local models to the un-
derstanding of spatial processes, and given the development of what are known
as variable parameter models (VPMs) in aspatial contexts (Maddala 1977;
Casetti 1997), it is surprising that local forms of spatial analysis are not more
frequently encountered. However, there have been some notable contributions
to the literature on spatially varying parameter models which we now describe.
These developments can be divided into three categories: those that are fo-
cussed on local statistics for univariate spatial data, which include the analysis
of point patterns; those that are focussed on more complex multivariate spatial
data; and those that are focussed on spatial patterns of movement.

MEASURING LOCAL RELATIONSHIPS IN UNIVARIATE DATA
Local Point Pattern Analysis

The analysis of spatial point patterns has long been an important concern in
geographical enquiry (Getis and Boots 1978; Boots and Getis 1988). Until rela-
tively recently, however, most applications of spatial point pattern analysis
involved the calculation of some global statistic that described the whole point
pattern and from which a conclusion was reached related to the clustered, dis-
persed, or random nature of the whole pattern. Clearly, such analyses are
flawed in that interesting spatial variations in the point pattern are subsumed
in the calculation of the average or global statistic. In many instances, particu-
larly in the study of disease, such an approach would appear to be contrary to
the purpose of the study, namely to identify any interesting local clusters.
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One of the first developments for the local analysis of point patterns was the
geographical analysis machine (GAM) developed by Openshaw et al. (1987) and
updated by Fotheringham and Zhan (1996). These are the basic components of
a GAM:

1. a method for defining subregions of the data;
2. a means of describing the point pattern within each of these subregions;
3. a procedure for assessing the statistical significance of the observed point
gattem within each subregion considered independently of the rest of the
ata;
4. a procedure for displaying the subregions in which there are significant pat-
terns as defined in 3.

The basic idea outlined in Fotheringham and Zhan (1996) is very simple and
serves to demonstrate the interest in the local quite well. Within the study region
containing a spatial point pattern, randomly select a location and then randomly
select a radius of a circle to be centered at that location. Within this random
circle count the number of points and compare this observed value with an
expected value based on an assumption about the process generating the point
pattern (usually that it is random). Ideally, the population-at-risk should be used
as a basis for generating the expected value, as shown in Fotheringham and
Zhan (1996) who use a Poisson probability model with the observed mean and
the population-at-risk within each circle. Once the statistical significance of the
observed count within a circle has been examined, the circle is drawn on a map
of the region if it contains a statistically significant cluster of points. The process
is repeated many times until a map is produced containing a set of circles cen-
tered on parts of the region where interesting clusters of points appear to be
located.

The use of automated cluster detection techniques as described above
assumes that not all parts of the study region have the same pattern of points
even when the underlying at-risk population distribution is taken into account.
This is quite different from classical approaches such as various neighbor statis-
tics and quadrat analyses that produce global statistics (inter alia Dacey 1960;
King 1961; Tinkler 1971; and Boots and Getis 1988). The GAM-style of analysis
concentrates on spatial variations and spatial differences in the location of
points and hence produces truly local rather than global statistics. It is meant
to be an exploratory technique for highlighting interesting parts of the data,
rather than as a formal significance testing procedure. As with all local statistics,
GAM-generated statistics are enhanced by, and are even dependent on, the
ability to map the results so that variations over space can be easily visualized.

Local Graphical Approaches

Since the beginnings of Geographical Analysis there have been marked
advances in the speed and availability of computers. One aspect of computing
that has changed dramatically has been the user interface. In the early years of
quantitative spatial analysis, analysts interacted with computers using punched
cards and paper tapes, and would see the outcomes of their requests in the
form of textual printout. Currently computing is a highly interactive activity
with input and output of information carried out through graphical user inter-
faces. One consequence of this for spatial analysis has been the rise of explor-
atory graphical techniques which tend to emphasize the local nature of relation-
ships. In particular, using software such as MANET (Unwin et al. 1996), and
XLISP-STAT (Tierney 1990; Brunsdon and Charlton 1996), it is possible to
link maps of spatial data with other noncartographical representations (such as
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scatterplots or dotplots). Selecting an object on one representation highlights
the corresponding object on the other [an early example of this is Monmonier
(1969)]. For example, if a scatterplot reveals a number of outlying observations,
selecting these points will highlight the zones corresponding to these on a map.
Similarly, selecting a set of points or zones on a map will highlight the corre-
sponding points on a scatterplot. In this way, the spatial distribution of an attri-
bute for a locally selected region can be compared to the distribution of the
same attribute across the study area as a whole. Using techniques of this sort,
combined with a degree of numerical preprocessing, it is possible to carry out
a wide range of exploratory tasks on geographical data that are essentially local.
For example, one can identify multivariate clusters in data and investigate
whether these are also associated with geographical clusters. One can also iden-
tify spatial outliers—that is, cases that are locally unusual even if not atypical
for the data set as a whole. More complex graphical techniques for depicting
local relationships in univariate data sets include the spatially lagged scatterplot
(Cressie 1984), the variogram cloud plot (Haslett et al. 1991), and the Moran
scatterplot (Anselin 1996).

Local Measures of Spatial Dependency

Measures of spatial dependency have a relatively long history in quantitative
geography (inter alia Cliff and Ord 1972; Haining 1979). These measures,
though, have been applied globally so that one statistical measure is generally
produced that describes an “average” degree of spatial dependency across the
whole study region. However, local versions of these global univariate statistics
have recently been developed by Getis and Ord (1992), Ord and Getis (1995)
and by Anselin (1995). Getis and Ord (1992), for example, develop a global
measure of spatial association inherent within a data set that measures the way
in which values of an attribute are clustered in space. A local variation of this
global statistic is then formulated to depict trends in the data around each point
in space. There are two variants of this localized value depending on whether
the point i around which the clustering is measured is included or not in the
calculation. The local spatial association statistic allows that different trends in
the distribution of one variable might exist over space. In some parts of the
study area, for example, high values might be clustered; in other parts there
might be a mix of high and low values. Such differences would not be apparent
in the calculation of a single global statistic. In their empirical example, Getis
and Ord (1992) find several significant local clusters of sudden infant death syn-
drome in North Carolina although the global statistic fails to identify any signif-
icant clustering.

In a similar manner to that of Getis and Ord (1992), Anselin (1995) has
recently developed a local variant of the classic measure of spatial autocorrela-
tion, Moran’s I. Spatial autocorrelation is traditionally measured globally so that
the statistic describes an average trend in the way a variable is distributed over
space. Where spatial data are distributed so that high values are generally located
near to high values and low values are generally located near to low values, the
data are said to exhibit positive spatial autocorrelation. Where the data are dis-
tributed such that high and low values are generally located near each other,
the data are said to exhibit negative spatial autocorrelation. Clearly these
descriptions are global ones and may not adequately describe the relationships
in all parts of the study area. Anselin’s development of a localized version of
spatial autocorrelation allows spatial variations in the arrangement of a variable
to be examined. Anselin (1995) presents an application of the localized Moran’s
I statistic to the spatial distribution of conflict in Africa and Sokal, Oden, and
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Thomson (1998) demonstrate its use on a set of simulated data sets. Other
studies of local Moran’s I include those of Bao and Henry (1996), Tiefelsdorf

?nd B)oots (1997), Tiefelsdorf (1998) and Tiefelsdorf, F otheringham, and Boots
1998).

MEASURING LOCAL RELATIONSHIPS IN MULTIVARIATE DATA

The increasing availability of large and complex spatial data sets has led to a
greater awareness that the univariate statistical methods described above have
limited application and that there is a need to understand local variations in
more complex relationships [see, for example, the attempts of Ver Hoef and
Cressie (1993) and Majure and Cressie (1997) to extend the local visual tech-
niques for autocorrelation described above to the multivariate case]. In response
to this, several attempts have been made to produce localized versions of tradi-
tionally global multivariate techniques. Perhaps the greatest challenge, given its
widespread use, has been to produce local versions of regression analysis. We
now examine several different responses to this challenge.

The Spatial Expansion Method

The expansion method (Casetti 1972, 1997; Jones and Casetti 1992) attempts
to measure parameter “drift.” In this framework, parameters of a global model
can be made functions of other attributes, including location, so that trends in
parameter estimates over space can be measured (Brown and Jones 1985;
Brown and Kodras 1987; Brown and Goetz 1987; Fotheringham and Pitts
1995; Eldridge and Jones 1991). Initially, a global model is proposed such as

y, = o+ frg+ - im + & (1)

where y represents a dependent variable, the xs are independent variables,
a,f,...T represent parameters to be estimated, ¢ represents an error term, and i
represents a point in space at which observations on the ys and xs are recorded.
This global model can be expanded by allowing each of the parameters to be func-
tions of other variables. While most applications of the expansion method (see
Jones and Casetti 1992) have undertaken aspatial expansions, Brown and Jones
(1985) and Eldridge and Jones (1991) show that it is relatively straightforward to
allow the parameters to vary over geographic space so that, for example,

o = g + ot + ogv; (2)

B = Bo + Brui + Bovi 3)
and

Ty = To + T1l; + Tav; (4)

where u; and v; represent the spatial coordinates of location i. Equations (2)-(4)
represent very simple linear expansions of the global parameters over space but
more complex, nonlinear, expansions can easily be accommodated.

Once a suitable form for the expansion has been chosen, the original param-
eters in the basic model are replaced with their expansions. For instance, if it
is assumed that parameter variation over space can be captured by the simple
linear expansions in equations (2)—(4), the expanded model would be
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y; = o + oy + ooy + Boxan + Bruixi + Bovixa + -+
T0Xim + T18i%im + To0Xim + &. (5)

Equation (5) can then be calibrated by ordinary least squares regression to pro-
duce estimates of the parameters which are then fed back in to equations (2)-(4)
to obtain spatially varying parameter estimates. These estimates, being specific to
location i, can then be mapped to display spatial variations in the relationships
represented by the parameters.

The expansion method has been extremely important in highlighting the con-
cept that relationships might vary over space and that the parameters of regres-
sion models applied to spatial data might exhibit spatial nonstationarity. It does,
though, have some limitations. One is that the technique is restricted to display-
ing trends in relationships over space with the complexity of the measured
trends being dependent upon the complexity of the expansion equations.
Clearly the maps of the spatially varying parameter estimates obtained through
the expansion method might obscure important local variations to the broad
trends represented by the expansion equations. A second is that the form of
the expansion equations needs to be assumed a priori although more flexible
functional forms than those shown above could be used. A third, and most
problematic, is that the expansion equations must be assumed to be determin-
istic in order to remove problems of estimation in the terminal model.

Adaptive Filtering

Another approach to regression modeling that allows coefficients to vary is
that of adaptive filtering (Widrow and Hoff 1960; Trigg and Leach 1968).
When applied to multivariate time series data, this method is used to compen-
sate for drift of regression parameters over time. Essentially, this works on a
“predictor-corrector” basis. In the time series case we assume a model of the
form

y, = xgfy + & (6)

in which ¢ is an index of discrete time points (usually assumed to be regular).
When a new multivariate observation occurs at time ¢, the existing regression coef-
ficients, B,_,, are used to predict the dependent variable. However, if the predic-
tion does not perform well, the values of the regression coefficient are “adjusted”
to improve the estimate. The adjusted coefficients are referred to as p,. The degree
of adjustment applied has to be “damped” in some way to avoid problems of over-
compensation. One could in most cases find a B, that gave a perfect prediction,
but that also fluctuate wildly and not give a good indication of the true values of
B at time ¢. A typical approach is to use an update rule of the form

ﬁjt = ﬂjt—l + Iﬂjt—llaj(yt ~y)/ly/| (M)

where B, is the jth element of B, y; is the predicted value of y, based on B,_,,
and ¢ is a damping factor controlling the extent to which correction is applied for
coefficient j.

Gorr and Olligschlaeger (1994) suggest applying adaptive filtering ideas to
spatial data—in an attempt to investigate the “drift” of regression parameters.
With spatial data the predictor-corrector approach becomes iterative. With time
series data one simply updates B;_, in terms of its nearest temporal neighbor at
time . Here a given case has a unique neighbor, and the flow of updating is one
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way. However, when considering a spatial arrangement of data, zones (or
points) do not have unique neighbors, and one has to update coeflicient esti-
mates several times. In addition to this, the flow of updating is now two way be-
tween a pair of neighboring zones which requires the process to iterate between
coeflicient estimates until some form of convergence occurs. If this does occur,
then the result should be a unique estimate of the regression coefficient vector
B for each case. The fact that the casewise correction procedure is damped, and
based on incremental corrections applied between adjacent zones, suggests that
some degree of spatial smoothing of the estimates of the individual elements of
B must take place. Thus, the method tends to produce models in which regres-
sion parameters slowly “drift” across geographical space. Local and regional
effects may be investigated by mapping the coeflicient estimates.

Multilevel Modeling

The typical geographical application of multilevel modeling attempts to sepa-
rate the effects of personal characteristics and place characteristics (contextual
effects) on behavior (Goldstein 1987; Jones 1991a, 1991b). Modeling spatial
behavior purely at the individual level is prone to the atomistic fallacy, missing
the context in which individual behavior occurs (Alker 1969), whereas modeling
behavior at the aggregate level is prone to the ecological fallacy, that the results
might not apply to individual behavior (Robinson 1950). Multilevel modeling
tries to avoid both these problems by combining an individual-level model rep-
resenting disaggregate behavior with a macrolevel model representing contex-
tual variations in behavior. The resulting model has the form:

Yy = % + Bxij + ey (8)

in which y,, represents the behavior of individual i living in place j; x; is the ith
observation of attribute x at place j; and a; and f; are place-specific parameters
where

% =&+ pf ©)
and

B =B+u. (10)

Each place-specific parameter is therefore viewed as consisting of an average value
plus a random component. Substituting (9) and (10) into (8) yields the multilevel
model,

yy = o+ Py + (e + 1f +ﬂfxij), (11)

which, because it contains three random components, cannot be calibrated by
OLS regression unless I’ and p; are zero, and specialized software is needed

such as Mln (Rasbash and Woodhouse 1995). Place-specific parameter estimates
can be obtained by estimating separate variance effects and substituting into equa-
tions (9) and (10).

Several refinements to the basic multilevel model described above have been
suggested. These include adding place attributes in the specifications for o; and
/)’j; extending the number of levels in the hierarchy beyond two (Jones, Gould,
and Watt 1996); and the development of cross-classified multilevel models
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where each lower unit can nest into more than one higher order unit (Goldstein
1994). Examples of the application of multilevel modeling to spatial data include
those of Jones (1997), Verheij (1997), Duncan, Jones, and Moon (1996), Jones
and Bullen (1993), Smit (1997), and Duncan (1997).

A problem with the application of multilevel modeling to spatial processes is
that it relies on an a priori definition of a discrete set of spatial units at each
level of the hierarchy. While this may not be a problem in many aspatial appli-
cations, such as the definition of what constitutes the sets of public and private
transportation options, or what constitutes the sets of brands of decaffeinated
and regular coffees, it can pose a problem in many spatial contexts. The defini-
tion of discrete spatial entities in which spatial behavior is modified by the
attributes of those entities obviously depends on such entities being identified.
It also implies that the nature of whatever spatial process is being modeled is
discontinuous. That is, it is assumed that the process is modified in exactly the
same way throughout a particular spatial unit but that the process is modified
in a different way as soon as the boundary of that spatial unit is reached. Most
spatial processes do not operate in this way because the effects of space are con-
tinuous. Hence, imposing a discrete set of boundaries on most spatial processes
is unrealistic. There are exceptions to this, however, such as where administra-
tive boundaries enclose regions in which a policy that affects the behavior of
individuals is applied evenly throughout the region and where such policies
vary from region to region. Examples where this type of behavior modification
might occur include education districts and health districts. Still, the application
of the multilevel modeling framework to continuous spatial processes awaits a
development, perhaps akin to that of the competing destinations model in spatial
choice. The latter is a continuous version of the discrete nested logit model of
spatial choice [see Fotheringham and O’Kelly (1989) for a further discussion].

Geographically Weighted Regression

Consider the global regression model given by
Yy, = ao + LiagXik + & (12)

In the calibration of this model, one parameter is estimated for the relationship
between each independent variable and the dependent variable and this relation-
ship is assumed to be constant across the study region. Geographically weighted
regression (GWR) is a relatively simple technique that extends the traditional re-
gression framework of equation (12) by allowing local rather than global parame-
ters to be estimated so that the model is rewritten as

Yy, = ap + Lxapikik + & (13)

where ay; represents the value of a; at point i (Brunsdon, Fotheringham, and
Charlton 1996, 1998; Fotheringham 1996, 1997a, 1997b, 1998). Note that the
global model in equation (10) is a special case of the GWR model represented
by equation (13) in which the parameters are assumed to be constant over space.

In the calibration of the GWR model it is assumed that observed data near to
point i have more of an influence in the estimation of the ays than do data
located farther from i. In essence, the equation measures the relationships
inherent in the model around each point i. Hence weighted least squares pro-
vides a basis for understanding how GWR operates. In GWR an observation is
weighted in accordance with its proximity to point i so that the weighting of an
observation is no longer constant in the calibration but varies with i. Data from
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observations close to i are weighted more than data from observations farther
away. Algebraically, the GWR estimator is

& = (X'WX)'X'W,y (14)

where the bold type denotes a matrix, &; represents an estimate of a;, the place-
specific parameters, and W; is an n by n matrix whose off-diagonal elements are
zero and whose diagonal elements denote the geographical weighting of observed
data for point i. That is,

wy 0 0 .. 0
0 Wi 0 0
Wi= 0 0 ws 0 (15)
0 0 0 e Wiy

where w;, denotes the weight of the data at point n on the calibration of the
model around point i. Clearly, these weights will vary with i which distinguishes
GWR from traditional weighted least squares where the weighting matrix is con-
stant. Typically, the weights are defined as continuous functions of distance so that
the closer is a data point to the calibration point, the greater is its weight in the
estimation of the parameters for that calibration point. Fotheringham, Brunsdon,
and Charlton (1999) define different types of weighting functions for GWR includ-
ing functions that can adapt themselves to the varying density of data points over
space when the data do not have uniform density.

There are parallels between GWR and that of kernel regression (Cleveland
1979; Cleveland and Devlin 1988) and drift analysis of regression parameters
(DARP) (Casetti 1982). In kernel regression and DARP, y is modeled as a non-
linear function of X by weighting data in attribute space rather than geographic
space. That is, data points more similar to x; are weighted more heavily than
data points that are less similar and the output is a set of localized parameter
estimates in x space. However, Casetti and Jones (1983) do provide a spatial ap-
plication of DARP that is very similar to GWR although it lacks a formal cali-
bration mechanism and significance testing framework and is treated by the
authors as a rather limited heuristic method.

It should be noted that as well as producing localized parameter estimates,
the GWR technique described above will produce localized versions of all stan-
dard regression diagnostics including goodness-of-fit measures such as r-squared.
The latter can be particularly informative in understanding the application of
the model being calibrated and for exploring the possibility of adding additional
explanatory variables to the model. It is also useful to note that the point for
which the GWR model is calibrated need not be a point at which data are col-
lected: calibration of the GWR model can be undertaken for any location.
Hence, in systems with very large numbers of data points, GWR calibration
can take place at predefined intervals such as at the intersections of a grid
placed over the study region. Not only does this reduce computing time but it
can also be beneficial for mapping the results.

As with all methods of generating local parameters, it is useful to assess the
question: “Does the set of local parameter estimates exhibit significant spatial
variation?” That is, what is the probability that the observed variance could be
due to randomness and does not reflect any underlying spatial variation in behav-
ior? Theoretical significance tests have been established for GWR (Brunsdon,
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Charlton, and Fotheringham 1999) and an experimental procedure is also avail-
able (Fotheringham, Brunsdon, and Charlton 1998).

The technique of GWR is a very generalizable one for spatial models. Any
model which can be weighted, can also be spatially weighted. Hence the tech-
nique can be applied to many situations and nonlinear versions of GWR are
possible, as are geographically weighted versions of principle components anal-
ysis, projection pursuit methods, and basically any form of linear or nonlinear
relationship can be made local in this way. For instance, Brunsdon et al. (1998)
use GWR as an alternative method of producing local spatial autocorrelation
measures by calibrating a local version of a spatially lagged linear model. Bruns-
don et al. (1999) also provide a series of localized versions of standard paramet-
ric and nonparametric descriptive statistics such as the mean, median, variance,
and skewness as well local versions of the Pearson and Spearman’s rank corre-
lation coefficients. For instance, a spatially varying Pearson’s correlation coeffi-
cient is

1/n 32wyl —x*)(y; — y*)
[1/n ¥y —x*)z] v [1/n > wyly; - y*)2]

= o (16)

where r; is the local correlation coefficient for point i, x and y are two variables
with means x* and y*, respectively, and wjy is the weight of the data at point j
for the calculation of r at point i.

Random Coefficient Models

In geographically weighted regression and the spatial expansion method local
variations in parameters are assumed to be smooth. An alternative approach
allows coeflicients to vary randomly for each case. For example, in a study of
several house sales one might specify a regression model where the dependent
variable is house price, and the independent variables are characteristics of the
houses. The classical linear regression approach would assume that the regres-
sion coefficient for a given variable would be the same for all cases—so that,
say, the presence of a second bathroom had an identical effect on house price
for any house in the study. The form this model would take is the familiar

y=Xp+¢ (17)

where X is a matrix of predictor variables (in this case house characteristics), p is
a vector of regression coefficients, y is a vector of response variables, and ¢ is a
vector of independent random error terms with distribution N(0,62). In terms of
individual cases, one might write

y; = Lyxy + & (18)
In the random coefficients approach, coefficients are assumed to vary from

case to case, and are drawn from some random distribution, typically the nor-
mal. In this case, our model becomes

y, = fyx,]ﬁ,] + ¢ (19)

where B; is now a random variable. For each variable j there are i draws of the
random Tregression coefficient from some distribution. Assuming this distribution
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to be normal, we have

By ~ N(B,3?). (20)

Calibrating a random coefficients model is then a task of estimating the
parameters of the distributions from which casewise parameters are drawn—in
this case {ﬂj,ajz} for all j and 62, the error term variance. Then, using Bayes’
theorem it is possible to estimate the value of the regression coefficient actually
drawn for each case. A further, nonparametric, extension of the technique is to
drop the assumption that the coefficients are drawn from a prespecified distri-
bution and to estimate the distribution itself from the data (Aitkin 1997).

The random coefficient modeling approach is not intrinsically geographical—
casewise regression coefficients are assumed to be drawn independently from
some univariate distribution and no attention is paid to the location of the cases.
Cases that are in close proximity to each other can have regression coefficients
drawn from very different looking distributions. However, the ability to estimate
the casewise regression coefficients does allow the possibility of mapping them
—and investigating geographical patterns. Indeed, when the data are spatial, and
a zone or point location can be associated with each case, then associating an
individual coefficient to each case implies an association between coefficients and
locations. In this way, local variability of certain types of models can be consid-
ered. Brunsdon, Aitkin, Fotheringham, and Charlton (1999) provide an empirical
comparison of the application of GWR and the random coefficients model to a
data set in which the spatial distribution of a health variable is related to the
spatial variability of a set of socioeconomic indicators.

Autoregressive Models

Recognizing that spatial data are not generally independent, so that statistical
inference in ordinary regression models applied to spatial data is suspect, a
number of attempts have been made to provide a more geographical approach
to regression that takes spatial dependency into account. These approaches may
generally be described as spatial regression models. They extend the standard
regression model by relaxing the assumption that the error terms for each ob-
servation are independent. In particular, if each observation is associated with a
location in space, it is assumed that the error terms for observations close to
each other are correlated. The vector of error terms, {¢;}, is assumed to have
a multivariate Gaussian distribution with a zero mean and a variance-covariance
matrix having nonzero terms away from the leading diagonal. This implies that
although any given ¢; will have a marginal distribution centered on zero, its con-
ditional distribution will depend on the values of the error terms for surround-
ing observations. For example, if nearby error terms tend to be positively corre-
lated, then given a set of positive error terms one would expect the error term
of another observation close to these to be positive also. That is, its conditional
distribution would be centered on some positive quantity rather than zero. Al-
though the output from such models still consists of global parameter estimates,
local relationships are incorporated into the modeling framework through the
covariance structure of the error terms. In this sense, these models can be
thought of as “semilocal” rather than fully local.

There are a number of approaches that work in this way. Perhaps the oldest
such technique is that of Kriging (Krige 1966). Here, it is assumed that the geo-
graphical data are a set of measurements taken at n points in geographical
space. Suppose one of these is a dependent variable and the others are predictor
variables. Then one could proceed to fit an OLS regression model, but this
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would ignore the spatial arrangement of the measurement points. An alternative
would be to assume that the covariance between any two error terms will be a
function of the distance between them. That is, if C is the variance-covariance
matrix for the n error terms, and D is the distance matrix for the sampling
points, then

Cy = f(Dy) (21)

where f is some distance-decay function. There are a number of restrictions on
the possible functional form of f, mainly due to the fact that C must be positive
definite in order for the model to be well defined. Typical functions might be
the exponential

Cy = o exp(~Dy/k), (22)
or the Gaussian
Cy = o® exp(—D} /k*) (23)

where the parameter o2 determines the level of variation of the error terms, and k
determines the spatial scale over which notable covariance between pairs of mea-
surements occurs. Essentially, k controls the degree of locality in the model—small
values of k suggest correlation only occurs between very close point pairs, whereas
large k suggests that such effects exist on a larger geographical scale.

Calibrating such a model is typically treated as a two-stage problem. Firstly,
one has to estimate ¢ and k, and once this has been done, the regression
model itself is calibrated using the formula

p=(x"cx)'x"cy ‘ (24)

where B is a vector of regression coefficients, X is a matrix of independent vari-
ables, X7 is its transpose, and y is a vector of dependent variables. C is the co-
variance matrix from the error term estimated using the parameter estimates
described above. However, this approach is not without its theoretical shortcom-
ings. In particular, it is assumed here that C is known exactly, whereas in reality it
is itself estimated from the data. A good discussion of the estimation procedure is
given in Bailey and Gattrell (1995) which reveals it to be something of a “black
art.” Although useful results can be obtained from this approach to modeling, cau-
tion should be exercised when drawing formal statistical inferences.

Recently, these objections have been addressed to some extent by Diggle,
Tawn, and Moyeed (1998). Here, the analytically awkward form of the likeli-
hood function for B, 62 and k is dealt with in a Bayesian context. In particular,
drawings from the posterior probability function for these unknown parameters
are simulated using Monte-Carlo Markov chain (MCMC) techniques. This is an
approach growing in importance in the field of applied statistics and is likely to
have a strong influence on spatial modeling in the future [see, for example,
Besag and Green’s (1993) discussion on this topic].

The last quarter century has also seen the growth of other kinds of spatial re-
gression models, particularly those applied to zonal data such as states, coun-
ties, or electoral wards. As with Kriging, one would expect that ordinary linear
regression models applied to data aggregated in this way would fail to encapsu-
late any spatial interactions taking place because local relationships in the error
terms are not represented in the simple nonspatial model. In spatial regression
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models, zonal proximities are taken as surrogates for local relationships and are
typically measured by a contiguity matrix, an n by n matrix whose (i,j)th ele-
ment is one if zones i and j are contiguous, and zero otherwise. Clearly this
matrix is symmetrical and encapsulates the relative spatial arrangement of the
zones. Note that this approach does not take into account the size or shape or
absolute of the zones—the information is solely topological. In most applica-
tions the contiguity matrix is standardized so that the rows sum to one and is
referred to as W. A number of such spatial regression models exist: for example,
the spatial autoregressive model of Ord (1975):

y=ul+pW(y—pul)+¢ (25)

where u is an overall mean level of the random variate y multiplied by 1, a vector
of ones, and € is a vector of independent normal error terms, and p is a coefficient
determining the degree of spatial dependency of the model. The model can be
extended so that the error term ¢ also exhibits spatial autocorrelation. In this
case, the coefficient does not determine the distance decay rate of the spatial auto-
correlation, but the degree to which the values at individual locations depend on
their neighbors. In this case, neighborhood influence is not calibrated in terms of
the data, but prescribed by the specification of W.

One interesting problem with this approach is that the concept of proximity is
subject to the modifiable areal unit problem (Openshaw 1984). By changing the
zonal system, not only will the aggregated data alter, but also the points in the
study area that are considered to be in adjacent zones. To overcome this, in
some cases W is not described in terms of zonal contiguity but on some other
concept of “nearness” such as the inverse square distance between zonal cent-
roids. As with Kriging, recent advances in Bayesian statistical analysis tech-
niques have been used to calibrate models of this kind (LeSage 1997).

As mentioned above, spatial regression models are really mixed models in the
sense that although they recognize the impact of local relationships between
data, such relationships are usually measured with a global autocorrelation sta-
tistic and the output of the model is a set of global parameter estimates. Bruns-
don, Fotheringham, and Charlton (1998) provide an interesting example where
GWR is applied to a spatially autoregressive model such as that in equation (25)
so that the output from the model is a locally varying set of parameter estimates
that includes a locally varying autocorrelation coefficient. GWR applied to spa-
tially autoregressive models is therefore an alternative, and perhaps simpler,
method of deriving local measures of spatial autocorrelation.

MEASURING LOCAL RELATIONSHIPS IN SPATIAL INTERACTION MODELS

It was recognized relatively early that global calibrations of spatial interaction
models hid large amounts of spatial information on interaction behavior and
that localized parameters yielded much more useful information (Linneman
1966; Greenwood and Sweetland 1972; Gould 1975). This was patently clear
when distance-decay parameters were estimated separately for each origin in a
system instead of a single global estimate being provided [see Fotheringham
(1981) for a review].

Consider, for example, a typical global spatial interaction model of this form:

m=$ﬂ/2$# (26)
J
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where p,, is the probability that a person at i selects spatial alternative k; Sy is a
measure of the size of alternative k; dy is the distance between i and k, and « and
B are global parameters to be estimated. This model can be calibrated locally to
provide separate estimates of the parameters for each origin or for each destina-
tion in the system. Usually, it makes more sense to calibrate the former because
the behavioral characteristics depicted by the parameter estimates tend to be a
product of the origin rather than the destination. The origin-specific form of (26)
is

py = SVl / PR 27)
j

Origin-specific parameters can be mapped to provide visual evidence of spa-
tial variations and spatial patterns in their values. It was the consistent, but
counterintuitive, spatial patterns of origin-specific distance-decay parameters
from models of the form of that in equation (27) that led to the realization that
such models were gross misspecifications of reality (Fotheringham 1981, 1984,
1986; Fotheringham and O’Kelly 1989; Meyer and Eagle 1982). This, in turn,
led to the development of the competing destinations framework from princi-
ples of spatial information processing (Fotheringham 1984, 1991). It is worth
stressing that such misspecification only came to light through an investigation
of spatial variations in localized parameters that would be completely missed in
the calibration of a global model.

SUMMARY

Interest in local forms of spatial analysis and spatial modeling is clearly not
new. The recognition that the calibration of global models produces parameter
estimates which represent an “average” type of behavior, and are therefore of
very limited use when behavior does vary over space, dates back at least to Lin-
neman’s calibration of origin-specific models of international trade flows (Lin-
neman 1966). A major advance in the development of local modeling tech-
niques was provided by Casetti (1972) with the development of the expansion
method. Further advances in local modeling have come in the form of multi-
level modeling, spatial regression modeling, and geographical weighted regres-
sion, amongst others.

As Fotheringham (1997) notes, the current high level of interest in the “local”
rather than the “global” and the emergence of a battery of techniques for local
modeling is interesting for several reasons. Among these are that it refutes the
criticism that those adopting a quantitative approach in geography are only con-
cerned with the search for broad generalizations and have little interest in iden-
tifying local exceptions, an observation also made by Jones and Hanham (1995).
The latter point out that local forms of spatial analysis are not dissimilar in intent
to the “intensive” types of analysis in the realist paradigm and can act as a bridge
between the two previously disparate fields. Local forms of spatial analysis also
provide a linkage between the outputs of spatial techniques and the powerful
visual display capabilities of GIS and some statistical graphics packages. Perhaps
most importantly though, they provide much more information on spatial rela-
tionships as an aid to both model development and the better understanding of
spatial processes.

The development of local statistics and local models is also symptomatic of a
general maturing of quantitative geography. We are no longer embarrassed by
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the fact that our subject matter typically exhibits problems such as spatial non-
stationarity. Instead, we see these characteristics as opportunities for exploring
the complexities of our data and the richness of our subject matter. Local sta-
tistics and local models provide us with the equivalent of a microscope or a tele-
scope; they are tools with which we can see so much more detail.
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