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It is known that a non-Abelian magnetic monopole cannot rotate globally (although it may possess a
nonzero angular momentum density). At the same time, the total angular momentum of a magnetic dipole
equals the electric charge. In this work we question the generality of these results by considering a number
of generalizations of the Georgi-Glashow model. We study two different types of finite energy, regular
configurations: solutions with net magnetic charge and monopole-antimonopole pairs with zero net
magnetic charge. These configurations are endowed with an electric charge and carry also a nonvanishing
angular momentum density. However, we argue that the qualitative results found in the Georgi-Glashow
model are generic and thus a magnetic monopole cannot spin as long as the matter fields feature the usual
“monopole” asymptotic behavior independently of the dynamics of the model. A study of the properties of
the dyons and magnetic dipoles in some generalizations of the Georgi-Glashow model supplemented with
higher order Skyrme-like terms in the gauge curvature and Higgs fields is given quantitatively.
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I. INTRODUCTION AND MOTIVATION

The existence of soliton solutions is an interesting
feature of some nonlinear field theory models. Solitons
behave like particles, the fields being localized in smooth
concentrations of energy density. Moreover, some static
solitons are topologically stable (see [1] for a review of
these aspects). The systematic study of solitons can be
traced back at least to the work of Skyrme [2]. The Skyrme
model contains scalar fields (subject to a constraint) only,
being proposed as an effective theory for nucleons. In 3þ 1
dimensional Minkowski spacetime (the case of interest in
this work), solitons exist also in models featuring non-
Abelian gauge fields.1 The most prominent such configu-
rations are the ’t Hooft-Polyakov magnetic monopoles in
the Georgi-Glashow (GG) model [5,6]. Both Skyrmions
and monopoles [5,6] are static topologically stable solitons.
There exists also a tower of (excited) monopoles [7],
generalizing the monopoles of the GG model, each arising
from the dimensional descent of the pth member of the
Yang-Mills hierarchy [8] on R3 × S4p−3 to R3.

Contrasting with these are the sphalerons in the electro-
weak sector of the standard model [9], which have finite
energy but are not topologically stable. In the present work,
this distinction between topologically stable and sphaleron-
like solutions will play a central role.
The ’t Hoof-Polyakov monopoles and their Julia-Zee

dyonic generalizations [10] are static and spherically
symmetric. Then it is natural to wonder whether they
possess axially symmetric generalizations with nonzero
angular momentum. This question has recently been
addressed in the literature, finding a rather unexpected
answer. First, it turns out [11,12] that the total angular
momentum of the solitons endowed with a net magnetic
(topological) charge vanishes (despite the fact that their
angular momentum density can be nonzero). Second, the
angular momentum of a spinning magnetic dipole (or, more
generally, of a configuration with a vanishing net magnetic
charge) is nonzero [13] being proportional with the total
electric charge.
The pivotal mechanism leading to this conclusion is

the fact that the angular momentum density becomes a
total divergence by virtue of the electric component of the
Euler-Lagrange equations, and, the resulting surface inte-
gral then yields vanishing global angular momentum when
magnetic monopole boundary values are applied.
The central physical question which we propose to

address in this work concerns the generality of these
results, namely that solitons with nonvanishing magnetic
monopole charge do not spin, irrespective of the specific

1It it worth noting that no regular particlelike solutions of the
pure Yang-Mills (YM) equations exist in Minkowski spacetime
[3]. Physically this can be understood as a consequence of the
repulsive nature of the YM vector fields. (When scalar fields are
added, the existence of solitons become possible due to the
balance of the YM repulsive force and the attractive force of the
scalars.) However, the no-go results in [3] are circumvented when
including gravity effects, as shown by the Bartnik and McKinnon
(BK) family of solutions with YM matter fields only [4].
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dynamical model in question. In practice, the boundary
values mentioned above result from the presence of
standard, i.e. quadratic “kinetic” terms of the Higgs and
Yang-Mills fields in the Lagrangian. However, modifica-
tions of standard field theoretic models can result in new
nonperturbative effects. Examples of this in 3þ 1 dimen-
sions are, for example, (i) gravity coupled to nonlinear
electrodynamics [14], which results in a regular black hole,
(ii) the existence of glueballs in a non-Abelian Born-Infeld
theory [15], and (iii) the stabilizing of black holes in
Einstein-Yang-Mills theory augmented with higher order
Yang-Mills curvature terms [16]. Moreover, in higher
dimensions, the systematic introduction of higher order
YM curvatures and their dimensional descendants results
in the construction of instantons and monopoles in all
(possible) dimensions [7].
Seeing that more general models than the standard ones

with quadratic kinetic terms only may result in qualitatively
different solutions, one cannot a priori exclude the pos-
sibility that a more general choice of the Yang-Mills-Higgs
(YMH) Lagrangian might invalidate the results in [11,12]
on the general connection between the angular momentum
and the electric and magnetic charges. Moreover, by
considering generic extensions of YMH systems, we hope
to shed some light on the problem of spinning solitons with
non-Abelian fields in general.
In what follows, we shall address this question by

considering several different generalizations of the GG
model and computing the corresponding angular momen-
tum for a given choice of boundary conditions at infinity,
reflecting the presence or not of a magnetic charge.
Quantitative results are also shown for a specific choice
of the YMH Lagrangian. Within the terminology in this
work, the configurations with a model with net magnetic
and electric charges are called generalized dyons. We shall
also consider composite configurations with an electric
charge only, corresponding to generalized dipoles.
This paper is structured as follows. A discussion of the

general aspects of the problem of spinning solutions with
YMH fields is given in Sec. II, where we exhibit the general
framework of the problem. A new result there is a proof that
the total angular momentum of a generic YMH system,
evaluated by employing the canonical energy momentum
tensor, can be expressed as a surface integral at infinity. We
continue with Sec. III, where we discuss the basic proper-
ties of several generalizations of the GG model. Most of
the work in this paper is done for a model where the usual
the GG Lagrangian is supplemented with higher order
curvature terms of the gauge field and Skyrme-like terms of
the gauged Higgs. Our choice of the supplementary part of
the Lagrangian has a natural justification, since it can be
viewed as the second term (p ¼ 2) in a hierarchy of models
descended from 4p dimensional YM systems [8], the first
one of which, p ¼ 1, is the usual GG model in the
Bogomol’nyi-Prasad-Sommerfield (BPS) limit. Apart from

that, we shall consider also a YMH model with the
quadratic YM Lagrangian replaced by a non-Abelian
Born-Infeld term, and a YMH model recently introduced
in [17], featuring an extra Chern-Simons–like term provid-
ing a supplementary interaction between the gauge and
Higgs sectors of the theory. The main result of this work is
contained in Sec. IV, where we argue that the general
connection between the angular momentum and the electric
and magnetic charges found in [11,12] for the GG model
still holds as long as asympototically the Higgs field
approaches a constant (nonzero) value and the gauge
derivative of the Higgs field vanishes. In particular, a
magnetic monopole does not possess generalizations with
a nonzero total angular momentum. We continue in Sec. V
with a quantitative study of the generalized dyons and
generalized dipoles in some limits of the ðp¼1Þþðp¼2Þ
YMH model. By solving numerically the corresponding
field equations, we study how these known solutions of the
GG model are affected by the presence of higher derivative
YMH terms in the Lagrangian. The last section of this work
is devoted to a summary and a discussion of our results.
Several possible extensions of the results in Sec. IVare also
mentioned there. In the Appendix, we present a peculiar
electrically neutral solution of a system consisting of the
usual F2 YM term, plus the pure p ¼ 2 YMH system,
which might signal the circumvention of the no-angular
momentum conjecture. However, it is shown there that the
“dyon” of this system must exhibit “magnetic monopole”
boundary values and hence the ban on angular momentum
for topologically stable YMH solitons cannot be circum-
vented in this way, supporting our explanation in Sec. VI.

II. THE FORMALISM

A. The conventions and notations

In this work we shall ignore the backreaction of the
matter fields on the geometry and consider a fixed four-
dimensional Minkowski spacetime background,2 with a
line element ds2 ¼ dt2 − ðdx2 þ dy2 þ dz2Þ, where t is the
time coordinate and x, y, z are the usual cartesian
coordinates. The same line element expressed in spherical
coordinates reads ds2 ¼ dt2 − dr2 − r2ðdθ2 þ sin2θdφ2Þ,
where 0 ≤ r < ∞ is the radial coordinate and θ, φ are the
spherical coordinates on S2, with the usual range. For
completeness, we also give the corresponding expression in
cylindrical coordinates, ds2 ¼ dt2 − dρ2 − ρ2dφ2 − dz2,
where 0 ≤ ρ < ∞. Note that in all relations, the greek
indices (like μ, ν) are running from 0 to 3 (with x0 ¼ t).
The gauge potential Aμ and Higgs field Φ are denoted as

Aμ ¼ −
i
2
Aa
μτa; Φ ¼ −

i
2
Φaτa; ð1Þ

2See, however, the remarks in the last section on the gravity
effects.
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with τa the Pauli matrices (a ¼ 1, 2, 3). The resulting anti-
Hermitian curvature and covariant derivative are then

Fμν ¼ ∂μAν − ∂νAμ þ ½Aμ; Aν�;
DμΦ ¼ ∂μΦþ ½Aμ;Φ�: ð2Þ

Also, for the purposes of this work we found it convenient
to introduce the notation

F μνρσ ¼ fFμ½ν; Fρσ�g ¼ Fμνρσ;

F μνρ ¼ fF½μν; Dρ�Φg;
F μν ¼ fS; Fμνg þ ½DμΦ; DνΦ�;
F μ ¼ fS;DμΦg;
F ¼ S2; with S ¼def − ðη21þ Φ2Þ; ð3Þ

where we have used ½ijk� to denote cyclic symmetry in the
indices i, j, k and fA; Bg denotes an anticommutator. The
generalizations of the GG Lagrangian we shall consider in
what follows are built in terms of Eq. (3) above.

B. The issue of axial symmetry

The physical configurations we are interested in have no
time dependence and are axially symmetric (i.e. they
remain invariant under a rotation around the z axis).
This implies the existence of two Killing vectors of the
problem ∂=∂t and ∂=∂φ. For an Abelian gauge field this
implies directly that the gauge potential has no dependence
on t and φ. However, the issue of interplay between
spacetime and gauge symmetries is rather subtle in the
presence of non-Abelian matter fields.3 In this case, the
symmetry of the gauge field under a spacetime symmetry
(as characterized by a given Killing vector) means that the
action of an isometry can be compensated by a suitable
gauge transformation [19,20]. For the Killing vector ∂=∂t,
the natural choice is to choose a gauge with
∂A=∂t ¼ ∂Φ=∂t ¼ 0. However, a rotation around the z
axis can be compensated by a gauge rotation, ∂φAμ ¼ Dμψ
(with ψ an element of the algebra), and therefore

Fμφ ¼ DμW; DφΦ ¼ ½W;Φ�; ð4Þ

where

W ¼ Aφ þ ψ : ð5Þ

These relations (which are independent of the choice of a
specific YMH Lagrangian) allow us in what follows to
express the angular momentum density as a flux integral at
infinity.

C. The energy-momentum tensor and general relations

The Lagrangian L of the model (which is not specified at
this stage) is a function of the matter fields Ψ ¼ ðAμ;ΦÞ.
However, the requirement that the equations of motion are
of second order plus the gauge covariance implies that L
depends only on Fμν, DμΦ, and Φ.
We start by defining the generalized momentum

densities

Πμν ¼ ∂L
∂Aν;μ

; Πμ ¼ ∂L
∂Φ;μ

; ð6Þ

such that the Euler-Lagrange equations δΨL ¼ 0 can be
written as4

DμΠμν − ½ϕ;Πν� ¼ 0; Πμ
;μ ¼ ∂L

∂Φ : ð7Þ

As usual, the invariance of the action under four trans-
lations, xμ → xμ þ aμ yields the canonical energy-
momentum tensor [21]

2Tβ
α ¼ Tr

�
Aμ;α

∂L
∂Aμ;β

þ Φ;α
∂L
∂Φ;β

�
− δβαL

¼ TrðAμ;αΠβμ þ Φ;αΠβÞ − δβαL; ð8Þ

which is conserved, Tν
μ;ν ¼ 0. Following the usual pre-

scription, this expression can be made gauge invariant by
adding to it a total divergence [22], such that

2Tβ
α ¼ TrðFαμΠβμ þDαΦΠβÞ − δβαL: ð9Þ

At this point is worth recalling that the canonical energy
momentum tensor Tμν suffers from a number of well-
known problems; for example it is not explicitly symmetric
in the indices μ, ν [this holds also for Eq. (9)]. As usual, an
energy-momentum tensor which is directly symmetric and
gauge invariant is found by introducing the spacetime
metric gμν into the action and assuming it to be arbitrary;
then the energy-momentum tensor is obtained by differ-
entiating the density of the action with respect to the metric:

Tαβ ¼
2ffiffiffiffiffiffi−gp δ

ffiffiffiffiffiffi−gp
L

δgαβ
: ð10Þ

One can easily show that the energy-momentum tensor and
the canonical one are identical for the case of a GG model.
However, we have verified that the expression of Tαβ

obtained via the definition Eq. (9) and via Eq. (10) also
coincide for the specific models Eqs. (21), (29), and
(31) below.

3A nice discussion of the relationship between conservation
laws, spacetime symmetries, and gauge symmetries can be found
in Ref. [18].

4Note that these relations are given in a Cartesian coordinate
system.
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The advantage of using the definition Eq. (9) is that it
leads to an expression of the angular momentum density,
Tt
φ, as a total divergence, independent on the choice ofL. In

proving that, we make use of the general relations Eq. (4)
together with the generalized YM equations Eq. (7). After
replacing in Eq. (9), one finds the following general
expression5 of Tt

φ:

2Tt
φ ¼ Tr

�
1ffiffiffiffiffiffi−gp ∂

∂xμ ð
ffiffiffiffiffiffi
−g

p
WΠμtÞ

�
: ð11Þ

As a result, the total angular momentum can be expressed
as a flux integral6

J ¼
Z

d3x
ffiffiffiffiffiffi
−g

p
Tt
φ ¼ 1

2

I
∞
dΣkTrð

ffiffiffiffiffiffi
−g

p
WΠktÞ: ð12Þ

Therefore we conclude that in a general YMH theory only
the large-r asymptotic structure of the fields is relevant for
the issue of angular momentum of regular configurations.
(Note that this relation has been proven in [11] for a GG
model.)
For the purposes of this work, it is also useful to define

the electric part of the energy density as

2E ¼ TrðFαtΠαt þDtΦΠtÞ: ð13Þ

Similar to the angular momentum density, one can show
that Eq. (13) can also be written as total divergence

2E ¼ Tr

�
1ffiffiffiffiffiffi−gp ∂

∂xμ ð
ffiffiffiffiffiffi
−g

p
AtΠμtÞ

�
: ð14Þ

Then the total electric mass can also be expressed as a
surface integral

Ee ¼
Z

d3x
ffiffiffiffiffiffi
−g

p
E ¼ 1

2

I
∞
dΣkTrð

ffiffiffiffiffiffi
−g

p
AtΠktÞ: ð15Þ

The electric charge can also be expressed as a surface
integral, a natural definition of it being

Qe ¼
1

4π

I
∞
dSkTrðΦ̂ΠktÞ; ð16Þ

for all YMH models to be discussed below (where we
define as usual Φ̂ ¼ Φ=jΦj).
The definition of the magnetic charge is dependent of the

particular model, and these magnetic monopole charge
densities will be defined for each model in turn below.

III. THE SPECIFIC MODELS

A. The Georgi-Glashowmodel onR3;1: The p ¼ 1 model

The “canonical” model of a YMH theory is the GG one,
with a Lagrangian

Lð1Þ ¼ −
1

4
TrðFμνFμνÞ − 1

2
TrðDμΦDμΦÞ

þ λ

4
ðjΦaj2 − η2Þ2; ð17Þ

the last term being the symmetry-breaking Higgs self-
iteration potential. η is the scale-breaking Higgs vacuum
expectation value with dimensions of L−1. In what follows,
we will consider the Bogomol’nyi-Prasad-Sommerfield
(BPS) limit λ ¼ 0 case exclusively. This choice is made
partly for simplifying the analysis, but also because the
dimensional reduction of the (usual) YM system on R3 ×
S1 yields the p ¼ 1 YMH system in the BPS limit.7

For the Lagrangian Eq. (17),

Πμν ¼ Fμν; Πμ ¼ DμΦ: ð18Þ
The stress tensor of this model, as read from Eq. (9) is [here
we give the (more transparent) expression in terms of Fμν

and DμΦ]

2Tð1Þ
μν ¼ Tr

�
FμτFν

τ −
1

4
gμνFτλFτλ

�

− Tr

�
DμΦDνΦ −

1

2
gμνDτΦDτΦ

�
: ð19Þ

The GGmodel has a variety of interesting features which
have been extensively studied in the literature over the last
40 years. Here we mention only that in the static, purely
magnetic limit (i.e. At ¼ 0), the Hamiltonian of the model
(which in that case coincides with the Lagrangian) is
bounded from below by the magnetic charge density

ϱð1Þ ¼ 1

4π
εijkTrðFijDkΦÞ ¼def ∇ ·Ωð1Þ;

with Ωð1Þ ¼ 1

4π
εijkTrðΦFijÞ; ð20Þ

which is the dimensional descendant of the second
Chern-Pontryagin density. The total magnetic charge Qm
is the integral of ϱð1Þ.

B. The ðp ¼ 1Þ þ ðp ¼ 2Þ model

In our choice of this YMH model, we start from the
simple observation that the GG model Eq. (17) can be5Here we change to a spherical (or cylindrical) coordinate

system, such that μ ¼ r, θ (or μ ¼ ρ, z, respectively), g being the
determinant of the metric tensor.

6Note that Eq. (12) holds also for higher gauge groups, since it
relies on the general relation Eq. (4).

7This is true also of the p ¼ 2 YMH system resulting from the
dimensional reduction of the p ¼ 2 YM system on R3 × S5,
though in that case the BPS limit cannot be saturated.
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obtained as descending from the pure F2 YM Lagrangian
on R3 × S1, the components of the YM potential along the
S1 direction corresponding to the Higgs fields. This
observation has led in [8] to the construction of a hierarchy
of p ≥ 1 SOð3Þ Higgs models in D ¼ 3 space dimensions,
obtained by dimensional descent over S4p−3, of the pth
member of the Yang-Mills hierarchy. The p ¼ 1 member
here is nothing else than the BPS limit of the GG model.
For any p ≥ 2, the Lagrangian LðpÞ is a Skyrme-like
gauged Higgs system, in the sense that it consists of
2pth powers of the gauge curvature Fð2Þ and covariant
derivative DΦ, suitably antisymmetrized so that only the
squares of “velocity” fields appear. Moreover, for each p ≥
1 YMH model, one can define a topological charge density
which is the descendant of the 2pth Chern-Pontryagin
density. In each case there exists a Bogolmol’nyi bound,
but this bound can be saturated only in the p ¼ 1 case.
In the present work, we restrict our attention to the sys-

tem described by the Lagrangian of the ðp ¼ 1Þ þ ðp ¼ 2Þ
model, which consists of the sum of the GG model in the
BPS limit (i.e. p ¼ 1) plus a “correction part,” which is
inspired by the Lagrangian of the p ¼ 2 term in the general
YMH hierarchy introduced in [8]

L ¼ Lð1Þ þ Lð2Þ: ð21Þ

It is clear that restricting to “corrections” of the p ¼ 2
YMH is sufficient to describe the effect of such correction
qualitatively. The p ¼ 2 YMH model is described in detail
in the next subsection.

1. The p ¼ 2 YMH system on R3;1

The Lagrangian of the general p ¼ 2 model can be
written as a sum of five different terms

1

20
Lð2Þ ¼

X4
a¼0

λaLð2;aÞ; ð22Þ

with

Lð2;0Þ ¼ −
1

4
F μνρσF μνρσ; Lð2;1Þ ¼ F μνρF μνρ;

Lð2;2Þ ¼ 6F μνF μν; Lð2;3Þ ¼ −9F μF μ;

Lð2;4Þ ¼ −54F 2; ð23Þ

where we have used the symbolic notation stated in Eq. (3).
It is clear that the Lagrangian Eq. (22), is not renorma-

lizable and can be analyzed only at the classical level. It can
be seen as an effective action of a renormalizable theory at
low energy. In this respect it is analogous to the Skyrme
model [2] versus the quadratic Oð4Þ sigma model, and in
this respect can be viewed as the Yang-Mills–Higgs
analogue of that sigma model.
The Lagrangian of the original p ¼ 2 YMH model

(obtained by dimensional descent from a pure F4 Yang-
Mills model in D ¼ 8 dimensions) is found by taking
λ0 ¼ 0, λ1 ¼ λ2 ¼ λ3 ¼ λ4 ¼ 1. However, it is of interest to
treat λa as arbitrary positive parameters8 and to work with
the generic model Eq. (22). Moreover, the term F μνρσF μνρσ

has been added by hand in Eq. (22) since it does not occur
in the original p ¼ 2 YMH model. Note that in the purely
magnetic limit, this term is absent, and therefore it is
interesting to see what effect its inclusion has in the
construction of the electrically charged solutions.9

The expressions of the generalized momentum densities
for each of the terms in Eq. (22), is

Πμν
ð2;0Þ ¼ −3!fF μνρσ; Fρσg; Πμν

ð2;1Þ ¼ 2 · 3!fF μνρ;DρΦg;
Πμν

ð2;2Þ ¼ −4!fS;F μνg; ð24Þ

and

Πμ
ð2;1Þ ¼ 3!fF μρσ; Fρσg; Πμ

ð2;2Þ ¼ −4!½F μρ; DρΦ�;
Πμ

ð2;3Þ ¼ −18fS;F μg: ð25Þ

The corresponding symmetric and gauge-invariant energy-
momentum tensor reads (here we give the final expression
used in practice, in terms of Fμν and DμΦ)

1

20
Tð2Þ
μν ¼−λ0Tr

�
FμτλσFν

τλσ−
1

8
gμνFκτλσFκτλσ

�
þ3λ1Tr

�
fF½μτ;Dλ�ΦgfF½ντ;Dλ�Φg−1

6
gμνfF½μν;Dρ�ΦgfF½μν;Dρ�Φg

�

þ2 ·6λ2TrððfS;Fμτgþ½DμΦ;DτΦ�ÞðfS;Fν
τgþ½DνΦ;DτΦ�Þ−1

4
gμνðfS;Fτλgþ½DτΦ;DλΦ�ÞðfS;Fτλgþ½DτΦ;DλΦ�ÞÞ

−9λ3Tr

�
fS;DμΦgfS;DνΦg−

1

2
gμνfS;DλΦgfS;DλΦg

�
−54λ4Tr

�
0−

1

2
gμνS4

�
: ð26Þ

8In what follows, we take λa ≥ 0 as implied by requiring a strictly positive energy density.
9As discussed in [16], aF μνρσF μνρσ term stabilizes the Einstein–Yang-Mills hairy black holes, leading to solutions with very different

properties as compared to the standard ones [23]. Moreover, this term leads to new qualitative features in inflationary models with non-
Abelian gauge fields [24].
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It may be interesting to display the (magnetic) topological charge density of the p ¼ 2 YMH model, alluded to in the
previous subsection,

ϱð2Þ ≃ εijkTrð3η4FijDkΦþ η2½3FijðΦ2DkΦþDkΦΦ2Þ − 2DiΦDjΦDkΦ�
þ ½FijðΦ4DkΦþDkΦΦ4 þ Φ2DkΦΦ2Þ − 2Φ2DiΦDjΦDkΦ�Þ

¼def∇ ·Ωð2Þ: ð27Þ

This pertains to the system Eq. (22), (with λ0 ¼ 0, λ1 ¼ λ2 ¼ λ3 ¼ λ4 ¼ 1) on R3 and descends from the fourth
Chern-Pontryagin density in 8 dimensions. It is manifestly a total divergence

Ωð2Þ
k ≃ εijkTr

�
3η4ΦFij þ 2η2ðΦ3Fij − ΦDiΦDjΦÞ þ

1

5
½3Φ5Fij − 2ð2Φ3DiΦDjΦ − Φ2DiΦΦDjΦÞ�

�
: ð28Þ

It is interesting to note that the surface integrals of Eqs. (28)
and (20), are equal, up to a numerical multiple. This is
because the terms in Eq. (28), not featuring the curvature
Fij decay too fast to contribute, by virtue of Higgs
asymptotics. This density was employed in [25,26].

C. The non-Abelian Born-Infeld–Higgs model

Another interesting possibility is to consider a Born-
Infeld (BI) Lagrangian for the gauge fields. This modifi-
cation of the standard YM quadratic Lagrangian is
suggested by the superstring theory [27,28] leading to a
variety of interesting features. For example, the no-go
results in [3] forbidding the existence of pure YM solitons
are circumvented in this case, since a non-Abelian BI
theory possesses particlelike solutions even in the absence
of a Higgs field [15]. The spherically symmetric monopoles
and dyons of this model have been studied in [29,30].
The Lagrangian of the non-Abelian BI–Higgs theory

reads

LðBIHÞ ¼ β2ð1 − ffiffiffiffiffiffiffiffiffiffiffiffi
1þU

p Þ − 1

2
TrðDμΦDμΦÞ;

with U ¼ 1

2β2
TrðFμνFμνÞ − 1

β4
TrðFμνρσFμνρσÞ; ð29Þ

where Tr represents the usual trace on SOð3Þ indices.
[Note that the definition of the BI theory for a non-Abelian
gauge group is not unique and several alternatives have
been discussed in the literature. Apart from the one used
above, another possibility of interest (which will shall not
consider here) is to take a symmetric trace operation [27],
but so far the explicit Lagrangian with such trace is known
only as perturbative series.]
The corresponding expressions of the generalized

momentum densities read

Πμν ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þU
p

�
Fμν −

2

β2
fF μνρσ;Fρσg

�
; Πμ ¼DμΦ:

ð30Þ

In the absence of a topological lower bound, it is natural to
use the magnetic charge definition valid for the GG model,
also in this case.

D. Yang-Mills–Higgs model
with Chern-Simons–like term

In 2þ 1 dimensions, electric charge and angular
momentum result [31–33] from the dynamics of a
Chern-Simons term in the Lagrangian. In 3þ 1 dimen-
sions,however, no Chern-Simons density was identified
until recently proposed in [7,34]. In a given spacetime
dimension, they result from the descent by one step, of the
1-form in the total divergence expression of a Chern-
Pontryagin (CP) density, which itself is a dimensional
descendant of a CP density in some higher (even) dimen-
sion. These new Chern-Simons densities feature both gauge
fields and Higgs fields, and are defined in both odd and
even spacetime dimensions.
Here, we consider the simplest example in 3þ 1 dimen-

sional spacetime, which was discussed recently in [17].
This CS density is extracted from the dimensionally
reduced CP density on M5 × S1. The residual CP density
onM5 being a total divergence, a Chern-Simons density in
3þ 1 dimensions can be extracted in the usual way. The
residual gauge group then is SOð5Þ and the Higgs field
takes its values in the algebra of SOð6Þ.
The Lagrangian density of this specific Yang-Mills–

Higgs–Chern-Simons (YMHCS) model reads

L ¼ −
1

4
TrðFμνFμνÞ − 1

2
TrðDμΦDμΦÞ

þ iκϵμνρσTrðΦFμνFρσÞ; ð31Þ
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with κ an arbitrary constant. The generalized momentum
densities are

Πμν ¼ Fμν þ iκϵμνρσTrðΦFρσÞ; Πμ ¼ DμΦ: ð32Þ

Following [17], we shall restrict our study to Yang-Mills
fields taking their values in the SOð3Þ ×Uð1Þ subalgebra
of SOð5Þ, with an SOð3Þ Higgs triplet. In this limit, the
Lagrangian Eq. (31) of the model can be written in an
equivalent form as

L ¼ −
1

4
TrðFμνFμνÞ − 1

2
TrðDμΦDμΦÞ − 1

4
fμνfμν

þ iκϵμνρσfμνTrðΦFρσÞ; ð33Þ

with fμν ¼ ∂μaν − ∂νaμ a Uð1Þ field and Fμν, Φ the usual
SOð3Þ gauge fields and Higgs field, respectively. As found
in [17], this extra term prevents the existence of (self-dual)
solutions saturating a lower bound.
The Lagrangian Eq. (31) corresponds to the flat space-

time limit of a YMH-Maxwell model considered in Sec. II
of [35] in a more general context. Interestingly, the results
in [35] show that when including the gravity effect, the self-
gravitating solitonic solutions of Eq. (33) saturate a
gravitational version of the Bogomol’nyi bound, with the
same magnetic charge definition as in the GG model.

IV. THE ISSUE OF SPINNING SOLUTIONS

A. Axially symmetric YMH fields

In order to evaluate the general relation Eq. (12) and to
construct generalized dyons and dipoles, we need to specify
a YMH ansatz. Employing spherical coordinates, we use
the following parametrization of the axially symmetric
YMH fields:

Aμdxμ ¼
�
H5

iτðnÞr

2
þH6

iτðnÞθ

2

�
dt

þ
�
H1

r
drþ ð1 −H2Þdθ

�
iτðnÞφ

2

− n sin θ

�
H3

iτðnÞr

2
þH4

iτðnÞθ

2

�
dφ; ð34Þ

Φ ¼ η

�
Φ1

iτðnÞr

2
þ Φ2

iτðnÞθ

2

�
; ð35Þ

in terms of six gauge potentials and two Higgs functions.
The only φ-dependent terms in Eq. (34) are the SUð2Þ
matrices τðnÞr , τðnÞθ , and τðnÞφ . These matrices are defined as

τðnÞr ¼ sin θðcos nφτx þ sin nφτyÞ þ cos θτz, τðnÞθ ¼
cosθðcosnφτxþsinnφτyÞ−sinθτz, and τ

ðnÞ
φ ¼ − sin nφτxþ

cos nφτy [with τa ¼ ðτx; τy; τzÞ the Pauli matrices]. For

H5 ¼ H6 ¼ 0, Eq. (34) is essentially the axially symmetric
YMH ansatz as introduced by Manton [36], and Rebbi and
Rossi [37] when discussing multimonopole solutions. This
particular parametrization of the YM ansatz in terms of Hi
is very convenient for numerical studies and is employed in
most of the work on axially symmetric YMH systems. Note

that Eq. (35) contains, via the matrices τðnÞr , τðnÞθ , and τðnÞφ , an
extra integer n ¼ 1; 2;… which is the winding number of
the solutions.
Let us also mention that the above Ansatz possesses a

residual Abelian gauge invariance (see e.g. the discussion
in [38]). To fix it, we have to include a gauge-fixing term,
the most convenient choice being r∂rH1 − ∂θH2 ¼ 0.

B. The far field asymptotics

For any choice of the Lagrangian, the assumption that
the Higgs field approaches asymptotically a constant value
jΦj → 1 (which is the effect of a symmetry breaking Higgs
potential, whether explicitly included in the action or not),
results in the following finite energy condition on the
Higgs:

Φ1 ¼ cosðm − 1Þθ; Φ2 ¼ sinðm − 1Þθ; ð36Þ

with m ¼ 1; 2;… a positive integer. In the next step, we
shall assume that the gauge derivative of the Higgs fields
vanished asymptotically, DμΦDμΦ → 0, a condition which
then fixes the asymptotic values of the YM potentials. For
odd m these are

H1 ¼ 0; H2 ¼−ðm− 1Þ;

H3 ¼
cosθ
sinθ

½cosðm− 1Þθ− 1�; H4 ¼−
cosθ
sinθ

sinðm− 1Þθ;
H5 ¼ V0 cosðm− 1Þθ; H6 ¼ V0 sinðm− 1Þθ; ð37Þ

and for even m

H1 ¼ 0; H2 ¼ −ðm− 1Þ;

H3 ¼
1

sinθ
½cosðm− 1Þθ− cosθ�; H4 ¼ −

sinðm− 1Þθ
sinθ

;

H5 ¼ V0 cosðm− 1Þθ; H6 ¼ V0 sinðm− 1Þθ; ð38Þ

with V0 a constant. (A derivation of these boundary
conditions can be found in [12,39,40].) Thus, for m ¼
2k (k ¼ 1; 2;…), the ground state of the model corresponds
to a gauge transformed trivial solution and the magnetic
charge vanishes. The situation is different for odd values
m ¼ 2kþ 1 ¼ 1; 3;…, the ground state in this case cor-
responding to a charge n multimonopole.
To evaluate Eq. (12), we need both W, which for the

axially symmetric configuration at hand is
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W ¼ −nðcos θ þ sin θH3Þ
iτðnÞr

2
þ n sin θH4

iτðnÞθ

2
; ð39Þ

and, the asymptotic expression of the generalized momen-
tum Πrt. At this point, we remark that, for all models in this
work, the YM Lagrangian effectively includes the quadratic
term F2

μν, namely the p ¼ 1 YM term. Now the additional
curvature YM terms are all higher order in the curvature
2-form, so they decay faster than the usual p ¼ 1,
and hence their contributions to the Eq. (12), integral will
vanish. Then the following expression holds for large r:
Πrt ¼ Frt þ ðsubleading termsÞ, and the electric potentials
H5 and H6 have long-range, Coulomb-like tails,

H5 ¼ cosðm − 1Þθ
�
V0 −

Qe

r

�
þ…;

H6 ¼ sinðm − 1Þθ
�
V0 −

Qe

r

�
þ…; ð40Þ

with Qe corresponding to the electric charge as computed
from Eq. (16).
We close this part by noticing that the electric mass

Eq. (15) can always be written as a product between the
“electrostatic potential” V0 and the electric charge Qe,

Ee ¼
1

2
V0Qe: ð41Þ

Assuming that the electric part of the energy density E, as
given by Eq. (13), is a positive quantity, it follows that a
configuration with V0 ¼ 0 or Qe ¼ 0 does not possess an
electric field Fkt ≡ 0.
Another important feature is that the “electrostatic

potential” V0 (as fixed by the asymptotics of the functions
H5, H6) is always bounded from above by the vev of the
Higgs field (i.e. V0 < 1 for the conventions here). Since the
p ¼ 1 term would dominate as r → ∞, a value V0 > 1
implies a far field oscillatory behavior of some YM
potentials, a feature which is not compatible with finite
energy requirements (this can be seen explicitly in the
Bogomol’nyi-Prasad-Sommerfield exact solution [41]; see
also [42] for the axially symmetric case).

C. The total angular momentum

With these relations at hand, the evaluation of the general
relation Eq. (12) is straightforward. For the parametrization
Eq. (34), the asymptotic expression of W which enters the
general relation Eq. (4) is

W ¼ −n cos θ
�
cosðm − 1Þθ iτ

ðnÞ
r

2
þ sinðm − 1Þθ iτ

ðnÞ
θ

2

�
;

for odd m and

W ¼ −n
�
cosðm − 1Þθ iτ

ðnÞ
r

2
þ sinðm − 1Þθ iτ

ðnÞ
θ

2

�
;

for even m. Also, for any m, the asympototic expression of
the generalized momentum Πrt is

Πrt ¼
�
cosðm − 1Þθ iτ

ðnÞ
r

2
þ sinðm − 1Þθ iτ

ðnÞ
θ

2

�
Q
r2

þ…:

ð42Þ

Then, after replacing Πrt in Eq. (12), one finds that for both
ðp ¼ 1Þ þ ðp ¼ 2Þ models and the BI-Higgs models the
following relations hold:

J ¼ 0 for m ¼ 1; 3;… ðQM ≠ 0Þ;
J ¼ nQe for m ¼ 2; 4;… ðQM ¼ 0Þ: ð43Þ

This is the relation derived before for the pure GG case,
connecting the quantization of charge and angular momen-
tum. However, we see that this is a more general result,
which holds as long as the YMH fields share the asymp-
totics of the GG model (while the precise features in the
bulk can be very different). Therefore we conclude that a
magnetic monopole does not spin while a magnetic dipole
cannot rotate unless it is endowed with a net electric charge.
The situation is more involved for the model Eq. (33)

featuring a Chern-Simons–like term, since the angular
momentum density has a supplementary part originating
from this extra term. To evaluate this supplementary
contribution, we write the usual axially symmetric ansatz
for the U(1) field 1-form

a ¼ aφdφþ atdt: ð44Þ

The boundary condition by aμ as r → ∞ are aφ → 0 and
at → v0 (with v0 an arbitrary constant). Moreover, one can
easily see that the asymptotic behavior of the YMH field
remains the same as in the GG model. Then a straightfor-
ward computation shows that the general relations Eq. (43)
still holds for this model. Thus we conclude that the
supplementary YMHCS-like term in Eq. (33) does not
endow a monopole with a nonzero angular momentum.
However, one should remark that the charge-parity

violating term in Eq. (33), is not strictly speaking a
Chern-Simons term, unlike the corresponding term in
Eq. (31),. Thus, any statements concerning the vanishing
of the angular momentum is not a priori valid for the
general Chern-Simons theory Eq. (31). It is conceivable
that in that case the angular momentum may not vanish.
Any progress in this direction requires first an investigation
of the issue of spinning monopoles for higher gauge groups
and for different representations of the Higgs field, a task
which has not been yet considered in the literature.
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V. GENERALIZED DYONS AND MAGNETIC
DIPOLES IN ðp ¼ 1Þ þ ðp ¼ 2Þ YMH MODEL:

NUMERICAL RESULTS

Although we have seen that all solutions share the same
relation between the angular momentum and electric and
magnetic charges as in the GG model, it remains an
interesting question to see how a more general YMH
Lagrangian quantitatively affects the properties of the
known axially symmetric configurations.
To answer this question, we have considered the

ðp ¼ 1Þ þ ðp ¼ 2Þ YMH model and constructed general-
izations of the simplest solutions corresponding to dyons
and magnetic dipoles. To our knowledge, this problem has
not been addressed before in the literature, only purely

magnetic solutions being considered so far. The monopole
solutions of the ðp ¼ 1Þ þ ðp ¼ 2Þ model have been
discussed in [25,26], with a rather complicated picture
being revealed. For example, this model does not support
self-dual solutions [43]. Moreover, depending on the values
of the dimensionless coupling parameters, the generalized
monopoles exhibit both attractive and repulsive phases.
In this section we extend the results of [25] in several

different directions, by including an electric component in
the YM connection.

A. The boundary conditions

The boundary conditions at infinity for dyons are found
by taking m ¼ 1 in the general asymptotics Eqs. (36), (37)

H1jr¼∞ ¼ H2jr¼∞ ¼ H3jr¼∞ ¼ H4jr¼∞ ¼ H6jr¼∞ ¼ Φ2 ¼ 0; H5jr¼∞ ¼ V0;Φ1 ¼ 1; ð45Þ

with V0 < 1 a constant corresponding to the electric potential. The corresponding boundary conditions at the origin r ¼ 0
are

H1jr¼0 ¼ H3jr¼0 ¼ H5jr¼0 ¼ H6jr¼0 ¼ Φ1jr¼0 ¼ Φ2jr¼0 ¼ 0; H2jr¼0 ¼ H4jr¼0 ¼ 1: ð46Þ

On the symmetry axis, the dyons satisfy the boundary conditions

H1jθ¼0;π ¼ H3jθ¼0;π ¼ H6jθ¼0;π ¼ Φ2jθ¼0;π ¼ 0; ∂θH2jθ¼0;π ¼ ∂θH4jθ¼0;π ¼ ∂θΦ1jθ¼0;π ¼ 0: ð47Þ

However, as discussed for the first time in [44] for the
GG model, there exists also a different type of solutions of
the second order Euler-Lagrange equations, which are not
stable and represent saddle points of the energy, rather than
absolute minima. In the absence of an electric field, they
correspond to magnetic dipoles. A systematic discussion of
the properties of these solutions in GG model is given in
Ref. [45] (note that these are non-BPS configurations and
no exact solution is known in this case). For example, the

magnetic charge measured at infinity vanishes, despite the
existence locally of a nonzero density. This, in the presence
of an electric charge, results in nonzero angular momen-
tum. The electrically charged, spinning version of the
dipole solutions are studied in [12,13].
The magnetic dipole solutions satisfy a different set of

boundary conditions at infinity than Eqs. (45), (46), (47).
These boundary conditions are found by taking m ¼ 2 in
the general expressions Eqs. (36), (38)

H1jr¼∞ ¼ H3jr¼∞ ¼ 0; H2jr¼∞ ¼ H4jr¼∞ ¼ −1;

H5jr¼∞ ¼ V0 cos θ; H6jr¼∞ ¼ V0 sin θ; Φ1jr¼∞ ¼ cos θ; Φ2jr¼∞ ¼ sin θ; ð48Þ

(with V0 < 1 again). The other boundary conditions are

H1jr¼0 ¼ H3jr¼0 ¼ 0; H2jr¼0 ¼ H4jr¼0 ¼ 1;

ðcos θ∂rH5 − sin θ∂rH6Þjr¼0 ¼ 0; ðsin θH5 þ cos θH6Þjr¼0 ¼ 0;

ðcos θ∂rΦ1 − sin θ∂rΦ2Þjr¼0 ¼ 0; ðsin θΦ1 þ cos θΦ2Þjr¼0 ¼ 0; ð49Þ

at the origin, and

H1jθ¼0;π ¼ H3jθ¼0;π ¼ H6jθ¼0;π ¼ Φ2jθ¼0;π ¼ 0; ∂θH2jθ¼0;π ¼ ∂θH4jθ¼0;π ¼ ∂θΦ1jθ¼0;π ¼ 0; ð50Þ
on the symmetry axis.
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1. n ¼ 1 results: Spherically symmetric generalized dyons

The spherically symmetric solutions are found by taking

H1 ¼ H3 ¼ H6 ¼ Φ2 ¼ 0; H2 ¼ H4 ¼ wðrÞ; H5 ¼ uðrÞ; Φ1 ¼ hðrÞ ð51Þ

in the general axially symmetric parametrization Eqs. (34), (35) and have a winding number n ¼ 1. The boundary
conditions in this case can be read from Eq. (45) together with Eq. (46).
The one-dimensional reduced Lagrangian of this system is given by the sum of the p ¼ 1 and p ¼ 2 terms,

Lð1Þ
YMH ¼ −

1

4
r2
�
2

�
w0

r

�
2

þ 1

r4
ð1 − w2Þ2

�
− r2

�
ðη2h02 − u02Þ þ 2

�
w
r

�
2

ðη2h2 − u2Þ
�
; ð52Þ

and

Lð2Þ
YMH ¼ 6fλ0ð½ð1 − w2Þu�0Þ2 − λ1η

2ð½ð1 − w2Þh�0Þ2g
− 12λ2η

4f2ð½ð1 − h2Þw�0Þ2 þ r−2ð½ð1 − w2Þð1 − h2Þ þ 2w2h2�Þ2g
þ 12η4r2ð1 − h2Þ2f4λ2½u02 þ 2r−2w2u2� − 3λ3η

2½h02 þ 2r−2w2h2�g
− 54λ4η

8r2ð1 − h2Þ4: ð53Þ

The first of these, Eq. (52), supports the usual Julia-Zee
dyon, while the second one, Eq. (53), supports the next
excited Julia-Zee dyon. Here, we have analyzed the dyon
solutions of a combination of these systems.
The system of three nonlinear coupled differential

equations for the functions w, h, and u, subject to the
boundary conditions described above, was solved by using
the software package COLSYS developed by Ascher,
Christiansen, and Russell [46]. This solver employs a
collocation method for boundary-value ordinary differ-
ential equations and a damped Newton method of
quasilinearization.
We have studied in a systematic way the solutions of the

ðp ¼ 1Þ þ ðp ¼ 2Þ YMHmodel by varying the parameters
λi which enter the p ¼ 2 reduced Lagrangian Eq. (53).
Here, however, we exhibit in Figs. 1 and 2 the results of the
numerical integration for two subcases of main interest
only. In both cases, we take the GG Lagrangian plus some
terms in the p ¼ 2 Lagrangian. Namely, we consider what
we refer to as a type (I) model with λ0 ≠ 0, λa ¼ 0
(a ¼ 1;…; 4), and otherwise as a type (II) model, with
λ3 ≠ 0, λ0 ¼ λ1 ¼ λ2 ¼ λ4 ¼ 0. The first model captures
the effects of F4 corrections originating in the gauge fields,
while the type (II) model involves corrections from gauged
scalar fields only. Note that the constants λ0 and λ3 are
made dimensionless by applying a suitable scaling.
In both cases, the properties of the solutions are similar

to those of their dyonic axially symmetric generalizations,
and thus we shall not discuss them further here.

2. Axially symmetric solutions

We turn now to the case of configurations with a
nontrivial dependence of both r and θ. In our approach,

the solutions to the field equations are found by solving
numerically a set of eight nonlinear coupled partial differ-
ential equations for the functions Hi, Φi with the boundary
conditions given above. The numerical calculations were
performed with the help of the package FIDISOL-
CADSOL [47], based on the Newton-Raphson iterative
procedure, in which case the known solutions of the GG
model provide the initial guess.
However, the ðp ¼ 1Þ þ ðp ¼ 2Þ YMH equations with

all λi ≠ 0 are truly formidable (with some equations
containing up to 500 terms), so we eschew the general
case. Instead, we restrict our study to two subcases of main
interest mentioned above for the spherically symmetric
limit of the model.
The axially symmetric generalized dyons reported in

this work have a winding number n ¼ 2. However, we
have constructed several solutions with n ¼ 3, 4; thus
they are expected to exist for any n. The considered
generalized dipoles have a winding number n ¼ 1.
In practice, we have chosen to fix the value of V0

and to compute the mass and electric charge of families
of solutions by varying λ0 and λ3, respectively. Some
numerical output is shown in Figs. 3–6.
Our results can be summarized as follows:
(i) First, all known dyon and dipole solutions possess

generalizations with p ¼ 2 terms. However, with
λi ≠ 0, the generalized dyon solutions satisfy the
second-order Euler–Lagrange equations and not the
first-order Bogomol’nyi equations as in the pure
p ¼ 1 case. As a result, the solutions always possess
a nonvanishing angular momentum density, Tt

φ ≠ 0
(despite the fact that the total angular momentum of
the generalized dyons vanishes).
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(ii) For all solutions, the profiles of the functionsHi and
Φi look similar to the corresponding ones in the GG
limit. The same holds for the distribution of the
energy and angular momentum densities. For gen-
eralized dyons, the energy density has a strong peak
along the ρ axis, and it decreases monotonically
along the symmetry axis. Equal density contours
reveal a toruslike shape of the configurations, the
tori being localized in the equatorial plane. For
the n ¼ 1 generalized dipoles, the energy density

always possesses maxima on the positive and
negative z axis at the locations of the monopole
and antimonopole and a saddle point at the origin.
Equal density contours consist in two tori on the
symmetry axis.

(iii) Another property of GG model that persists in the
presence of p ¼ 2 corrections is that found by
Houston and O’Raifeartaigh [48]: any regular ax-
ially symmetric magnetic charge distribution can be
located only at isolated points situated on the axis of
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FIG. 1 (color online). The mass M and the electric charge Qe are shown as a function of the coupling constant λ0 for type (I)
spherically symmetric generalized dyon solutions. Several values of the electric potential V0 are considered. The bottom panel
is a zoom-in plot of the top one. Here and in Figs. 2–6, M and Qe are normalized with respect to the corresponding solutions in the
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FIG. 2 (color online). The mass M and the electric charge Qe are shown as a function of the coupling constant λ3 for type (II)
spherically symmetric generalized dyon solutions for several values of the electric potential V0.
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symmetry, with equal and opposite values of the
charge at alternate points. In particular, if only one
sign of the magnetic charge is allowed (i.e. for
generalized dyons), all the magentic charge is
concentrated at the origin, where the Higgs field
vanishes.

(iv) No upper bounds seem to exist on the values of the
coupling constants λ0, λ3. As seen in Figs. 1 and 3,

adding an F4 term to the GG model [a type (I)
model] and taking large enough values of λ0,
increases the mass and the electric charge of the
solutions (this feature holds for any value of the
electric potential V0). However, rather unexpectedly,
the behavior is different for small λ0 and large V0,
with the existence of a minimum for bothM and Qe
below the values found in the GG model (see Fig. 1).
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FIG. 4 (color online). The mass M and the electric charge Qe are shown as a function of the coupling constant λ3 for type (II) axially
symmetric generalized dyon solutions and three values of the electric potential V0.
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FIG. 5 (color online). Same as Fig. 3 for electrically charged, generalized dipole solutions. Here and in Fig. 6 the winding number is
n ¼ 1.
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At the same time, while the mass increases with λ3
for the type (II) model, the electric charge decreases
(this holds for both generalized dyons and general-
ized dipoles; see Figs. 4 and 6).

More complex configurations representing chains of m
monopoles and antimonopoles are known to exist for the
case of a GG model [40]. We expect these solutions to
possess also generalizations within the ðp ¼ 1Þ þ ðp ¼ 2Þ
YMH model.

VI. FURTHER REMARKS

The main purpose of this work was to address the
question on how general the relation between angular
momentum and electric and magnetic charges is, originally
derived in [11] for the GG model. We have considered
various generalizations of the GG model and have found
that the conjecture in [11] that a nonvanishing total angular
momentum is incompatible with a net magnetic charge
remains valid. Perhaps most prominently, we have consid-
ered the correction of the GG model by adding a fourth-
order Yang-Mills-Higgs density, which also does not result
in an angular momentum for the corresponding axially
symmetric generalized dyon. There is no question that this
qualitative conclusion will remain valid when 2pth order
YMH terms are introduced. In addition to these, we
considered the Born-Infeld–Higgs system, as well as a
model [35] where a peculiar parity-charge violating term is
added to the GG Lagrangian. In both cases precisely the
same conclusion was arrived at. This result is independent
of the dynamics, at least for the models considered here,
which we believe is exhaustive. It relies on the asymptotic
behaviors of the gauge potential and Higgs field at infinity.
The mechanism behind this result turns out to be that the
presence in the Lagrangian of the usual “quadratic kinetic”
term DμΦDμΦ of the Higgs field enforces the same
asymptotic behavior at infinity as in that of the GG model.
Whether there is a possibility of circumventing this

obstacle seems unlikely. Indeed, it is possible to exclude the
usual Higgs “quadratic kinetic” term from the Lagrangian
by choosing e.g. to work exclusively with an (unphysical)
model consisting of the usual F2 YM term plus the p ¼ 2

Lagrangian Eq. (22), i.e. in the absence of the usual
DμΦDμΦ Higgs kinetic term. We have constructed such
solutions but only in the spherically symmetric limit. In that
case one finds solutions with essentially different (non-
standard) asymptotics of the magnetic gauge potential.
Notably in this case the asymptotic YM connection wðrÞ
decays in a manner that it does not describe a magnetic
monopole but rather some other unipole like e.g. the
Skyrme hedgehog. From this, one might infer that the
angular momentum surface integral (for the corresponding
axially symmetric solutions when they are found) might
conceivably not vanish. This possibility is very unlikely
because a nonvanishing angular momentum is known to be
concurrent with a nonvanishing electric field, and, when
this (nonstandard) spherically symmetric soliton is charged
with an electric field in the manner of Julia and Zee, the
asymptotics revert to the standard asymptotics of the
“magnetic monopole” type, that precludes nonvanishing
global angular momentum. We will elaborate on the details
elsewhere and have given here a brief description in the
Appendix to support this claim.
Concerning various possible generalizations of the

results in this work, let us mention first that the inclusion
of the gravity effects does not change the general relations
in [11] between the angular momentum and magnetic and
electric charges, as long as the configurations do not
possess an event horizon.10 The situation changes for black
hole solutions; for example, the total angular momentum
of a dyonic black hole solution is nozero, due to the
contribution of the angular momentum [49]. However, a
discussion of these aspects is beyond the scope of the
present work.
An interesting version of the problem considered in this

work is the pure YM limit, i.e. no Higgs field. In the pure
F2-YM theory, a number of well-known results forbids the
existence of particlelike soliton solutions. In order for such
configurations to exist, one has to couple the model to
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FIG. 6 (color online). Same as Fig. 4 for electrically charged, generalized dipole solutions.

10Moreover, the same results hold for anti-de Sitter asymp-
totics of the spacetime. The case of a positive cosmological
constant has not been yet considered in the literature.
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gravity [4] (or, simpler, to a dilaton field [50]).
Interestingly, as argued in [11], in contrast to other solitons,
these solutions do not possess spinning generalizations.
However, considering a more general Lagrangian of the
YM field (for example with an extra F4 term or working
directly in a Born-Infeld theory) may give hope to
circumventing this result (note that a non-Abelian Born-
Infeld theory allows for YM solitons without coupling to
any other field [15]). Unfortunately, this is not the case, the
mechanism put forward in [11] for a F2 theory being still
valid in this case. Again, the problem resides in the
asymptotic behavior of the gauge potentials: since the
F2 contribution would dominate in the field equations as
r → ∞, the electric components of the gauge field act like
an isotriplet Higgs field with negative metric, and by
themselves cause some of the magnetic components to
oscillate rather than decrease exponentially, which would
lead to delocalized configurations. Therefore, we are forced
to take a vanishing asymptotic value of the electric gauge
potential, V0 ¼ 0. However, from Eq. (20) this implies
At ≡ 0 (since E ≥ 0), i.e. a static configuration.
Finally, let us address the question of spinning solutions

in the standard model. The results in [51,52] show that the
well-known Klinkhamer-Manton sphalerons possess spin-
ning generalizations. Moreover, for a nonzero mixing angle
θW , the angular momentum of a spinning sphaleron equals
the electric charge [51,52] (note the analogy with the
monopole-antimonopole pair). However, the Lagrangian
of the Weinberg-Salam model can be supplemented with
higher derivative corrections, the simplest one consisting in
Skyrme-like terms of the Higgs field plus F4 terms of the
gauge fields. Based on the results in this work, we
conjecture that the qualitative results in [51,52] remain
always valid and the angular momentum of a spinning
sphaleron always equals the electric charge.
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APPENDIX: SOLITONS OF THE F2 PLUS p ¼ 2
YMH SYSTEM IN 3þ 1 DIMENSIONS

In this Appendix we consider a model consisting of the
usual F2 Yang-Mills term plus the pure p ¼ 2 YMH
system in 3þ 1 dimensions. Our original aim was to find
solutions with a more general asymptotic behavior of the
gauge potentials, in the hope of circumventing the ban on
spinning YMH monopole solitons. As this attempt gave a
final negative result, the analysis was relegated to the
Appendix, in support of our claim that topologically stable
YMH monopoles cannot spin.

It is important in this context to distinguish between a
topologically stable monopole (or unipole) and a topologi-
cally stable “magnetic monopole.” The hedgehog of the
Skyrme model is a monopole centered at the origin. The ’t
Hooft-Polyakov hedgehog on the other hand is a monopole,
with the additional property that its asymptotic gauge field
is a Dirac-Yang Uð1Þ Maxwell field. In this case the
magnetic gauge function wðrÞ vanishes asymptotically, i.e.
wðrÞ ¼ 0 as r → ∞. By contrast, the solutions to the
system

L ¼ −
1

4
αTrðFμνFμνÞ þ Lð2Þ; ðA1Þ

with Lð2Þ given by Eq. (22), have limr→∞wðrÞ ≠ 0.
Before discussing this case, let us consider first the pure

p ¼ 2 YMH magnetic system (i.e. without a F2 term,
α ¼ 0). The corresponding energy density functional is
found by taking in Eq. (53) uðrÞ ¼ 0 together with λ0 ¼ 0,
λ1 ¼ λ2 ¼ λ3 ¼ λ4 ¼ 1, and reads (up to some unimportant
overall numerical factor)

Hð2Þ
mag ¼ η2ð½ð1 − w2Þh�0Þ2 þ 32η8r2ð1 − h2Þ4

þ 22η4ð½ð1 − h2Þw�0Þ2 þ 32 · 24η6ð1 − h2Þ2w2h2

þ 32 · 23η6r2ð1 − h2Þ2h02
þ 2η4r−2½ð1 − h2Þð1 − w2Þ þ 2w2h2�2; ðA2Þ

being bounded from below by the topological charge
density [25]

ρ ¼ 2η5
d
dr

��
h −

2

3
h3 þ 1

5
h5
�
− ð1 − h2Þ2w2h

�
: ðA3Þ

However, this bound is never achieved, since the
Bogomol’nyi equations of the pure p ¼ 2 model

ηr−1½ð1 − w2Þh�0 ¼ �3η4rð1 − h2Þ2;
η2½ð1 − h2Þw�0 ¼ ∓3!η3ð1 − h2Þwh;

3!η3rð1 − h2Þh0 ¼ �η2r−1½ð1 − h2Þð1 − w2Þ þ 2w2h2�
ðA4Þ

are overdetermined [43].
Returning to the case of the model

H ¼ 1

4
αr2

�
2

�
w0

r

�
2

þ 1

r4
ð1 − w2Þ2

�
þHð2Þ

mag;

with arbitrary λi [and uðrÞ ¼ 0], one notices that the
regularity of the solutions imposes the same boundary
conditions at r ¼ 0 as in the p ¼ 1 case, i.e. wð0Þ ¼ 1 and
hð0Þ ¼ 0. However, the far field asymptotics can be
different, the magnetic gauge potential wðrÞ possessing
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another asymptotic value compatible with finite energy
requirement, apart from the standard one wð∞Þ ¼ 0.
We have found numerical evidence for the existence of
solutions smoothly interpolating between wð0Þ ¼ 1 and
hð0Þ ¼ 0 and

hðrÞ→1; wðrÞ→ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ192η4λ2=α

p as r→∞: ðA5Þ

Their total mass is finite, possessing a nontrivial depend-
ence on the parameters λi.
The situation is, however, different when looking for

electric generalizations of these configurations. It turns out
that no solutions compatible with the finite energy

requirements can be found for the asymptotics Eq. (A5).
This can be understood as follows. First, the energy density
possesses a u2w2 term, which originates in the F2 part of
the Lagrangian. This term should decay faster than 1=r as
r → ∞; thus a value wð∞Þ ≠ 0 results in uð∞Þ ¼ V0 ¼ 0.
However, this implies directly a vanishing electric poten-
tial, as seen from the relation Eq. (41), which still holds in
this case. Thus we conclude that a nonzero electric potential
is not compatible with nonstandard asymptotics of the
magnetic gauge potential in the F2 plus p ¼ 2 YMH
system.
On general grounds, we expect a similar result to hold as

well in the axially symmetric case.
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