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Summary

This thesis consists of three papers analysing time-varying cross-border correlation and

spillover risk. Existing literature has devoted significant resources to quantify these two types

of risk within a variety of markets and asset classes. The implications of these studies have

great importance in policy making, securities trading and in commercial banking activities. In

the aftermath of the recent financial crisis dynamic risk related topics have gained a renewed

interest. This thesis aims to bridge gaps in the currently available research.

"Dynamic Stock Market Covariances in the Eurozone" is a joint work with Professor Gregory

Connor. This paper examines the short-term dynamics, macroeconomic sensitivities, and

longer-term trends in the variances and covariances of national equity market index daily returns

for eleven countries in the Euro currency zone. We modify Colacito, Engle and Ghysel’s Mixed

Data Sampling Dynamic Conditional Correlation GARCH (MIDAS-DCC GARCH) model

to include a new scalar measure for the degree of correlatedness in time-varying correlation

matrices. We also explore the robustness of the findings with a less model-dependent realized

covariance estimator. We find a secular trend toward higher correlation during our sample period,

and significant linkages between macroeconomic and market-wide variables and dynamic

correlation. One notable finding is that average correlation between these markets is lower when

their average GDP growth rate is lower or when more of them have negative GDP growth.

"Correlation Dynamics in the G7 Stock Markets" explores the changing magnitude of

synchronised equity index return correlations within the G7 stock markets in response to

dynamic variation in the economic environment and secular trends toward greater capital market

integration. The full sample period is split into "pre-crisis" and "crisis" periods. The empirical

results show that the G7 markets exhibit a significant positive trend toward higher cross-border

correlations over the full sample period and that there is significant time-series autocorrelation in
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the magnitude of cross-market return correlations. These findings are consistent for both periods.

Correlation magnitude seems to behave differently during the "pre-crisis” and “crisis” periods in

relation to the business-cycle-related effect and the turbulence of the financial markets. During

the "crisis" period the average correlation between these financial markets is lower during

quarters when more of them have negative GDP growth or when their average GDP growth is

lower. The reverse holds for the "pre-crisis" period. Also, the positive relationship between the

correlation magnitude and stock market variance is only present in the “crisis” period. We argue

that during the crises periods, financial markets are strongly influenced by local factors.

"Directional Spillovers in Banks’ Credit Default Risk and Related Variables" analyses the

total and directional spillovers across carefully selected variables directly related to the credit

risk of financial institutions: bank CDS spread, real estate market index, interest rate term

spread, interbank liquidity spread and national stock market index, using daily data from 1st

of January 2004 to 31st of December 2012. The spillover analysis is undertaken within five

European Union countries: core countries France and Germany, periphery countries Spain and

Italy, and a reference country, the UK. A multiple structural break estimation procedure is

employed to detect sudden changes in shock transmission. The directional spillover framework

reveals complex dynamics between the CDS spreads and credit risk related variables. The

national stock markets show a clear leading role in shock transmission across selected variables;

whereas the role of other variables in sample is reversed during the course of the crisis. The real

estate index is found to be mostly affected by country specific events; and the shock transmission

of the interest rate term spread and the interbank liquidity spread differs for the UK and the

Eurozone countries.
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Chapter 1 Dynamic Stock Market Covariances in the Eurozone

1.1 Introduction

This paper explores the changing magnitude of equity index return volatilities and correlations

within the Eurozone, both in response to dynamic variation in the economic environment and in

response to secular trends toward greater capital market integration. Although there are other

regional economic co-operation agreements around the globe, the Eurozone is unique in the

depth and breadth of its economic and financial integration, including the use of a common

currency. This paper analyzes the equity market risk dynamics of this uniquely integrated

regional capital market.

We use the Mixed Data Sampling GARCH (MIDAS-GARCH) model of Engle et al. (2008)

to model the dynamic volatilities of the daily returns of eleven Eurozone stock market indices.

As in Colacito et al. (2011), we combine the MIDAS-GARCH model with the Dynamic

Conditional Correlation (DCC) model of Engle (2002) to model the dynamic correlation matrix

of the returns. We modify the DCC model to include a new univariate measure of multivariate

correlation magnitude. With this simplified DCC model, which is a special case of Engle’s more

general specification, we analyze the relationship between macroeconomic variables and the

time-varying correlations between Eurozone markets.

As a robustness check, we also apply less model-dependent realized covariance estimators,

together with the same univariate measure of correlation magnitude, and find reasonably

consistent empirical results.

We find that there is a strong positive trend toward higher correlation magnitude across

these Eurozone markets over our sample time period. We find some evidence for a "downside

correlation" effect, so that, ceteris paribus, Eurozone markets seem to be more correlated when

recent cumulative returns are on average lower within the region. Interestingly, correlation
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magnitude varies positively with Eurozone GDP growth measures. In one specification of this

effect, we find a negative link between Eurozone business downturns (the proportion of markets

with negative quarterly GDP growth rates) and correlation magnitude. In an alternative, related,

specification correlation magnitude is higher during quarters when the cross-country average

quarterly GDP growth rate is higher.

We find evidence for a positive dynamic link between cross-market average variance and

correlation magnitude within the region. This result holds using either a rolling-window-based

sample variance or a forward-looking variance based on the Eurostoxx volatility index.

Our paper is related to several strands of the research literature. One topic of considerable

interest concerns the level and secular trend in international capital market integration, e.g.,

Lessard (1974), Heston and Rouwenhorst (1994), Drummen and Zimmerman (1992), Beckers

et al. (1996), Rouwenhorst (1999), Hopkins and Miller (2001) and Griffin and Karolyj (1998).

Much of the work in this area has focussed upon European markets, reflecting the continent’s

six-decade experiment in politically-led regional economic integration.

Another relevant research strand examines international spillover effects in stock markets,

e.g., King and Wadhwani (1990), Hamao et al. (1990), Baillie et al. (1993), Engle et al. (1994),

Booth and Tse (1996), and Goetzmann et al. (2005). Related to this is the accumulated evidence

that correlations between financial markets are significantly higher during periods of volatile

markets, as in Ang and Bekaert (1999), Longin and Solnik (1995, 2001), and Capiello et al.

(2006), and higher during "down" markets than during "up" markets, as found by Erb et al.

(1994), Longin and Solnik (2001) and De Santis and Gerard (1997). Another related research

area concerns empirical examination of the relationships between macroeconomic variables

and stock market volatility, e.g., Officer (1973), Schwert (1989), Hamilton and Lin (1996) and

Brandt and Kang (2004).

In terms of econometric technique, we utilize a covariance-stationary, two-component

12



GARCH-type model. The component specification distinguishes between short- and longer run

sources of volatility. Engle and White (1999) proposed a GARCH model with a short and long

run component. Various two-component volatility models have been proposed by Ding and

Granger (1996), Chernov et al. (2003), and Adrian and Rosenberg (2006). The MIDAS-GARCH

component model was inspired by two earlier contributions, Ghysels et al. (2005) on MIDAS

filter and Engle and Rangel (2008) on spline-GARCH. Engle et al. (2008) formulate the

MIDAS-GARCH component specification that we employ.

For correlation modeling we use a variant of the Dynamic Conditional Correlation (DCC)

model. Bollerslev (1990) develops a multivariate time series model with time varying conditional

variances and covariances, but constant conditional correlations. Building upon this, Engle

(2002) proposed the DCC model, in which conditional correlation is also time varying. Colacito

et al. (2011) utilized these specifications and proposed a new class of component correlation

models, the DCC-MIDAS correlation models. Our paper extends the DCC model by imposing a

one-dimensional structure on the multivariate dynamic correlations. We find that our model is

numerically easy to estimate by maximum likelihood, at least in the case of a modest number of

asset returns (there are eleven assets in our application to Eurozone equity market indices). This

may be due in part to the simplified one-dimensional dynamic correlation measure which we

introduce in this paper.

Section two describes our main econometric model and estimation technique. Section three

describes an alternative, realized-covariance-based estimator, also based on our one-dimensional

dynamic correlation measure but employing a simpler estimation methodology. Section four

describes our data and presents all our empirical findings. Section five summarizes the paper.

1.2 A DCC-MIDAS-GARCH Specification with Univariate Correlation Dynamics

We adopt the Dynamic Conditional Correlation MIDAS-GARCH model but add to it a

univariate measure of dynamic correlatedness. We do this by imposing a particular functional
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form on the dynamics of the correlation matrix.

Assume that we observe an n−vector of returns rt on n assets over the interval t − 1 to t.

Further, we assume that the n−vector of returns rt has a time-constant vector of means µ and

time-varying nonsingular covariance matrix Ct :

rt = µ+ C
1/2
t ηt (1.1)

where ηt is an i.i.d. mean-zero n−vector time series process with covariance matrix equal to the

identity matrix. We denote the vector of demeaned returns by r̃t.

Let st = (σ1t, ..., σnt) denote the n−vector of individual asset return volatilities for time t

returns based on time t− 1 information, and let Ωt = {Covt−1(rit/σit, rit/σit), i, j = 1, ..., n}

denote the conditional correlation matrix of returns, conditional on time t− 1 information.

1.2.1 A Review of MIDAS-GARCH

The starting point in Engle’s DCC approach is to model the individual return volatilities

separately. For the components of st we use a model essentially identical to that in Colacito et

al. (2011) and Engle et al. (2008): each individual return volatility follows a MIDAS-GARCH

model. MIDAS-GARCH differs from standard GARCH in allowing time t "baseline" variance

to vary slowly through time. This ameliorates a substantial flaw in standard GARCH when

applied to long time samples, in particular, the empirically untenable assumption in standard

GARCH that baseline variance is time-constant, see Taylor (1986).

Letting hit denote baseline variance for asset i at time t− 1 for time t returns; we assume that

it is a weighted linear combination of unconditonal variance h0i and lagged realized variances:

hit = (1− θi)h0i + θic(ωi)

K∑
k=1

exp(−ωik)RVi,t−nk

with estimable parameters h0i, θi,and ωi, and whereRVi,t denotes the J-period realized variance

up to time t:

RVit =
1

J

J∑
j=1

r̃2
i,t−j,

14



and c(ωi) = (
K∑
k=1

exp(−ωik))−1 ensures that the exponential weights sum to one. The model

requires h0i > 0 and 0 ≤ θi < 1 to guarantee a covariance stationary process.

The slowly-changing variate hit captures the low-frequency component of volatility but

misses short-term GARCH effects. These are captured via a standard GARCH(1,1) model with

unit unconditional variance:

git = (1− αi − βi) + αigit−1 + βi
r̃2
i,t−1

hit−1

,

with αi, βi ≥ 0 and αi + βi < 1. The product of baseline variance and the short-term GARCH

effect gives time t variance:

σ2
it = hitgit. (1.2)

1.2.2 A Modified DCC Model with Univariate Dynamics

We use Diag[x] to denote an n× n diagonal matrix with the n−elements of the vector x on

the diagonal, and diag[X] to denote the diagonal matrix consisting of the diagonal elements of

any square matrix X with all non-diagonal elements set to zero. By definition the covariance

matrix is the quadratic product of the volatilities and correlation matrix:

Ct = Diag[st]ΩtDiag[st]. (1.3)

Prior to Engle’s work on the DCC model dynamic correlations have been estimated using simple

univariate methods, such as rolling historical correlations, exponential smoothing method and

multivariate GARCH models (see Engle (2009) for a comprehensive overview). A common

goal of the literature in this field is the parameterization of the covariance matrix of a set of

random variables conditional on a past information set. Building upon the constant conditional

correlation model of Bollerslev (1990) (in which Ωt = Ω, a time-constant matrix), Engle (2002)

suggests modeling the correlation matrix separately from the volatilities and then combining

them via (1.3) to produce a dynamic covariance matrix. Let X1t, X2t denote two symmetric,

positive semi-definite n × n matrices at least one of which is strictly positive definite and let

m1t,m2t denote two strictly positive scalars. (We are using the case of two explanatory variables
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for notational convenience only; more or less are acceptable). Engle defines the quasi-correlation

matrix Qt as the linear combination:

Qt = m1tX1t +m2tX2t. (1.4)

The matrix Qt is symmetric and positive definite but lacks one required property of a correlation

matrix since the diagonal elements are not necessarily equal to one. Engle suggests a simple

nonlinear transformation to impose this property while still maintaining symmetry and positive

definiteness:

Ωt = diag[Qt]
−1/2Qtdiag[Qt]

−1/2 (1.5)

Equations (1.4) and (1.5) define Engle’s dynamic conditional correlation (DCC) estimator.

Together with models for the individual volatilies st, this gives a composite model of the

dynamic covariance matrix.

Our model differs from standard DCC in the way we restrict the dynamics of the correlation

matrix. Engle’s DCC model is very clever, but is too high-dimensional for our application. The

major objective of our paper is to explore the changing magnitude of correlation within the

Eurozone, both in response to the dynamically varying economic environment and in response

to European capital market integration trends. In place of the 1
2
n(n− 1)-dimensional correlation

dynamics in (1.4) we want a univariate measure of time-varying correlation. This scalar measure

of correlation magnitude should leave the pattern of correlation between individual markets

essentially fixed. We now modify Engle’s model to produce such a scalar measure.

We want to find a model for Ωt with a simple one-dimensional state variable mt capturing

the time variation in Ωt. When the univariate state variable mt is high, the correlations between

markets are relatively strong, when mt is low, the correlations are relatively weak, and when mt

equals zero the correlations revert to their unconditional values. Except for this state variable the

general "structure" of correlations is assumed invariant through time.
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Let Ω0 denote the time-constant unconditional correlation matrix:

(Ω0)ij = cov0[
r̃it
σit
,
r̃jt
σjt

]i,j=1,..,n = E0[r̃t((Diag[st])
−2)r̃′t] (1.6)

where the 0 subscript denotes the unconditional information set. Let U be the n × n matrix

consisting entirely of ones. Our simple model for Ωt is as follows:

Ωt = Ω0 +mt−1(U − Ω0), for − 1 < mt−1 < 1 (1.7)

The variable mt−1 is restricted to the interval (−1, 1). We must show that (1.7) meets Engle’s

condition (1.4) that Ωt is a positive linear combination of positive-semidefinite matrices.

Suppose that the following condition holds:

2Ω0 − U is strictly positive definite. (1.8)

Confirming that condition (1.8) holds is a straightforward empirical task, and is a condition

easily met in our application to Eurozone equity markets.

Theorem 1: Given that condition (1.8) holds, then Ωt defined by (1.6) and (1.7) is a

symmetric, strictly positive definite matrix.

Proof: Note that (1.7) can be written as Ωt = at−1(2Ω0 − U) + (1 + at−1)U where

at−1 = 2(mt−1 − 1
2
). Since U is positive semi-definite and 0 < at−1 < 1 the matrix is a

linear combination of a positive definite matrix and a positive semi-definite matrix, with strictly

positive linear weights on both terms. Hence the matrix is strictly positive definite. The matrix

is symmetric since it is a linear combination of symmetric matrices. Q.E.D.

Conveniently we do not need to use (1.5) since our construction always gives a matrix with

units on the diagonal.

The model captures in a simple and intuitive way the notion that in some states of nature all

correlations move higher, and in other states, lower. It can be easily seen from (1.7) that the

dynamics in conditional correlation Ωt are captured by the univariate measure mt. When mt

is -1 the conditional correlation is low or negative, depending on the estimated unconditional

correlation. Conditional correlation is at a higher level when mt is positive and corresponds
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to the unconditional sample correlation when mt = 0. The model sacrifices the generality of

Engle’s original DCC (where all the correlations can move independently) in favour of greater

simplicity and interpretability.

Our variant of the DCC model has some parallels to the Engle and Kelly (2012) Dynamic

Equicorrelation (DECO) model. Our model, like the DECO model, is motivated by a desire for

greater parsimony than the unrestricted DCC model. The DECO model does this by assuming

that at each time point all correlations are equal; this produces a dynamic model of correlations

which is truly univariate. In contrast, our model permits the unconditional correlation matrix

to be unconstrained with full dimension, but imposes univariate dynamics on the movement

of the conditional correlation matrix relative to its unconditional value. The difference in our

approach relative to DECO reflects the difference in application: Engle and Kelly seek to model

a very large cross-section of individual equities, whereas we want to examine the dynamics in a

moderate number (eleven) of national equity indices.

As in Engle et al. (2008), we impose a linear structure on mt based on a low-dimensional

vector xt of explanatory variables (such as macroeconomic variates and financial market stress

indicators):

mt = b′xt (1.9)

subject to −1 < mt < 1. This mandates that the explanatory variables xt have bounded support

and imposes implicit restrictions on the parameters b (analogous to the positive-coefficient

requirements of a GARCH model). It follows from (1.7) that the explanatory variables xt must

have unconditional expectations of zero.

Our model for Ωt consists of (1.6), (1.7), (1.8) and (1.9) with estimable parameters a0, b,Ω0.

In our application, the endogenous variable mt is daily but the explanatory variables are constant

for all days within a quarterly frequency; this does not affect the econometric methodology.

Consider the average correlation at time t, found by averaging the off-diagonal elements of
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the time-t correlation matrix:

avecorrt =
1

n(n− 1)

∑
i 6=j

[Ωt]ij (1.10)

Using Ω0 in place of Ωt in (1.10) gives avecorr0. As we show next, the linear dynamic equation

for the correlation matrix (1.9) implies a univariate linear model of avecorrt. We define the

correlation ratio as the deviation of time t average correlation from its long-term average,

divided by one minus the long-term average:

ratiot =
avecorrt − avecorr0

(1− avecorr0)
. (1.11)

Theorem 2: Given ratiot as defined by (1.7), (1.10) and (1.11) then ratiot = mt for all t.

Proof: Applying the matrix off-diagonal averaging transformation (1.10) to both sides of the

dynamic correlation matrix equation (1.7) gives:

1

n(n− 1)

∑
i 6=j

[Ωt]ij = (1−mt)(
1

n(n− 1)

∑
i 6=j

[Ω0]ij) +mt, (1.12)

using that the average of the off-diagonal components of U equals one since the matrix consists

entirely of ones. Using the definitions of avecorrt and avecorr0 and inserting in (1.12):

avecorrt = (1−mt)avecorr0 +mt.

Subtracting avecorr0 from both sides and the dividing both sides by (1− avecorr0) gives the

result. Q.E.D.

Inserting ratiot into (1.9) gives:

ratiot = bxt, (1.13)

so that equation (1.9) in the dynamic system implies this linear model of time-varying average

correlation.

1.2.3 A Maximum Likelihood Estimation Procedure

We follow Engle (2002) and Colacito et al. (2011) in applying two-component maximum

likelihood to estimate the DCC-MIDAS-GARCH model. We begin by supposing that the

innovation process ηt is i.i.d. multivariate normal; it is unit variance and uncorrelated
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by definition; see (1.1). Weakening the assumption of normality gives rise to a quasi-

maximum likelihood interpretation rather than true maximum likelihood. Recall that

Ct = Diag[st]ΩtDiag[st] where Ct is the time-t covariance matrix. Using a standard result,

under i.i.d. multivariate normality of the innovations the data generating process for our sample

return vector has log likelihood function:

L = −1

2
(

T∑
t=1

(n log(2π) + log(|Ct|) + r̃′tC
−1
t r̃t))

= −1

2
(

T∑
t=1

(n log(2π) + log(|Diag[st]ΩtDiag[st]|) (1.14)

+r̃′t(Diag[st]ΩtDiag[st])
−1r̃t)).

Let Θ1 = {h0i, θi, ωi, αi, βi}i=1,...,n denote the parameters of the MIDAS-GARCH model,

and Θ2 = (Ω0, a0, b) the parameters of the dynamic correlation matrix model. Following

Engle (2002) we use a two-component maximum likelihood approach. In the first step we use

the individual time series of returns to estimate the MIDAS-GARCH parameters Θ1 for each

asset separately. Note that this is a collection of n unrelated individual-asset MIDAS-GARCH

maximization likelihood estimation problems. Then in the second step we use these consistent,

limited-information maximum likelihood values of Θ1 to substitute Diag[ŝt] for Diag[st] in

(1.14) to find the maximum likelihood estimate of Θ2.

The first-step estimation decomposes into a collection of individual GARCH-type model

estimation problems with additively separable log likelihood maximization problems:

Θ̂1i = arg max
Θ̂1i

L1i where

L1i = {−1

2
(

T∑
t=1

(log(2π) + log(hit) +
r̃2
it

hit
)}. (1.15)

There are two commonly-used estimators for the covariance matrix of the parameters in

(1.15). These are the inverse of the outer product of the score vector, and the inverse Hessian;

under standard conditions either provides a consistent estimator:

E[(
∂L1i

∂Θ̂1i

)(
∂L1i

∂Θ̂1i

)′]−1 =
T
E[
∂2L1i

∂2Θ̂1i

]−1 =
T
cov[Θ̂1i, Θ̂

′
1i] (1.16)
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where =
T

denotes approximately equal for large T and relies on consistent estimates of Θ̂1i (see,

e.g., Greene (2008)). As discussed next, we use the outer product of the score vector.

In the second step, we use the first-step estimates from (1.15) to compute ŝt and then

substitute this for st in (1.14) giving a maximum likelihood problem in the parameters Θ2 only.

Engle (2002) notes that the standard errors of the coefficients in the second-step correlation

matrix estimation are in general inconsistent due to the use of first-step estimated volatilities.

Engle and Sheppard (2001) derive a consistent estimate of the covariance matrix of the estimated

parameters in the second step by adjusting for the first-step estimation error:

cov[Θ̂2, Θ̂
′
2] =

T
E[(

∂L

∂Θ̂2

)(
∂L

∂Θ̂2

)′]−1E[yy′]E[(
∂L

∂Θ̂2

)(
∂L

∂Θ̂2

)′]−1 (1.17)

y =
∂L

∂Θ̂2

− E[
∂2L

∂Θ1∂Θ2

]E[
∂2L1

∂2Θ1

]−1 ∂L1

∂Θ̂1

.

Note that this is the matrix product of the standard outer-product-based estimator (the first term

in (1.17) as in (1.16)) times an adjustment matrix (the second and third terms).

Consider the special case in which expectations of all the cross-partial derivatives of the log

likelihood function equal zero, E[ ∂2L
∂Θ1j∂Θ2k

] = 0 for all j, k where j, k run over all the elements

of the parameter vectors Θ1 and Θ2, respectively. In this special case, the adjusted covariance

matrix simplifies, and is equal to the unadjusted estimate using the outer product of the score

vector:

cov[Θ̂2, Θ̂
′
2] = E[(

∂L

∂Θ̂2

)(
∂L

∂Θ̂2

)′]−1

which is easy to see since if E[ ∂2L
∂Θ1∂Θ2

] = 0 then E[yy′] = E[(( ∂L

∂Θ̂2
)( ∂L

∂Θ̂2
)′] and the adjustment

matrix equals the identity matrix. This becomes relevant in our empirical application below.

1.3 A Robustness Check Using Realized Covariances

A drawback to the estimation approach of the last section is its reliance on numerical

maximum likelihood and on the specific functional form of the DCC-MIDAS-GARCH model.

In this section we provide a robustness check on the main empirical findings. We describe a

stochastic-volatility variant of the model, treating the daily time interval as small and replacing
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the DCC-MIDAS-GARCH specification with nonparametric, realized covariance estimators.

This produces a model parallel to that of the previous sections, but which is simple to estimate,

relying only on quarterly sample moments of daily returns and linear time series regression.

It relies on the same one-dimensional dynamic measure of average correlation, using the

implication of this model for the dynamic correlation ratio (1.11). This simple model is parallel

to, rather than identical to, the model of the last two sections, but the empirical findings provide

a robustness check on the main results from the more complex estimation methodology.

Let pt denote a continuous-time n−vector stochastic process for the log prices of the stock

indices, and suppose that this price vector follows a Brownian motion with time-constant drift

and time-varying covariance matrix Ct

dpt = µdt+ Ctdzt, (1.18)

see Barndorff-Nielsen et al. (2011). Letting ∆ denote a fixed-length, high-frequency return

measurement interval define the return vector rt,t+∆ = pt+∆ − pt. Using a fixed finite window

Q define the integrated covariance matrix over the interval:

Ct−Q,t =
1

Q

t∫
t−Q

Ctdt

and the realized covariance estimator as the sample counterpart using high-frequency returns:

Ĉt−Q,t =
1

(Q/∆)

∑
1≤j≤Q

∆

rt−∆(j+1),t−∆jr
′
t−∆(j+1),t−∆j.

From Barndorff-Nielsen et al. (2011), letting ∆ → 0,with Q fixed, and under appropriate

regularity conditions, Ĉt−Q,t is a consistent and asymptotically normal (CAN) estimate of

Ct−Q,t. The dynamic correlation ratio (1.11) of the discrete daily model in the last section has

an obvious realized-covariance analogue in this continuous-time model:

ratiot−Q,t =
avecorrt−Q,t − avecorr0

(1− avecorr0)
. (1.19)

Note that the integrated correlation matrix, Ωt−Q,t = Diag[Ct−Q,t]
− 1

2 (Ct−Q,t)Diag[Ct−Q,t]
− 1

2

and its average off-diagonal component are smooth transformations of Ct−Q,t. Hence, the
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preservation of CAN under smooth transformations guarantees that the same functions applied to

Ĉt−Q,t provide consistent asymptotically normal estimates of ratiot−Q,t. We estimate the linear

relation between ratiot−Q,t and a set of zero-mean explanatory variables by time-series ordinary

least squares regression at frequency Q. That is, we impose the data generating process:

ratiot−Q,t = b∗xt−Q,t + εt, (1.20)

where xt−Q,t is a set of explanatory variables measured over the same frequency Q, and b∗

is a vector of linear coefficents. These regression estimates provide alternative, less model

dependent, parallels to the maximum-likelihood estimates of the dynamic model (1.9) described

in the previous two subsections.

In our application, we use ∆ equal to one day, and Q (the window length) equal to the

number of days in one quarter of the year (approximately 65 trading days depending on the

calendar). This matches the frequency of some of the independent variables in (1.13). There is

not an exact match between the two models, but they capture related information over the same

data history. We do not attempt to relate the simple regression specification (1.20) to the data

generating process for individual returns (1.18). We view this regression model as a simpler

alternative to the model described in the previous two sections, capturing some of the same

empirical phenomena on the same data history.

1.4 Data and Empirical Findings

We use adjusted1 daily closing prices from December 31st 1991 to December 31st 2010 for

eleven European capitalization-weighted equity indices, Austria, Belgium, Finland, France,

Germany, Greece, Ireland, Italy, Netherlands, Portugal, and Spain, obtained from Datastream.

(Although the Euro currency formally came into existence on January 1st 1999, the Maastricht

Treaty committing signatory states to join the currency was drafted in December 1991, and

signed by delegates of the member states in February 1992.) We compute daily log returns. The

1 Adjusted daily closing prices are the default data type for all equities and indices in Datastream. The closing price is

adjusted for stock splits and other similar corporate actions.
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Datastream database skips weekends and a few major holidays (Christmas and New Year’s Day)

but reproduces yesterday’s closing price on other days on which a particular national exchange is

closed. To partly correct for this, we ignore closing prices on days on which four or more of the

eleven national exchanges are closed, and treat such a day the same as a weekend (the two-day

return becomes a one-day return for the entire cross-section). This keeps the panel dataset

balanced and seems to deal reasonably well with non-synchrony in the return computations (see

below). There is a maximum two-hour time zone difference between the national markets in the

sample; Ireland and Portugal are one hour behind the core European countries, and Greece is

one hour ahead.

Table 1.1 shows the annualized means and standard deviations, skewness, excess kurtosis,

and first four autocorrelations for each of the eleven returns series. Two markets (Greece

and Portugal) have fairly high first-order autocorrelations, indicating illiquid pricing or stale

pricing of the daily index. Table 1.2 shows the sample correlation matrix, above the diagonal,

and the first-order autocovariance and crosscovariance adjusted correlation matrix below the

diagonal. The diagonal elements are autocorrelation-consistent estimates of the annualized

standard deviations. To compute this table, an adjusted covariance matrix is found by adding the

corresponding lagged and led cross-covariance matrices to the original sample cross-covariance

matrix (see, e.g, Connor et al. (2010) section 2.5 for details of this adjustment). This adjustment

allows for the possible impact of non-synchronous returns as found in correlation analysis

of global equity markets, see Martens and Poon (2001). The adjusted standard errors and

correlation matrix are then computed from this adjusted covariance matrix. There is little

difference between the adjusted and unadjusted correlations or standard deviations (compare to

Table 1.1). This reflects the limited cross-correlation of returns, as shown in Table 1.3. This

shows that by skipping days on which four or more markets are closed, and restricting our panel

to European markets (with their similarity of trading hours), we have mitigated the problem of
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non-synchronous returns.

1.4.1 The MIDAS-GARCH Models of Individual Market Index Volatility

Table 1.4 columns one to three report the estimates for the GARCH(1,1). For all eleven

markets, the estimated GARCH(1,1) coefficients are closer to or (in the case of Portugal) exceed

the stationarity boundary αi + βi < 1. Table 1.4 columns four to seven report the estimates for

the MIDAS-GARCH model. For all countries the sum of the two MIDAS-GARCH coefficients

αi and βi is well within the stationary boundary αi + βi < 1. This shows one relative advantage

of the MIDAS-GARCH model. The exponential weighting is not significantly different from 0 in

most markets so that the optimal weighting is close to equal weighting of the four lagged fixed-

window realized variances. The estimated decay coefficient θi is close to 1/2 in most markets.

The table shows that the covariance stationary, two-component MIDAS-GARCH volatility

models with GARCH(1,1) short-term components and mean-reverting, exponentially-weighted

medium-term components fit our daily equity index returns data sample reasonably well.

Figure 1.1 illustrates the trends in Euro-area volatility using two proxies: the square root of

the cross-sectional average of the predicted variances from the MIDAS-GARCH models, and the

square root of the cross-sectional average of the 65-day rolling window variances. Both proxies

are annualized by multiplying by the square root of 261, the average number of trading days per

year in our sample. The MIDAS-GARCH volatilities are noticeably more variable through time,

but the two proxies follow each other closely in terms of lower-frequency components.

1.4.2 A Dynamic Model of Eurozone Equity Market Correlations

Recall that the DCC-MIDAS-GARCH maximum-likelihood estimation problem decomposes

into MIDAS-GARCH and the separate estimation of the correlation matrix dynamics. In this

subsection we discuss the second-step estimation of the correlation matrix using the dynamic

volatilities from the last subsection to standardize returns.

For the dynamic correlation matrix model (1.9) we examine a variety of specifications. We

consider seven potential explanatory variables: a time trend, the average cumulative returns to
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the eleven indices using the previous 65 days of returns, the proportion of the eleven markets

which had negative real GDP growth during the current quarter, the cross-sectional average of

national GDP growth in the current quarter, the lagged correlation ratio (1.11) using the previous

65 days of daily returns, the lagged average sample variance using the previous 65 daily returns,

and the current implied variance from the Eurostoxx options-based volatility index. All the

explanatory variables are de-meaned. We use the 65 day rolling window to account for a quarter

of the year based on a 260 day year.

Note that two of the proposed explanatory variables, the proportion of the eleven markets

with negative quarterly GDP growth, and the cross-sectional average of national GDP growth

in the current quarter, are similar measures of Eurozone business conditions. They have a

correlation of −.89, so we use one or the other of these two explanatory variables, but not both

simultaneously.

We also have two measures of market volatility. The first is the lagged average sample

variance, taking a simple average of the rolling-window 65-day return variances of the eleven

countries, lagged by one day. The second is an option-implied variance from the VSTOXX

index, a volatility index based on Euro STOXX 50 realtime options prices; see Stoxx Strategy

Index Guide (2012, section 6) for a description of the VSTOXX index. To transform it into daily

variance units the VSTOXX index is divided by 100 and squared prior to including it in the

analysis. These two variance measures have a correlation of 0.59, so we use one or the other

but not both together. The STOXX data has a shorter data availability period (data beginning in

1999) so the model estimates relying on this measure are over a shorter sample period.

With these seven potential explanatory variables, there is an unmanageable number

of possible specifications by adding or dropping variables. We impose discipline on our

specification search as follows. We include the lagged daily correlation ratio and time trend in all

specifications. Both of these have a fairly strong empirical/theoretical foundation. For the other
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variables, the cumulative return measure, the business conditions variable (either negative GDP

growth proportion or average GDP growth), and the volatility measure (either lagged average

variance or STOXX volatility index-based variance), we try the combinations: none, each alone,

and all three together. Taking account of the two alternative measures of business conditions and

volatility, this gives nine specifications in total.

There are 55 estimable parameters in Ω0 since it is a symmetric 11 × 11 matrix with unit

diagonal. Additionally there are between two and five parameters in b depending upon the

specification. We use the sample correlation matrix Ω̂0 as an initial (and consistent) estimate.

Next, we estimate b consistently by limited information maximum likelihood applied to L

(see (1.14)) with the value of Ω̂0 held fixed at this initial estimate. Finally we use these initial

estimates of b̂ and Ω̂0 and re-estimate all the parameters simultaneously by maximum likelihood.

For all seven specifications, the maximum likelihood estimation problem converges quickly,

and the b estimates are relatively unaffected by the simultaneous estimation of Ω̂0, that is, the

initial and final estimates of b are quite similar. The initial estimates of b and Ω0 are available in

Connor and Suurlaht (2013b) along with other ancillary results and estimation code.

The results are presented in Table 1.5, using unadjusted one-step standard errors based on the

outer product of the score vectors. (We will show in the next subsection that Engle’s adjustment

has negligible impact on the standard errors). Not surprisingly, there is an autocorrelation

effect, captured in the positive coefficient on the lagged 65-day empirical correlation ratio.

There is a strong positive trend in correlation magnitude over this time period within the

Euro region. These are the two strongest findings. The "downside correlation" effect linking

cumulative return negatively to correlation magnitude is only significant in the five-variable

model including average GDP growth. When cumulative return is used without either of the

GDP-based variables, the coefficient is significant with the "wrong" sign (this could be ascribed

to a missing variable bias). There is a positive relationship between average variance and the
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dynamic correlation measure.

There is also a business-cycle-related effect: correlations are lower when the proportion

of markets with negative GDP growth is higher. The same finding holds when average GDP

growth is used as a replacement variable (with the opposite sign, obviously). This shows that,

for some reason for which we do not have a ready theory, there seems to be greater diversity in

the national index returns when several Eurozone economies are in a business cycle downturn

or their average GDP growth is lower. This finding differentiates our results from those of Erb

et al. (1994) on the dynamic correlations of G7 equity markets. Erb, Harvey and Viskanta

use the Center for International Business Cycle Research national business cycle peak/trough

indicator to divide monthly return data pairs (each G7 market matched with each of the other G7

markets in pairs) into three subsamples: both national markets in a macroeconomic expansion

phase, both in a macroeconomic contraction phase, and mixed (one in each phase). They find

that the return correlations are lowest in the expansion-expansion subsamples and highest in

the contraction-contraction subsamples. Treating our proportion of markets with negative GDP

growth as a contraction/expansion indicator, our results for the Eurozone find an opposite effect.

We attribute this difference to the different nature of the capital market and macroeconomic links

within the tightly-integrated Eurozone versus the looser ties within the G7. However, we do not

claim to have a satisfactory macroeconomic-financial theory to explain the findings.

Suurlaht (2013) applies exactly the same methodology as we use to G7 markets, and finds

that a (somewhat weaker) positive integration trend is statistically significant for those markets,

but the "downside correlation" effect and GDP-related effect are much weaker than for the

Eurozone markets. Neither effect is statistically significant, or is only marginally significant,

depending upon the specification.

Our empirical findings have practical implications for portfolio optimization and risk

management for investors in European equity markets. The common dynamics in correlations
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in the Eurozone impact on diversification strategies and portfolio risk levels. In this paper we

do not attempt to integrate the findings explicitly into a portfolio optimization or portfolio risk

forecasting model; we leave that for later research.

1.4.3 Adjusted Second-step Coefficient Standard Errors

In this subsection we implement the adjustment to the second-step parameter standard errors

proposed by Engle (2002). Note that there are 44 parameters in the first-step parameter vector

Θ1 (4 parameters per national market index and 11 national market indices). Consider either

model 6 or 7 in Table 1.5, in which there are 60 parameters in the second-step parameter set

Θ2 = (b,Ω0). In this case the matrix of expected cross-partial derivatives, E[∂
2L(Θ1,Θ2)
∂Θ1j∂Θ2h

], has

dimension 60× 44. This matrix is numerically somewhat cumbersome to compute since it links

the two steps of the component maximum likelihood procedure. The other elements of (1.17) are

straightforward to compute; the score vectors of the likelihood function are created naturally as

part of numerical maximum likelihood. Let d1j denote a 44−vector with a one in element j and

zeros elsewhere, d2h denote a 60−vector with a one in element h and zeros elsewhere. For every

combination j, h of first and second stage parameters we perturb each individual parameter

positively and negatively away from its pre-estimated value, and re-estimate the second-stage

expected log likelihood E[L(Θ∗1,Θ
∗
2)] using the time-series average as a consistent estimate of

the expectation. A linear combination of perturbed values of the expected log likelihood gives

an approximation to the cross-partial derivative matrix:

E[
∂2L(Θ1,Θ2)

∂Θ1j∂Θ2h

] = lim
εj ,εh→0

1

4εjεh
{E[L(Θ1 + d1jε1j,Θ2 + d1hε2h)]

−E[L(Θ1 + d1jε1j,Θ2 − d2hε2h)]

−E[L(Θ1 − d1jε1j,Θ2 + d2hε2h)]

+ E[L(Θ1 − d1jε1j,Θ2 − d2hε2h)]}. (1.21)

We use (1.21) to approximate the cross-partials numerically, using appropriately small values
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for εj, εh. We compute the second-step likelihood time-series sample realizations for each of

the 4× 60× 44 = 105600 combinations of positive/negative parameter perturbations in (1.21)

and take a time-series sample mean for each realized sample of log likelihood observations. The

other terms of (1.17) are straightforward.

Table 1.6 compares the adjusted and unadjusted standard errors of the second-step coefficients

for the two five-variable models (specifications 6 and 7) from Table 1.5. The adjustment has

a negligible impact, which is unsurprising when the nature of the adjustment is traced. The

perturbation of a first-step parameter has only a very modest and indirect impact on the

likelihood scores of second-step parameters. A perturbation to one of the first-step parameters

modestly influences ŝ and this, in turn, very modestly influences correlations via (1.3), which

can theoretically at least influence the regression coefficients in (1.9). To summarize our findings

in this regard, Engle’s adjustment is theoretically appealing, but it is time-consuming and

cumbersome to implement and has negligible impact in this application.

1.4.4 Alternative Estimates Using Realized Variances and Covariances

Table 1.7 parallels Table 1.5 but using the fixed-window variances and covariances and

quarterly linear regression (1.20) in place of the DCC-MIDAS-GARCH. The dependent variable

is the correlation ratio for each calendar quarter, based on the sample correlation matrix of

daily returns during the quarter. The lagged correlation ratio among the explanatory variables

is lagged by one full calendar quarter. The other explanatory variables are contemporaneous

with the dependent variable over the same quarter. Although the model and methodology

are different, the findings mostly parallel those with the DCC-MIDAS-GARCH model. The

coefficients on the lagged correlation ratio and time trend are both positive and significant, as in

the DCC-MIDAS-GARCH model. The coefficient on the proportion of markets with negative

GDP growth is negative as in the DCC-MIDAS-GARCH model. The alternative variable choice,

average-GDP growth, has a positive and significant sign in the five-variable model but is not
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significant when used alone (in the DCC-MIDAS-GARCH model it was positive and significant

in both cases). The "downside correlation" effect is significant and negative (the expected sign)

when used alone and in one of the two five-variable models.

1.5 Conclusion

This paper uses a new variant of the Dynamic Conditional Correlation Mixed Data Sampling

GARCH model (DCC-MIDAS-GARCH) to examine the dynamic volatilities and correlations of

daily equity index returns for eleven countries in the Eurozone over the sample period January

2nd 1992 to December 30th 2010.

We develop a new variant of Engle’s DCC model which simplifies the structure of that model

by imposing a univariate measure of the dynamic changes in the correlation matrix. We use this

new univariate measure of dynamic correlation magnitude to relate the dynamic variation in

average correlation of equity markets in Europe to relevant macroeconomic variables.

We find that European markets show a significant positive trend toward higher inter-market

correlations over the 1991-2010 time period. There is time–series autocorrelation in the

magnitude of cross-market return correlations. Correlations are higher when cross-country

average variances are higher. A "downside correlation" effect, negatively linking cumulative

returns to dynamic correlations, is significant in some but not all of our chosen specifications.

Also, there is a significant business-cycle effect: cross-market correlations tend to be lower

when a larger proportion of the economies are in a negative-growth quarter. Alternatively (using

a slightly different specification) correlations are higher when cross-market average GDP growth

is higher. It is interesting to theorize as to why lower GDP growth, captured either by average

growth or the proportion of countries with negative growth, is dynamically related to greater

diversity of returns across national stock markets within the tightly-integrated Eurozone.
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1.6 Tables and Figures 

 

Table 1.1: Summary statistics 

Series 

Annualized 

Mean 

Return 

Annualized 

Std Deviation 
Skewness 

Excess 

Kurtosis 
ρ1 ρ2 ρ3 ρ4 

Austria 6.71 21.80 -0.37 8.71 0.0745 -0.0354 -0.0064 0.0162 

Belgium 4.81 19.08 0.04 7.20 0.0886 -0.0097 -0.0447 0.0230 

Finland 13.25 30.08 -0.36 6.76 0.0286 -0.0209 -0.0161 0.0335 

France 4.35 23.16 0.01 4.78 -0.0119 -0.0414 -0.0541 0.0373 

Germany 8.40 23.86 -0.11 4.83 -0.0164 -0.0329 -0.0180 0.0418 

Greece 2.91 27.15 -0.12 3.89 0.1305 -0.0159 -0.0129 0.0278 

Ireland 4.07 21.03 -0.62 9.53 0.0665 0.0007 0.0018 0.0124 

Italy 3.91 23.76 -0.02 4.10 0.0270 -0.0029 -0.0233 0.0697 

Netherlands 5.85 23.08 -0.13 6.54 -0.0036 -0.0227 -0.0570 0.0479 

Portugal 8.40 16.30 -0.33 12.86 0.1053 0.0184 0.0248 0.0438 

Spain 7.52 22.98 -0.02 5.75 0.0191 -0.0394 -0.0323 0.0202 

Notes: Summary statistics including the first four autocorrelations for the eleven Eurozone stock market 

index daily log return series over the sample period from January 2, 1992 to December 30, 2010 (4788 

observations).  

 

Table 1.2: The sample correlation matrix and annualized standard deviations 

        R1t        R2t      R3t     R4t    R5t   R6t  R7t R8t           R9t          R10t           R11t 











































232.0669.0771.0738.0585.0463.0782.0796.0609.0709.0615.0

650.0171.0609.0572.0533.0484.0611.0616.0519.0579.0552.0

783.0618.0230.0739.0662.0475.0864.0871.0662.0852.0640.0

738.0573.0739.0241.0560.0414.0730.0757.0575.0678.0575.0

554.0515.0609.0520.0217.0471.0620.0628.0491.0665.0624.0

368.0389.0382.0323.0379.0289.0472.0465.0376.0467.0451.0

736.0579.0818.0696.0540.0344.0237.0866.0668.0764.0613.0

818.0620.0868.0759.0589.0366.0812.0230.0677.0786.0612.0

601.0525.0655.0555.0487.0315.0618.0649.0305.0532.0446.0

670.0575.0804.0651.0597.0379.0706.0760.0528.0199.0643.0

570.0540.0585.0531.0561.0361.0570.0572.0448.0585.0226.0
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Notes:  Sample correlation matrix for the eleven Eurozone stock market index return series (1. Austria 

2.Belgium 3.Finland 4.France 5.Germany 6.Greece 7.Ireland 8.Italy 9.Netherlands 10.Portugal 11.Spain) 

over the sample period from January 2, 1992 to December 30, 2010. Sample correlations of national stock 

index returns are above the diagonal, and first-order autocovariance and cross-covariance adjusted 

correlations below the diagonal. The diagonal elements are first-order autocovariance-consistent estimates 

of the annualized standard deviations. 
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Table 1.3: Cross-correlation matrix 

       R1t-1        R2t-1        R3t-1       R4t-1        R5t-1       R6t-1     R7t-1        R8t-1        R9t-1      R10t-1      R11t-1 
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Notes: Cross-correlations for the eleven Eurozone stock market index return series (1. Austria 2.Belgium 

3.Finland 4.France 5.Germany 6.Greece 7.Ireland 8.Italy 9.Netherlands 10.Portugal 11.Spain) over the 

sample period from January 2, 1992 to December 30, 2010. The diagonal elements are sample estimates 

of the first-order autocorrelations.     
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Table 1.4: GARCH(1,1) and MIDAS-GARCH coefficient estimates  

 
GARCH(1,1) MIDAS-GARCH 

National 

Index 
c α β α β θ ω 

Austria 0.000*** 0.107*** 0.876*** 0.111*** 0.860*** 0.544*** -0.004 

  (5.580) (10.612) (77.053) (13.170) (75.034) (6.736) (-0.010) 

Belgium 0.000*** 0.114*** 0.873*** 0.133*** 0.843*** 0.468*** 0.897** 

  (5.631) (11.654) (83.805) (16.925) (82.0731) (6.141) (1.846) 

Finland 0.000*** 0.063*** 0.935*** 0.075*** 0.903*** 0.819*** 0.421 

  (3.599) (9.003) (134.704) (20.647) (145.817) (14.802) (1.576) 

France 0.000*** 0.073*** 0.919*** 0.078*** 0.909*** 0.358*** 0.311 

  (4.216) (10.191) (117.518) (11.632) (102.460) (2.583) (0.557) 

Germany 0.000*** 0.093*** 0.897*** 0.094*** 0.887*** 0.480*** 0.411 

  (5.531) (10.901) (102.600) (13.875) (98.616) (4.466) (0.872) 

Greece 0.000*** 0.140*** 0.849*** 0.144*** 0.796*** 0.797*** 0.327 

  (5.641) (10.152) (61.279) (14.232) (55.935) (19.429) (1.493) 

Ireland 0.000*** 0.082*** 0.909*** 0.082*** 0.898*** 0.553*** -0.049 

  (5.092) (10.214) (101.838) (16.033) (127.348) (8.208) (-0.159) 

Italy 0.000*** 0.108*** 0.887*** 0.111*** 0.869*** 0.597*** 0.580 

  (4.476) (10.849) (90.022) (12.441) (73.564) (6.983) (1.443) 

Netherlands 0.000*** 0.099*** 0.895*** 0.107*** 0.876*** 0.578*** 0.640 

  (4.982) (12.143) (109.758) (14.183) (92.624) (6.685) (1.480) 

Portugal 0.000*** 0.175*** 0.831*** 0.166*** 0.804*** 0.584*** 0.687** 

  (5.811) (12.186) (67.683) (25.599) (96.889) (10.0811) (2.135) 

Spain 0.000*** 0.103*** 0.885*** 0.104*** 0.871*** 0.520*** 0.965 

  (5.414) (10.343) (81.999) (13.231) (79.515) (6.858) (1.459) 

 

Notes: Columns 1-3: Individual GARCH(1,1) models are fitted to eleven Eurozone stock market indices 

using quasi-maximum likelihood estimation. The parameter space for each GARCH(1,1) model is Φ = 

{c,α,β}.  The standard GARCH(1,1) model is defined as:                   
       
 

      
  where hit  is the 

conditional variance. The t-statistics are reported in parentheses below the coefficient estimates. Columns 

4-7: Individual MIDAS-GARCH models are fitted to eleven Eurozone stock market indices using quasi-

maximum likelihood estimation. Each MIDAS-GARCH model is composed of several equations with a 

parameter space Θ = {α,β,θ,ω}.  hit denotes the baseline variance for asset i at time t-1 for time t returns 

capturing the low-frequency component of volatility: 

                                       
 

   
, where RVit denotes the 65-day realized 

variance up to day t:              
 

  

   
. Short-term Garch effects are captured via a standard 

GARCH(1,1) model:                         
       
 

      
 . The t-statistics are reported in 

parentheses below the coefficient estimates. “***”,  “**” indicates statistical significance at 1% and 5% 

level, respectively. 
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 Table 1.5: Daily models of dynamic correlation magnitude  

 
1 2 3 4 5 6 7 8* 9* 10* 

ratiot-1 0.518*** 0.533*** 0.509*** 0.507*** 0.575*** 0.496*** 0.548*** 0.558*** 0.537*** 0.510*** 

 
(20.892) (20.529) (19.631) (19.668) (22.422) (18.765) (20.479) (8.881) (11.827) (8.473) 

trendt 0.032*** 0.032*** 0.032*** 0.036*** 0.031*** 0.036*** 0.032*** 0.024*** 0.029*** 0.033*** 

 
(18.468) (18.113) (18.367) (19.032) (17.725) (19.276) (17.825) (5.137) (8.930) (7.307) 

cumrett  
0.002** 

   
0.000 -0.005** 0.017*** 

 
0.004 

  
(2.265) 

   
(0.253) (-2.504) (7.382) 

 
(1.205) 

negGDPt    
-0.062*** 

 
-0.074*** 

  
-0.225*** 

 

    
(-4.948) 

 
(-3.871) 

  
(-10.746) 

 
avegrowtht     

0.003*** 
 

0.005*** 
  

0.085*** 

     
(5.886) 

 
(7.149) 

  
(8.416) 

avevart   
0.108 

  
0.242** 0.245** 

  
0.217 

   
(1.412) 

  
(2.551) (2.609) 

  
(1.439) 

vstoxxt        
0.737*** 0.754*** 0.826*** 

        
(11.419) (12.734) (12.607) 

Nr of Obs 4528 4528 4528 4528 4528 4528 4528 2779 2779 2779 

 Notes: The table reports estimated coefficients for the dynamic model of the correlation magnitudes using maximum likelihood. The sample period is January 2, 1992 to December 30, 

 2010. For the regressions marked with * the sample period is January 4, 1999 to December 30, 2010.  The ten columns correspond to ten different specifications and differ only in the 

 choice of the explanatory variables. Dependent variable is the dynamic correlation magnitude for all ten regressions. The seven macroeconomic variables are a lagged correlation ratio 

 (using the previous 65 daily returns), a time trend, the average of the cumulative returns to the eleven indices over the previous 65 days, the contemporaneous proportion of the eleven 

 markets which had negative real GDP growth during the quarter, the cross-sectional average of national GDP growth in the current quarter, the contemporaneous average sample 

 variance (using the  previous 65 daily returns) between the eleven markets, and the daily scaled and squared implied volatility index VSTOXX. The t-statistics are reported in 

 parentheses below the coefficient estimates. “***”,  “**”, “*” indicates statistical significance at 1%, 5% and 10% level, respectively.  
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Table 1.6: Effect of adjusting for the first-step estimation error 

Specification 6       
  Unadjusted St Deviations Adjusted St Deviations % Difference 

ratiot-1 0.0264 0.0264 0.016% 

trendt 0.0019 0.0019 -0.002% 

cumrett-1 0.0019 0.0019 0.028% 

avevart-1 0.0949 0.0949 0.025% 

negGDPt 0.0192 0.0192 0.024% 

Specification 7       

  Unadjusted St Deviations Adjusted St Deviations % Difference 

ratiot-1 0.0268 0.0268 0.025% 

trendt 0.0018 0.0018 0.008% 

cumrett 0.0018 0.0018 0.017% 

avevart-1 0.0941 0.0941 0.053% 

avegrowtht 0.0007 0.0007 0.013% 
 

Notes: Table 1.6 compares the adjusted and unadjusted standard errors of the second-step coefficients for the 

dynamic correlation magnitude models 6 and 7 from Table 1.5. The standard errors of the coefficients in the second-

step correlation matrix estimation are in general inconsistent due to the use of first-step estimated volatilities (Engle 

(2002)). To adjust for the first-step estimation error the standard outer product of the score vector (the chosen 

estimator for the covariance matrix of coefficients from the MIDAS-GARCH model) is multiplied by an adjustment 

matrix (see Equation (1.19)).  The variables are the same as in Table 1.5. 
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 Table 1.7: Quarterly models of the dynamic correlation ratio 

 
1 2 3 4 5 6 7 8* 9* 10* 

ratiot-1 0.309*** 0.375*** 0.215** 0.332*** 0.320*** 0.293*** 0.306*** -0.031 -0.071 0.058 

 
(2.750) (3.576) (1.994) (2.882) (2.815) (2.782) (2.965) (-0.219) (-0.452) (0.381) 

trendt 0.042*** 0.036*** 0.045*** 0.042*** 0.042*** 0.040*** 0.040*** 0.090*** 0.095*** 0.091*** 

 
(5.241) (4.788) (5.919) (4.975) (5.210) (5.522) (5.572) (6.147) (6.276) (6.394) 

cumrett  
-6.341*** 

   
-4.210** -4.770*** -5.735** 

 
-5.338* 

  
(-3.740) 

   
(-2.323) (-2.687) (-2.062) 

 
(-1.804) 

negGDPt    
-0.050 

 
-0.228** 

  
-0.068 

 

    
(-0.558) 

 
(-2.627) 

  
(-0.427) 

 
avegrowtht     

0.026 
 

0.109*** 
  

0.120* 

     
(0.730) 

 
(3.185) 

  
(1.957) 

avevart   
6.012*** 

  
6.245*** 6.399*** 

  
5.080* 

   
(3.538) 

  
(2.664) (3.318) 

  
(1.754) 

vstoxxt        
0.496 0.883** 0.378 

        
(1.542) (2.355) (1.053) 

Adj. R2 0.774 0.809 0.805 0.762 0.662 0.828 0.753 0.728 0.701 0.745 

SSR 2.484 2.076 2.116 2.372 2.219 1.811 1.567 1.405 1.544 1.253 

Nr of Obs 75 75 75 75 75 75 75 46 46 46 

 Notes: Table 1.7 reports estimated coefficients for the time series quarterly regressions to explain the movement in cross-sectional average correlation, where the correlations are 

 estimated using one quarter of daily returns. Each quarter consists of the trading days in a nonoverlapping three-month period, starting with January –March. The sample period is 

 January 2, 1992 to December 30, 2010. For the regressions marked with * the sample period is January 4, 1999 to December 30, 2010.  The ten columns correspond to ten different 

 specifications and differ only in the choice of the explanatory variables. Dependent variable is the ratio 
                    

            
 , where qavecorrt is the cross-sectional average correlation 

 for all ten regressions and avecorr0 is the average cross-sample correlation. The seven independent variables are the lagged correlation ratio for each calendar quarter, a time trend, the 

 average of the contemporaneous quarterly returns to the eleven indices, the contemporaneous proportion of the eleven markets which had negative real GDP growth during the quarter, 

 the cross-sectional average of national GDP growth in the current quarter, the contemporaneous average sample variance (also using one quarter of daily returns) between the eleven 

 markets, and the quarterly scaled and squared implied volatility index VSTOXX. The t-statistics are reported in parentheses below the coefficient estimates. The last two rows report 

 the adjusted R2 and the sum of squared residuals. “***”,“**”, “*” indicates statistical significance at 1%, 5% and 10% level, respectively.
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Figure 1.1: MIDAS-GARCH and rolling window annualized return standard 

deviations 

 

Notes: The figure shows the cross-sectional average of the annualized predicted return standard 

deviations from the MIDAS-GARCH models and the cross-sectional annualized average of the 65-day 

rolling window return standard deviations.  
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Chapter 2 Correlation Dynamics in the G7 Stock Markets

2.1 Introduction

Cross border correlation analysis has been widely used as a foundation for two strands

of research: portfolio diversification benefits and dependence structure between financial

markets. The latter has proven to provide useful insight into contagion and spillover effects

during financial crises. Thus, understanding the causes behind changing correlation level across

financial markets has great importance for both policy makers and practitioners. Earlier studies

on the dynamic cross border connectedness relied on analysis of simple correlation coefficients

and in time it became apparent that parameterized models were needed for structured analysis.

This paper uses the econometric method proposed in the first chapter of this dissertation

to examine the dynamic equity index return comovement within the G7 equity markets. The

aim is to explore the long term trend in the correlation level of the G7 financial markets and

its response to the constantly changing economic environment. Empirical results in this paper

show a positive trend toward higher correlation and significant time-series autocorrelation in the

magnitude of cross-market return correlation within the G7 equity markets. Correlation level is

higher when financial markets experience turbulent periods. Equity markets appear to be more

correlated when the countries in the sample experience a GDP growth. When looking at the full

sample period it appears that the G7 equity markets are more correlated when recent cumulative

returns are higher; the sample is split into "pre-crisis" and "crisis" period and the results for both

subsamples are consistent with the full sample period.

This paper draws on several strands of literature as the econometric framework applied

allows addressing several distinct questions. There is a substantial amount of literature studying

whether the equity markets connectedness has changed over time. Time variation of asset return

correlation level is now recognised as a stylized fact. However, the empirical evidence on the
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trend persistence is mixed at best and appears to be dependent on the chosen sample period.

A collection of papers argues that the dependence between equity markets has increased over

time. Baele and Inghelbrecht (2010) report increasing correlations over the period of 1970’s

to mid-2000’s within the developed markets. Christoffersen et al. (2012) conclude that the

cross border equity market copula correlations have increased markedly throughout the 1989 -

2009 period. Bekaert et al. (2009) study interdependence of the equity returns of 23 developed

markets and find an upward trend in return correlations only among the subsample of the

European markets. In contrast to these findings, King et al. (1994) study the correlation between

the equity markets of 16 developed markets for 1970 - 1988 and argue that the dependence

between equity markets has not increased, except around the 1987 market crash. Carrieri et

al. (2007) study the correlation trend across emerging markets and conclude that there is no

common pattern for the period from 1977 to 2000.

A related research area examines international spillover effects in equity markets, e.g., King

and Wadhwani (1990), Hamao et al. (1990), Engle et al. (1994), Booth and Tse (1996), and

Kohonen (2013). There is increasing evidence that the correlation between financial markets

is significantly higher during periods of volatile markets, as in Karolyi and Stulz (1996), Ang

and Bekaert (1999), Longin and Solnik (1995, 2001), and Capiello et al. (2006). This strand

of research is closely related to the analysis of correlation asymmetries. Empirical evidence

shows that the correlation between equity markets is higher during bear markets than during bull

markets, as found by Erb et al. (1994), Longin and Solnik (2001) and Ang and Chen (2002).

Another relevant research area concerns empirical examination of the relationships between

macroeconomic variables and stock market volatility, e.g., Schwert (1989), Hamilton and Lin

(1996), Paye (2012) and Christiansen et al. (2012). So far little is known on the relationship

between the asset return correlation and macroeconomic variables.

Given that the G7 equity markets have different trading hours the use of daily closing
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prices leads to an underestimation of the true correlations between stock markets (Martens

and Poon (2001)). Engle (2009) suggests to use time aggregated data to find the correct

unconditional correlations. However, the use of low frequency data significantly reduces the

number of observations available, which is inefficient for multivariate modeling, particularly

when dealing with time varying parameters. Scholes and Williams (1977), Lo and MacKinlay

(1990), RiskmetricsTM (1996) and Audrino and Bühlmann (2003) discuss the issue and

propose econometric approaches to the problem. This paper utilizes the VAR-based method of

synchronising the non-synchronous returns before computing the correlations as in Burns et al.

(1998).

Once the index returns have been "synchronised", this paper follows the method set out in

Connor and Suurlaht (2013a). They utilize the existing models in the multivariate GARCH

framework. Specifically, asset return volatilities and correlations are modeled separately, which

has become popular since the introduction of the Dynamic Conditional Correlation (DCC)

model of Engle (2002). For correlation modeling a variant of the DCC model is used. Bollerslev

(1990) develops a multivariate time series model with time varying conditional variances and

covariances, but constant conditional correlations. Building upon this, Engle (2002) proposed

the DCC model in which conditional correlation is also time varying. Colacito et al. (2011)

utilize these specifications and propose a new class of component correlation models, the

DCC-MIDAS correlation models. Connor and Suurlaht (2013a) amend the Engle (2002) model

by adding to it a univariate measure of dynamic correlatedness. They successfully apply the

new model to a sample of 11 Eurozone national stock market index series. The model proposed

proves to be numerically easy to estimate by maximum likelihood, at least in the case of a

modest number of asset returns.

The remainder of the paper is organized as follows. Section two describes the econometric

model and estimation technique applied in this study. Section three describes the data and

40



presents all the empirical findings. Section four concludes the chapter.

2.2 Econometric Framework

2.2.1 Adjusting for Non-synchronous Data

The national equity markets of the G7 group are located in various time zones; thus, the end

of day closing prices of the indices are not measured synchronously. It is important to address

this issue as the use of daily close-to-close prices leads to a likely bias in the estimation of the

correlations between the stock markets. The problem can be illustrated using MSCI Germany

and MSCI USA Index returns. The Frankfurt Stock Exchange in Germany closes at 5.35pm

CEST which is 11.35am EDT; the prices used to calculate the MSCI Indices are the official

exchange closing prices. The New York Stock Exchange (NYSE) continues to operate for a

further four and a half hours; the news that arrive to the market during this time are not reflected

in the MSCI Germany end of day price. See Table 2.1 for local stock exchange closing times,

all data are synchronised to the NYSE closing time. See Figure 2.1 for graphical illustration

of the problem. To overcome the non-synchronous data problem Burns et al. (1998) propose

estimating the closing prices of markets that have closed conditional on information of markets

that are open. The synchronised return on the German equity index can be defined as

r̂t = rt − εt−1 + εt (2.1)

where rt is the observed, unsynchronised return on the German index at t and εt is the return

we would have observed from the closing time of the German index at t to the closing time of

the US index at t. Following Burns et al. (1998) the unobserved component is estimated using

the linear projection of the observed non-synchronous return on the full information set of all

recorded prices at time t.

The synchronisation model can be formulated as a first-order moving average (VMA(1))

model:
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r̂t = εt −Mεt−1 (2.2)

where M is the moving average matrix and εt is the unpredictable part of returns from the

perspective of time t− 1. Next, the unsynchronised returns are defined as the change in the log

of unsynchronised prices, rt = log(Pt) − log(Pt−1) and the synchronised returns are defined

as the change in the log of synchronised prices, r̂t = log(P̂t) − log(P̂t−1). The expected price

at t + 1 is also an unbiased estimator of the synchronised price at t, provided that further

changes in synchronised prices are unpredictable, i.e. log(Pt+1) = E(log(Pt+1) | It). Thus, the

synchronised returns are given by

r̂t = Et(log(Pt+1))− Et−1(Pt) (2.3)

= Et(rt+1)− Et−1(rt) + log(Pt)− log(Pt−1)

= Mεt −Mεt−1 + rt

= εt −Mεt−1.

Galbraith et al. (2002) show that M can be estimated based on a vector autoregressive

approximation of order p, VAR(p). Therefore, M is estimated as follows. The VMA(1) is

represented as the following infinite order VAR process

rt =
∞∑
j=1

Bjrt−j + εt, (2.4)

where the coefficients of the matrices Bj are given by

B1 = M1 (2.5)

Bi = −Bi−1M1 for j = 2, ...

By applying a VAR approximation, VMA coefficients from those of the VAR can be obtained.
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The VAR(p) model with p > 1 is fitted by least squares. From the p estimated coefficient

matrices of dimension N × N of the VAR representation rt = B1rt−1 + ... + Bprt−p + εt,

N ×N dimensional M is estimated by the relation B̂1 = M̂1 based on Equation (2.5).

2.2.2 A DCC-MIDAS-GARCH Specification with Univariate Correlation Dynamics

This paper adopts the DCC-MIDAS-GARCH model together with a univariate measure of

dynamic correlatedness as set out in Connor and Suurlaht (2013a). This is done by imposing a

particular functional form on the dynamics of the correlation matrix.

Assume rt is an n−vector of returns on n assets over the interval t− 1 to t with a vector of

means µ and time-varying nonsingular covariance matrix Ct :

r̂t = µ+ C
1/2
t ηt (2.6)

where ηt is an i.i.d. mean-zero n−vector time series process with covariance matrix equal to the

identity matrix. r̃t is the vector of demeaned returns.

Let st = (σ1t, ..., σnt) denote the n−vector of individual asset return volatilities for time t

returns based on time t− 1 information, and let

Ωt = {Covt−1(rit/σit, rit/σit), i, j = 1, ..., n} denote the conditional correlation matrix of

returns, conditional on time t− 1 information.

2.2.2.1 A Review of MIDAS-GARCH

The starting point in Engle’s DCC approach is to model the individual return volatilities

separately. For the components of st a model essentially identical to that in Colacito et al. (2011)

and Engle et al. (2008) is applied: each individual return volatility follows a MIDAS-GARCH

model. MIDAS-GARCH differs from standard GARCH in allowing time t "baseline" variance

to vary slowly through time. This corrects for a substantial flaw in standard GARCH when

applied to long time samples, in particular, the empirically untenable assumption in standard

GARCH that baseline variance is time-constant, see Taylor (1986).

Letting hit denote baseline variance for asset i at time t− 1 for time t returns; it is assumed
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that it is a weighted linear combination of unconditonal variance h0i and lagged realized

variances:

hit = (1− θi)h0i + θic(ωi)
K∑
k=1

exp(−ωik)RVi,t−nk

with estimable parameters h0i, θi,and ωi, and whereRVi,t denotes the J-period realized variance

up to time t:

RVit =
1

J

J∑
j=1

˜̂r2

i,t−j,

and c(ωi) = (
K∑
k=1

exp(−ωik))−1 ensures that the exponential weights sum to one. The model

requires h0i > 0 and 0 ≤ θi < 1 to guarantee a covariance stationary process.

The slowly-changing variate hit captures the low-frequency component of volatility but

misses short-term GARCH effects. These are captured via a standard GARCH(1,1) model with

unit unconditional variance:

git = (1− αi − βi) + αigit−1 + βi
r̂2
i,t−1

hit−1

,

with αi, βi ≥ 0 and αi + βi < 1. The product of baseline variance and the short-term GARCH

effect gives time t variance:

σ2
it = hitgit. (2.7)

2.2.2.2 A Modified DCC Model with Univariate Dynamics

Following notation in Connor and Suurlaht (2013a) Diag[x] is used to denote an nxn

diagonal matrix with the n−elements of the vector x on the diagonal, and diag[X] to denote

the diagonal matrix consisting of the diagonal elements of any square matrix X with all

non-diagonal elements set to zero. By definition the covariance matrix is the quadratic product

of the volatilities and correlation matrix:

Ct = Diag[st]ΩtDiag[st]. (2.8)

Building upon the constant conditional correlation model of Bollerslev (1990) (in which Ωt = Ω,

a time-constant matrix), Engle (2002) suggests modeling the correlation matrix separately from

the volatilities and then combining them via (2.8) to produce a dynamic covariance matrix. Let
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X1t, X2t denote two symmetric, positive semi-definite n× n matrices with at least one of which

is strictly positive definite and let m1t,m2t denote two strictly positive scalars. (The case of

two explanatory variables is used for notational convenience only; more or less are acceptable).

Engle defines the quasi-correlation matrix Qt as the linear combination:

Qt = m1tX1t +m2tX2t. (2.9)

The matrix Qt is symmetric and positive definite but lacks one required property of a correlation

matrix since the diagonal elements are not necessarily equal to one. Engle suggests a simple

nonlinear transformation to impose this property while still maintaining symmetry and positive

definiteness:

Ωt = diag[Qt]
−1/2Qtdiag[Qt]

−1/2 (2.10)

Equations (2.9) and (2.10) define Engle’s DCC estimator. Together with models for the

individual volatilies st, this gives a composite model of the dynamic covariance matrix.

The model applied in Connor and Suurlaht (2013a) differs from standard DCC in the way

they restrict the dynamics of the correlation matrix. In place of the 1
2
n(n − 1)-dimensional

correlation dynamics in Equation (2.9) Connor and Suurlaht (2013a) propose a univariate

measure of time-varying correlation. This scalar measure of correlation magnitude should leave

the pattern of correlation between individual markets essentially fixed. The model for Ωt is

formulated with a simple one-dimensional state variable mt capturing the time variation in Ωt.

When the univariate state variable mt is high, the correlations between markets are relatively

strong, when mt is low, the correlations are relatively weak, and when mt equals zero the

correlations are average. Except for this state variable the general "structure" of correlations is

assumed invariant through time.

Let Ω0 denote the time-constant unconditional correlation matrix:

(Ω0)ij = cov0[
r̃it
σit
,
r̃jt
σjt

]i,j=1,..,n = E0[r̃t((Diag[st])
−2)r̃′t] (2.11)

where the 0 subscript denotes the unconditional information set. Let U be the n × n matrix
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consisting entirely of ones. The model for Ωt is as follows:

Ωt = Ω0 +mt−1(U − Ω0), for − 1 < mt−1 < 1. (2.12)

The variable mt−1 is restricted to the interval (−1, 1). It must be shown that (2.12) meets

Engle’s condition (2.9) that Ωt is a positive linear combination of positive-semidefinite matrices.

Suppose that the following condition holds:

2Ω0 − U is strictly positive definite. (2.13)

A necessary condition for this to hold is that all the off-diagonal elements of Ω0 are positive;

in the case that they are all equal this is also a sufficient condition. Confirming that condition

(2.13) holds is a straightforward empirical task, and is a condition easily met in the current

application. Note that (2.12) can be written as Ωt = at−1(2Ω0 − U) + (1 + at−1)U where

at−1 = 2(mt−1 − 1
2
). Since U is positive semi-definite and 0 < at−1 < 1 the system (2.12)

meets the positive definiteness criterion. Using (2.10) then becomes redundant since the

construction of the model always gives a matrix with units on the diagonal.

The model captures in a simple and intuitive way the notion that in some states of nature

all correlations move higher, and in other states, lower. It provides a univariate measure of this

dynamic correlation. The model sacrifices the generality of Engle’s original DCC (where all the

correlations can move independently) in favour of greater simplicity and interpretability. As in

Engle et al. (2008), a linear structure is imposed on mt based on a low-dimensional vector xt of

explanatory variables (such as macroeconomic variates and financial market stress indicators):

mt = b′xt (2.14)

subject to −1 < mt < 1. This mandates that the explanatory variables xt have bounded support

and imposes implicit restrictions on the parameters b (analogous to the positive-coefficient

requirements of a GARCH model). It follows from (2.12) that the explanatory variables xt must

have unconditional expectations of zero.

The model for Ωt consists of (2.11), (2.12), (2.13) and (2.14) with estimable parameters
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a0, b,Ω0. In the application considered, the endogenous variable mt is daily but the explanatory

variables are constant for all days within a quarterly frequency; this does not affect the

econometric methodology.

Consider the average correlation at time t, found by averaging the off-diagonal elements of

the time-t correlation matrix:

avecorrt =
1

n(n− 1)

∑
i 6=j

[Ωt]ij. (2.15)

Connor and Suurlaht (2013a) show that the linear dynamic equation for the correlation matrix

(2.14) implies a univariate linear model of avecorrt. Applying the matrix off-diagonal averaging

transformation (2.15) to both sides of the dynamic correlation matrix equation (2.12) and

rearranging, gives a variable that Connor and Suurlaht (2013a) call the correlation ratio; it is the

deviation of time t average correlation from its long-term average, divided by one minus the

long-term average:

ratiot =
avecorrt − avecorr0

(1− avecorr0)
= mt. (2.16)

Inserting ratiot into (2.14) gives:

ratiot = bxt, (2.17)

so that equation (2.14) in the dynamic system implies this linear model of time-varying average

correlation.

2.2.3 A Maximum Likelihood Estimation Procedure

Following Engle (2002) and Colacito et al. (2011) the DCC-MIDAS-GARCH model is

estimated by applying two-component maximum likelihood. Suppose that the innovation

process ηt is i.i.d. multivariate normal; it is unit variance and uncorrelated by definition;

see (2.6). Weakening the assumption of normality gives rise to a quasi-maximum likelihood

interpretation rather than true maximum likelihood. Recall that Ct = Diag[st]ΩtDiag[st]

where Ct is the time-t covariance matrix. Using a standard result, under i.i.d. multivariate

normality of the innovations the data generating process for the sample return vector has log
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likelihood function:

L = −1

2
(
T∑
t=1

(n log(2π) + log(|Ct|) + r̃′tC
−1
t r̃t

= −1

2
(
T∑
t=1

(n log(2π) + log(|Diag[st]ΩtDiag[st]|) (2.18)

+r̃′t(Diag[st]ΩtDiag[st])
−1r̃t.

Let Θ1 = {h0i, θi, ωi, αi, βi}i=1,...,n denote the parameters of the GARCH-MIDAS model,

and Θ2 = (Ω0, a0, b) the parameters of the dynamic correlation matrix model. Following

Engle (2002) a two-component maximum likelihood approach is utilized. In the first step

the individual time series of returns are used to estimate the MIDAS-GARCH parameters

Θ1 for each asset separately. Note that this is a collection of n unrelated individual-asset

MIDAS-GARCH maximization likelihood estimation problems. Then in the second step these

consistent, limited-information maximum likelihood values of Θ1 are used to substituteDiag[ŝt]

for Diag[st] in (2.18) to find the maximum likelihood estimate of Θ2.

The first-step estimation decomposes into a collection of individual GARCH-type model

estimation problems with additively separable log likelihood maximization problems:

Θ̂1i = arg max
Θ̂1i

L1i where (2.19)

L1i = {−1

2
(
T∑
t=1

(log(2π) + log(hit) +
r̃2
it

hit
)}. (2.20)

In the second step, the first-step estimates from (2.19) are used to compute ŝt and then

substitute this for st in (2.18) giving a maximum likelihood problem in the parameters Θ2 only.

Engle (2002) notes that the standard errors of the coefficients in the second-step correlation

matrix estimation are in general inconsistent due to the use of first-step estimated volatilities.

Connor and Suurlaht (2013a) implement the adjustment to the second-step parameter standard

errors proposed by Engle (2002) and conclude that the adjustment has a negligible impact in

their application. Therefore, this adjustment is excluded from the current analysis.
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2.3 Data and Empirical Findings

The dataset consists of daily adjusted closing prices for Morgan Stanley Capital International

(MSCI) national equity indices for the G7 stock markets, namely, France, Germany, Italy, UK,

Japan, United States and Canada. The sample period spans twenty years, from 31st December

1990 to 31st December 2011 and includes 5427 observations. The entire dataset is obtained from

Datastream at the daily frequency and subsequently daily log returns are computed. All equity

index returns are denominated in US dollars. Common currency denomination alleviates the

problem of the exchange rate movement effect. The Datastream database skips weekends and a

few major holidays (Christmas and New Year’s Day) but reproduces yesterday’s closing price on

other days on which a particular national exchange is closed. To partly correct for this, closing

prices on days on which three or more of the seven national exchanges are closed are ignored,

and such a day is treated the same as a weekend (the two-day return becomes a one-day return

for the entire cross-section). Table 2.2 shows the annualized means and standard deviations,

skewness, excess kurtosis, and first four autocorrelations for each of the seven return series.

2.3.1 Synchronised Daily Returns

Given that the G7 equity markets have different trading hours the use of daily closing prices

leads to an underestimation of the true correlations between stock markets. Table 2.3 shows

the daily sample correlations of the G7 equity index returns over the period January 2, 1991 to

December 30, 2011. Of course, the true correlations are unknown, but it is reasonable to assume

that due to the non-synchronous closing prices the sample correlations are underestimated.

Engle (2009) suggests to use time aggregated data to find the correct unconditional correlations.

Table 2.4 shows the sample correlations of the G7 equity returns series calculated using weekly

data. Following Burns et al. (1998), the week is defined as five trading days and, thus, the daily

log returns are aggregated over five consecutive days. The differences between daily and weekly

correlations are not significant for the markets trading in the same time zone. In most cases the
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weekly correlations are substantially higher for markets trading in different time zones. For

example, correlation between MSCI France and US jumps from daily value of .474 to .711 for

weekly correlation. MSCI Japan still appears to be least correlated with all other indices in G7.

If the differences arise from the non-synchronous data, lag effects should also reflect the

underestimation of true correlations in the original data. Table 2.5 shows the lagged daily cross

correlations for the G7 equity market index return series. The largest values are in the last two

rows of the table, which implies that US and Canadian index returns predict markets that close

earlier. As Japan is a full day behind all the other markets, it appears that it reacts to the news

from other markets with a full lag. As a consequence, all markets predict the Japanese index.

Although using weekly data ameliorates the non-synchronicity problem, the use of low

frequency data significantly reduces the number of observations available, which is inefficient

for multivariate modeling, particularly when dealing with time varying parameters. Instead, we

utilize the VAR-based method of synchronising the non-synchronous returns before computing

the correlations as in Burns et al. (1998). Prior to estimating Equation (2.2), MSCI index return

series are checked for non-stationarity using conventional tests. Both Augmented Dickey-Fuller

test for unit root and Kwiatkowski–Phillips–Schmidt–Shin test for stationarity indicate that all

seven log return series are stationary. The results of the tests are not reported in this paper.

Table 2.6 shows the daily correlations of the synchronised G7 equity index returns. As

expected, the correlations for the markets trading in the same time zone are largely similar.

Correlations between the synchronised US and other equity market indices are much closer to

the weekly values than daily values. The only noticeable exception is the Japan equity index -

when synchronised, it appears to be less correlated with all other markets. This finding lends

support to view of low spillover transmission mechanism between Japanese and other G7 equity

markets (e.g. Andrikopoulos et al. (2014), Tsai (2014)). The possible reason behind decreasing

correlation of Japanese equity market and other markets when calculated using synchronised
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returns is that weekly data may miss daily dynamics that contribute to the lower correlation.

2.3.2 The MIDAS-GARCH Models of Individual Market Index Volatility: G7 Equity

Markets

Table 2.7 reports the estimates for the MIDAS-GARCH model. For all countries the sum

of the two MIDAS-GARCH coefficients αi and βi is well within the stationary boundary

αi + βi < 1 for most countries in the sample, with the exception of Italy. The exponential

weighting is close to 0 in most markets so that the optimal weighting is close to equal weighting

of the four lagged fixed-window realized variances. The estimated decay coefficient θi varies

from -.129 to 1.442 for the markets in the sample. The table shows that the covariance stationary,

two-component MIDAS-GARCH volatility models with GARCH(1,1) short-term components

and mean-reverting, exponentially-weighted medium-term components fit the daily equity index

returns data sample reasonably well.

2.3.3 A Dynamic Model of G7 Stock Market Correlations

For the dynamic correlation matrix model (see Equation (2.14)) 7 different specifications are

examined. The six explanatory variables are a time trend, the average cumulative return to the

seven indices using the previous 65 days of returns, the proportion of the seven markets which

had negative real GDP growth during the current quarter, the lagged correlation ratio (Equation

(2.16)) using the previous 65 days of daily returns, the cross-sectional average GDP growth,

and the contemporaneous average sample variance using the previous 65 daily returns. As an

alternative specification, cross-sectional average of national GDP growth in the current quarter is

used. This has a correlation of −.84 with the negative-growth-proportion variable, so one or the

other of these two explanatory variables is used but not both simultaneously. All the explanatory

variables are de-meaned.

Table 2.8 shows the estimation results for the full sample. Six potential explanatory variables

allow specification of a large number of various regression models. The seven specifications in

Tables 2.8 and 2.9 were chosen as follows. The lagged daily correlation ratio and time trend have
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a strong empirical/theoretical foundation, therefore, both are included in all specifications. For

the other variables, the cumulative return measure, negative GDP growth proportion or average

GDP growth, and lagged average variance, combinations are tried: none, each alone, and all

three together. Although not reported, the results presented in Table 2.8 are replicated using the

weekly data that is free from the non-synchronous problem. The results using weekly data are

very similar to when the synchronised daily data is used.

The sample is subsequently divided into "pre-crisis" and "crisis" periods and results for the

two periods are compared. Table 2.9 presents the estimation results when the sample is split in

two: January 2, 1991 to November 30, 2007 and December 01, 2007 to December 30, 2011.

No formal testing procedure was performed to detect the break date as the G7 countries entered

recessionary period at different times. It would be impossible to detect a simultaneous break for

all countries in the sample and there is no official date for the start of the global financial crisis.

Therefore, the break was chosen based on the observation of the historical events at the start of

the crisis: the first signs of the turbulence moving across border from the US could be observed

in early December 2007 (ECB Press Release, December 2007).

When considering the full sample, an autocorrelation effect is observed, captured by the

positive coefficient on the lagged 65-day empirical correlation ratio. There is a strong positive

trend in correlation level over this time period within the G7 financial markets. Similar result

can be observed in the two subsamples (Table 2.9 (a),(b)). Although the autocorrelation and the

increasing trend effects appear to be slightly weaker for the "crisis" period, it can be concluded

that this finding is not dependent on the state of the financial markets.

The “downside correlation” known from previous literature is not observed in either full

(Table 2.8) or subsamples (Table 2.9 (a),(b)). However, this should not be interpreted as a

contradiction to the past empirical literature. The variable used in this analysis is average

cumulative return to the seven indices using the previous 65 days of returns. It is well known that
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the G7 equity markets go through up and down phases at different time periods and by averaging

cumulative returns we may not be able to capture the overall state of the G7 financial markets.

There is a business-cycle-related effect present in the full sample (Table 2.8): correlation level

is lower when the proportion of markets with negative GDP growth is higher. The same finding

holds when average GDP growth is used as an alternative variable (with the opposite sign,

obviously). This shows that there seems to be greater diversity in the national index returns when

several G7 economies are in a business cycle downturn or their average GDP growth is lower.

Connor and Suurlaht (2013a) apply the econometric framework described above to the Eurozone

markets and find a very similar result. Splitting the full sample into two subsamples (Table 2.9

(a), (b)) reveals a notable finding: the full sample result is driven by the "crisis" period. During

the "pre-crisis" period correlation level is higher when the proportion of markets with negative

GDP growth is higher (same holds when looking at the average GDP growth variable). The

results for the "crisis" period are consistent with the full sample. The business-cycle-related

effect is dependent on the state of the financial markets.

Table 2.8 reports that there is a positive relationship between the average variance across the

G7 equity index returns and the dynamic correlation measure. This is consistent with previous

literature that consistently find higher correlation between markets when they are experiencing

volatile periods. Table 2.9 shows, however, that this finding is also largely driven by the state of

the financial markets: the average variance variable is statistically significant only for the "crisis"

period subsample.

2.4 Conclusion

Although globalisation has significantly changed the dynamics of correlation levels of

international financial markets, the recent crisis has shown that financial markets react strongly

to local factors. This paper explores the long term trend in the correlation magnitude of the G7

financial markets and its response to the constantly changing economic environment. The full
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sample period is 31 December 1990 to 31 December 2011, which is divided into "pre-crisis" and

"crisis" periods.

To measure the level of correlation across the G7 equity markets we use the econometric

method proposed in Connor and Suurlaht (2013a), who propose adding a univariate measure

of dynamic correlatedness to the DCC model of Engle (2002). The empirical results show that

for the full sample, G7 markets exhibit a significant positive trend toward higher cross-border

correlations over the sample period and there is significant time-series autocorrelation in

the magnitude of cross-market return correlations. This finding is also consistent for both

subsamples.

Correlation magnitude seems to behave differently during the "pre-crisis” and “crisis” periods

in relation to the business-cycle-related effect and the turbulence of the financial markets. During

the "crisis" period the average correlation between these financial markets is lower when more of

them have negative GDP growth or when their average GDP growth is lower. The reverse holds

for the "pre-crisis" period. Also, the positive relationship between the correlation magnitude and

stock market variance is only present in the “crisis” period.
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2.5 Tables and Figures 

 

Table 2.1: Market closing times 

MSCI Index France Germany Italy UK Japan USA Canada 

Closing Local Time 5.35pm 5.35pm 5.40pm 4.35pm 3pm 4pm 4pm 

4pm New York 

Time 
10pm 10pm 10pm 9pm 6am 4pm 4pm 

Notes: First row of the table reports the official exchange local closing times. The second row reports the 

local time for each market when it is 4pm in New York. 

 

Table 2.2: Summary statistics 

Series Obs 

Annualized 

Mean 

Return 

Annualized 

Std 

Deviation 

Skewness 
Excess 

Kurtosis 
ρ1 ρ2 ρ3 ρ4 

France 5427 4.73 24.12 -0.09 6.51 0.0059 -0.0441 -0.0585 0.0368 

Germany 5427 4.48 25.20 -0.22 5.79 0.0007 -0.0281 -0.0308 0.0305 

Italy 5427 0.65 26.19 -0.14 5.49 0.0436 -0.0279 -0.0414 0.0509 

UK 5427 3.59 20.96 -0.12 8.84 -0.0016 -0.0459 -0.0739 0.0402 

Japan 5427 -1.12 23.84 0.11 4.20 -0.0145 -0.0562 -0.0186 0.0127 

Canada 5427 6.74 19.05 -0.25 8.82 -0.0617 -0.0337 -0.0049 -0.0025 

US 5427 7.55 21.55 -0.81 10.86 0.0656 -0.0574 0.0380 0.0292 

Notes: Summary statistics including the first four autocorrelations for the G7 stock market index daily log 

return series over the sample period from January 2, 1991 to December 30, 2011 (5427 observations).  

 

Table 2.3: Daily correlations of G7 equity index returns 

  frat gert itat ukt japt ust cant 

frat 1.000 0.840 0.786 0.825 0.227 0.473 0.557 

gert 0.840 1.000 0.733 0.751 0.221 0.491 0.541 

itat 0.786 0.733 1.000 0.706 0.189 0.402 0.487 

ukt 0.825 0.751 0.706 1.000 0.227 0.458 0.556 

japt 0.227 0.221 0.189 0.227 1.000 0.048 0.172 

ust 0.473 0.491 0.402 0.458 0.048 1.000 0.670 

cant 0.557 0.541 0.487 0.556 0.172 0.670 1.000 

Notes:  Daily sample correlation matrix for the G7 stock market index log return series (France, 

Germany, Italy, UK, Japan, US and Canada) over the sample period from January 2, 1991 to December 

30, 2011. 
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Table 2.4: Weekly correlations of G7 equity index returns 

  frat gert itat ukt japt ust cant 

frat 1.000 0.884 0.776 0.824 0.420 0.711 0.681 

gert 0.884 1.000 0.742 0.775 0.408 0.706 0.654 

itat 0.776 0.742 1.000 0.688 0.330 0.588 0.580 

ukt 0.824 0.775 0.688 1.000 0.429 0.694 0.681 

japt 0.420 0.408 0.330 0.429 1.000 0.360 0.413 

ust 0.711 0.706 0.588 0.694 0.360 1.000 0.752 

cant 0.681 0.654 0.580 0.681 0.413 0.752 1.000 

 

Notes:  Weekly sample correlation matrix for the G7 stock market index log return series (France, 

Germany, Italy, UK, Japan, US and Canada) over the sample period from January 2, 1991 to December 

30, 2011. 

 

Table 2.5: Lagged cross correlations of G7 equity index returns 

  frat gert itat ukt japt ust cant 

frat-1 0.006 0.024 0.025 0.001 0.298 -0.017 0.064 

gert-1 0.043 0.001 0.037 0.033 0.277 -0.011 0.071 

itat-1 0.007 0.015 0.044 -0.006 0.245 -0.006 0.061 

ukt-1 0.010 0.011 0.020 -0.002 0.296 -0.022 0.059 

japt-1 -0.037 -0.031 -0.027 -0.041 -0.014 -0.035 -0.015 

ust-1 0.269 0.232 0.212 0.283 0.347 -0.062 0.153 

cant-1 0.137 0.112 0.113 0.144 0.305 -0.085 0.066 

 

Notes: Lagged cross correlations for the G7 stock market index return series (France, Germany, Italy, 

UK, Japan, US and Canada) over the sample period from January 2, 1991 to December 30, 2011. The 

diagonal elements are sample estimates of the first-order autocorrelations.     
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Table 2.6: Daily correlations of synchronised G7 equity index returns 

  frat gert itat ukt japt ust cant 

frat 1.000 0.838 0.719 0.612 0.205 0.875 0.501 

gert 0.838 1.000 0.705 0.555 0.078 0.873 0.498 

itat 0.719 0.705 1.000 0.479 0.046 0.807 0.447 

ukt 0.612 0.555 0.479 1.000 0.260 0.697 0.452 

japt 0.205 0.078 0.046 0.260 1.000 0.177 0.148 

ust 0.875 0.873 0.807 0.697 0.177 1.000 0.690 

cant 0.501 0.498 0.447 0.452 0.148 0.690 1.000 

 

Notes:  Daily sample correlation matrix for the synchronised G7 stock market log index return series 

(France, Germany, Italy, UK, Japan, US and Canada) over the sample period from January 2, 1991 to 

December 30, 2011. 

 

Table 2.7: MIDAS-GARCH coefficient estimates  

  α β θ ω 

France 0.070*** 0.918*** 0.341** 0.572 

 
(11.921) (108.631) (2.207) (1.051) 

Germany 0.094*** 0.887*** 0.480*** 0.411 

 
(13.875) (98.616) (4.466) (0.872) 

Italy 0.081*** 0.923*** 0.016*** 1.442 

 
(11.487) (140.286) (0.118) (0.148) 

UK 0.072*** 0.905*** 0.523*** 0.716* 

 
(12.276) (95.243) (4.842) (1.705) 

Japan 0.099*** 0.863*** 0.384*** 0.465 

 
(16.794) (101.165) (3.585) (1.146) 

US 0.088*** 0.895*** 0.639*** 0.373 

 
(14.175) (104.268) (6.821) (0.956) 

Canada 0.077*** 0.905*** 0.596*** -0.129 

 
(11.583) (90.934) (8.151) (-0.382) 

 

Notes: Individual MIDAS-GARCH models are fitted to G7 stock market indices using quasi-maximum 

likelihood estimation. Each MIDAS-GARCH model is composed of several equations with a parameter 

space Θ = {α,β,θ,ω}.  hit denotes the baseline variance for asset i at time t-1 for time t returns capturing 

the low-frequency component of volatility:                                        
 

   
, 

where RVit denotes the 65-day realized variance up to day t:              
 

  

   
. Short-term GARCH 

effects are captured via a standard GARCH(1,1) model:                         
       
 

      
 . The t-

statistics are reported in parentheses below the coefficient estimates. “***”,  “**”, “*” indicates statistical 

significance at 1%, 5% and 10% level, respectively. 
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Table 2.8: Daily models of dynamic correlation magnitude: Full sample 

Full Sample             

  1 2 3 4 5 6 7 

ratiot-1 0.663*** 0.670*** 0.622*** 0.688*** 0.676*** 0.646*** 0.632*** 

  (19.343) (19.348) (17.704) (19.736) (19.330) (18.032) (17.733) 

trendt 0.028*** 0.027*** 0.027*** 0.027*** 0.028*** 0.025*** 0.026*** 

  (21.254) (21.246) (20.264) (20.793) (21.328) (19.336) (19.569) 

cumrett 

 

0.005* 

   

0.013*** 0.017*** 

  

 

(1.846) 

   

(3.175) (3.804) 

negGDPt 

   

-0.055*** 

 

-0.047**   

  

   

(-3.256) 

 

(-2.091)   

avegrowtht 

   

0.002** 

 

0.001 

  

    

(2.228) 

 

(0.588) 

avevart 

  

0.408*** 

  

0.638*** 0.652*** 

      (6.885)     (9.178) (9.153) 

 

Notes: The table reports estimated coefficients for the dynamic model of the correlation magnitudes using 

maximum likelihood. The sample period is January 2, 1991 to December 30, 2011. The seven columns 

correspond to seven different specifications and differ only in the choice of the explanatory variables. The 

dependent variable is the dynamic correlation magnitude for all seven regressions. The six 

macroeconomic variables are a lagged correlation ratio (using the previous 65 daily returns), a time trend, 

the average of the cumulative returns to the G7 indices over the previous 65 days, the contemporaneous 

proportion of the seven markets which had negative real GDP growth during the quarter, the cross-

sectional average of national GDP growth in the current quarter and the contemporaneous average sample 

variance (using the previous 65 daily returns) between the seven markets. The t-statistics are reported in 

parentheses below the coefficient estimates. “***”,  “**”, “*” indicates statistical significance at 1%, 5% 

and 10% level, respectively. 
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Table 2.9: Daily models of dynamic correlation magnitude: Split sample 

a) January 1991 - November 2007         

  1 2 3 4 5 6 7 

ratiot-1 0.703*** 0.704*** 0.695*** 0.676*** 0.663*** 0.659*** 0.633*** 

  (16.890) (16.886) (16.440) (15.835) (15.625) (15.054) (14.438) 

trendt 0.031*** 0.031*** 0.032*** 0.033*** 0.034*** 0.034*** 0.035*** 

  (14.471) (14.573) (14.180) (14.862) (15.523) (14.502) (14.624) 

cumrett 

 

0.003 

   

0.013** 0.024*** 

  

 

(0.4780) 

   

(1.991) (3.272) 

negGDPt 

   

0.083** 

 

0.115***   

  

   

(2.203) 

 

(2.699)   

avegrowtht 

   

-0.014*** 

 

-0.020*** 

  

    

(-4.478) 

 

(-5.226) 

avevart 

  

0.214 

  

0.311 0.596** 

      (0.833)     (1.044) (1.877) 

b) December 2007 - December 2011         

  1 2 3 4 5 6 7 

ratiot-1 1.297*** 1.832*** 0.403 1.747*** 1.856*** 0.433 0.541 

  (11.854) (10.521) (1.363) (11.674) (13.246) (1.230) (1.665) 

trendt 0.025*** 0.012** 0.045*** 0.008 0.007* 0.028*** 0.028*** 

  (6.985) (2.159) (7.787) (1.374) (1.754) (3.682) (3.913) 

cumrett 

 

0.017*** 

   

0.004 0.003 

  

 

(4.114) 

   

(0.601) (0.439) 

negGDPt 

   

-0.129*** 

 

-0.096**   

  

   

(-4.975) 

 

(-2.283)   

avegrowtht 

   

0.007*** 

 

0.005 

  

    

(6.335) 

 

(2.357) 

avevart 

  

0.976*** 

  

0.899*** 0.845*** 

      (5.775)     (4.770) (4.737) 
 

Notes: The table reports estimated coefficients for the dynamic model of the correlation magnitudes using 

maximum likelihood. The sample period January 2, 1991 to December 30, 2011 is split in two: January 2, 

1991 to November 30, 2007 and December 01, 2007 to December 30, 2011 to detect a structural break. 

The seven columns correspond to seven different specifications and differ only in the choice of the 

explanatory variables. Dependent variable is the dynamic correlation magnitude for all seven regressions. 

The six macroeconomic variables are a lagged correlation ratio (using the previous 65 daily returns), a 

time trend, the average of the cumulative returns to the G7 indices over the previous 65 days, the 

contemporaneous proportion of the seven markets which had negative real GDP growth during the 

quarter, the cross-sectional average of national GDP growth in the current quarter and the 

contemporaneous average sample variance (using the previous 65 daily returns) between the seven 

markets. The t-statistics are reported in parentheses below the coefficient estimates. “***”,  “**”, “*” 

indicates statistical significance at 1%, 5% and 10% level, respectively. 
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Figure 2.1: Graphical illustration of the non-synchronous data problem 

 

Notes: This figure illustrates the problem of non-synchronous data. Two indices are considered: MSCI 

Germany and MSCI USA. Time t lies on the horizontal axis, MSCI Germany closes at 5.35pm CEST 

which is 11.35am EDT.  εt is the unobserved component of the synchronised closing price        

        (see also Burns et al., 1998) 

  



Chapter 3 Directional Spillovers in Banks’ Credit Default Risk and Related Variables

3.1 Introduction

In the aftermath of the recent financial crisis existing literature has devoted significant

resources to establishing key determinants of the credit risk of various entities. Pinpointing the

exact drivers of credit risk for financial and non-financial institutions alike has proven to be a

Sisyphean task. It has been shown that not only do variables that follow from structural credit

risk models have limited explanatory power in credit risk spreads (Eom et al. 2004, Ericsson et

al. 2009), but the relative importance of the different credit risk factors changes substantially

over time (González-Hermosillo, 2008; Annaert et al. 2013). Moreover, the explanatory power

of credit risk variables depends on the type of the entity studied. For example, Raunig (2011)

finds that the financial markets distinguish between the banks and other firms when pricing the

default risk and Grammatikos and Vermeulen (2012) show that the relationships between certain

credit risk variables are important for financial but not for non-financial firms. These issues

show that the dynamics behind the credit risk is of a highly complex nature and call for a flexible

framework.

The recent financial crisis has highlighted the importance of the banking system to the

functioning of the economy as a whole in most countries affected by the turmoil. This paper

analyses the directional spillovers within carefully selected variables directly related to the credit

risk of financial institutions ("banks" for short) over the period from 1st of January 2004 to 31st

of December 2012. The spillover analysis is undertaken within five European Union countries:

core countries France and Germany, periphery countries Spain and Italy, and a reference country

UK. The contribution of this paper to the existing literature is threefold. First, following the

methodology proposed in Diebold and Yilmaz (2012) the dynamic spillover effects between

the banks’ credit risk spreads and related variables are studied. The aim is to allow for the
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direction of the spillover effects to change over time while avoiding imposing any particular

structural model. Second, it introduces a significant variable into the analysis that has not been

widely studied in this context before - the real estate market risk. Third, Bai and Perron (2003)

procedure is applied to test for multiple structural breaks in net spillovers of credit risk variables.

This allows detecting the exact dates when relationships between the credit risk variables

changed.

There are different measures of the credit risk itself, two being the most popular ones:

corporate bond and bank credit default swap (CDS) spreads. It has been shown that under a

set of restrictive assumptions CDS spreads and bond spreads are closely related (Duffie, 1999;

Hull et al. 2004). This paper uses the CDS spreads to measure the banks’ credit risk for several

reasons. CDS spreads can be easily observed, while bond spreads have to be derived using a

risk free benchmark rate and it can be notoriously difficult to choose an appropriate rate for

calculations (Houweling and Vorst, 2005). Hull et al. (2004) and Blanco et al. (2005) show

that CDS spreads react faster to information related to the credit quality of the underlying

reference entity compared to bond spreads. Credit default swaps (CDS) can best be thought of

as a simple insurance product, providing insurance against corporate default. Periodic payments

are exchanged against a lump sum payment contingent on default.

The real estate sector is an important constituent of bank portfolios in countries with highly

developed financial systems. Goodhart and Hofmann (2008) find that due to the banks’ role

as mortgage lenders and the frequent use of real estate as collateral, sustained imbalances in

real estate markets can threaten the stability of the financial sector. However, the relationship

between the real estate sector and bank stability is multidirectional. On the one hand, increase

in the real estate prices may raise the economic value of bank’s real estate portfolio, which in

turn may increase the value of loans collateralized by real estate, decrease perceived risk of real

estate lending and further increase the price of real estate. On the other hand, reverse process
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applies. A decline in the real estate prices can have a negative effect on bank’s capital to the

extent banks own real estate. As a result, banks are vulnerable to a decline in the real estate

prices and may face default if greatly exposed to real estate lending. Herring and Wachter (1999)

analyse how real estate cycles and banking crises are related and show that even in very different

institutional settings real estate booms often end in banking busts. Martins et al. (2012) and Mei

and Saunders (1995) show that there is a positive relation between bank stock returns and real

estate returns after controlling for general market conditions and interest rates in US and Euro

area, respectively. Koetter and Poghosyan (2010) find that house price deviations from their

fundamental value contribute to bank instability.

This paper adopts the econometric method proposed in Diebold and Yilmaz (2012) to

measure dynamic spillovers between the CDS spreads and other credit risk determinants. This is

of particular interest since measuring and revealing spillover trends could help monitoring the

early signs of difficulties in the banking system.

Diebold and Yilmaz (2009) provide a simple and intuitive measure of interdependence

using variance decompositions of traditional vector autoregression (VAR) model. Variance

decompositions allow splitting the forecast error variances of each VAR model variable into

parts attributable to the various system shocks. Diebold and Yilmaz (2012) show that this

method can be further improved by applying the generalized VAR framework originally

proposed in Koop, Pesaran and Potter (1996) and Pesaran and Shin (1998). Generalized VAR

framework circumvents the issue of dependence on variable ordering present in the traditional

VAR model. Thus, it allows measuring not only total spillovers within variables included in the

VAR framework, but also directional spillovers and net pairwise spillovers within variables in

the system. The Diebold-Yilmaz method proves to be even more useful when estimated on a

moving window basis as it then allows to see how spillover trends vary over time.

Despite of the numerous advantages and useful insights provided by the Diebold and Yilmaz
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(2012) framework there are some downsides to using this method. First, the framework does not

imply any causality. It is up to the reader to interpret the changes in the spillover index. Second,

it is unknown whether the change in spillover index is caused by a favourable or unfavourable

event. Intuitively one may associate the increase in the spillover index with negative shocks

based on existing findings in the financial research field. However, the Diebold and Yilmaz

(2012) framework does not make assumptions about asymmetry of negative or positive shocks

to the system. Third, when applying the Diebold-Yilmaz framework on a rolling window basis,

the method potentially introduces serial autocorrelation in the resulting time series.

In order to give structure to the analysis of net spillover indices it is important to find

significant turning points in the series resulting from the Diebold-Yilmaz framework. Bai and

Perron (1998, 2003) propose a procedure that allows estimating a model with an unknown

number of structural breaks that occur at unspecified dates. Since this paper analyses five

variables in five countries that are affected by both country specific and cross border events, the

dynamics of spillovers can differ significantly for each country. The Bai-Perron method proves

to be a flexible data-driven method that does not require imposing break dates or the number of

breaks a priori.

The paper is organised as follows. Section two describes the methodological approach.

Section three describes the data used for empirical analysis. Section four presents the empirical

findings of the paper. Section five concludes.

3.2 Methodology

3.2.1 Measurement of Directional Spillovers

This paper adopts the framework developed in Diebold and Yilmaz (2012) to measure

total and directional spillovers within a group of variables. As in Diebold and Yilmaz (2012)

spillovers are measured from/to each time series i, to/from all other times series, added across i.

Consider a covariance stationary N -variable vector autoregressive (VAR) model of order p,
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xt =
p∑
i=1

Φixt−i + εt,where ε ∼ iid(0,Σ). (3.1)

Equation (3.1) can be rewritten as the infinite moving average (MA) representation,

xt =
∞∑
i=0

Aiεt−i, (3.2)

where the N ×N coefficient matrices Ai can be obtained using the following recursion:

Ai = Φ1Ai−1 + Φ2Ai−2 + ...+ ΦpAi−p, (3.3)

with A0 = IN and Ai = 0 for i < 0. The dynamics in the system is captured by these moving

average coefficients. Diebold and Yilmaz (2012) proceed by using the forecast error variance

decompositions to uncover the interrelationships among the variables in the system. Specifically,

they use the variance decompositions to measure the fraction of the H-step ahead error variance

in forecasting xi that is due to shocks to xj , for each i, ∀j 6= i. Whereas the "standard" way to

carry out the analysis of variance decompositions is using the orthogonal innovations, methods

such as Cholesky factorization is not invariant to ordering of the variables in the VAR. Pesaran

and Shin (1998), building on Koop et al. (1996), propose a method to avoid this issue, which

they call generalized VAR. The generalized approach allows for correlated innovations using the

historically observed distribution of the innovations.

Diebold and Yilmaz (2012) define own variance shares as the fractions of the H-step ahead

forecast error variances of xi that are due to shocks in xi, for i = 1, 2, ..., N , and cross variance

shares, or spillovers, as the fractures of the H-step ahead forecast error variances of xi that are

due to shocks in xj , for i, j = 1, 2, ..., N | i 6= j.

Following the notation in Pesaran and Shin (1998), the forecast error variance decompositions

for H = 1, 2, ..., are denoted by θgij(H) :
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θgij(H) =

σ−1
jj

H−1∑
h=0

(e
′
iAhΣej)

2

H−1∑
h=0

e
′
iAhΣA

′
hei

, i, j = 1, ...,m (3.4)

where Σ is the variance matrix for the vector of innovations ε, σjj is the standard deviation of

the error term for the jth equation, end ei is the selection vector, with one as the ith element and

zeros otherwise.

Note that as the innovations to each variable are not orthogonalized, the sum of the

contributions to the variance of the forecast error is not necessarily one: ΣN
j=1θ

g
ij(H) 6= 1. Each

entry of the variance decomposition matrix is then normalized by the row sum in order to use the

information contained in the variance decomposition matrix to express the spillover index:

θ̃
g

ij(H) =
θgij(H)
N∑
j=1

θgij(H)

, (3.5)

by construction, ΣN
j=1θ̃

g

ij(H) = 1 and ΣN
i,j=1θ̃

g

ij(H) = N.

Spillover measures, by construction, are divided into total spillovers, directional spillovers

and net pairwise spillovers. The total spillover index measures the contribution of spillovers

of shocks across the five time series to the total forecast error variance. Using the return

contributions from the variance decompositions, the total spillover index can be constructed as:

Sg(H) =
ΣN
i,j=1,i 6=j θ̃

g

ij(H)

ΣN
i,j=1θ̃

g

ij(H)
∗ 100 =

ΣN
i,j=1,i 6=j θ̃

g

ij(H)

N
∗ 100. (3.6)

Directional spillovers are calculated using the normalized elements of the generalized variance

decomposition matrix. Directional spillovers to time series i from all other time series j is

measured as:

Sgi←◦(H) =
ΣN
j=1,i 6=j θ̃

g

ij(H)

ΣN
i,j=1θ̃

g

ij(H)
∗ 100 =

ΣN
j=1,i 6=j θ̃

g

ij(H)

N
∗ 100, (3.7)

and, directional spillovers from time series i to all other time series j is measured as:
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Sg◦←i(H) =
ΣN
j=1,i 6=j θ̃

g

ji(H)

ΣN
i,j=1θ̃

g

ji(H)
∗ 100 =

ΣN
j=1,i 6=j θ̃

g

ji(H)

N
∗ 100. (3.8)

The net spillover from time series i to all other time series j is calculated as the difference

between the gross volatility shocks transmitted to and those received from all other series:

Sgi (H) = Sg◦←i(H)− Sgi←◦(H) (3.9)

Finally, the net pairwise spillovers are measured as:

Sgij(H) =

(
θ̃
g

ji(H)

ΣN
i,k=1θ̃

g

ik(H)
−

θ̃
g

ij(H)

ΣN
j,k=1θ̃

g

jk(H)

)
∗ 100 =

(
θ̃
g

ji(H)− θ̃gij(H)

N

)
∗ 100. (3.10)

Although both total and directional spillover indices reveal a lot of useful information, they

do not take into consideration the time-varying nature of the events that potentially may drive

the changes in spillover levels. To account for this, all spillover indices described above are

estimated based on a 260-day rolling window for each individual country. The resulting spillover

index series are then analysed graphically.

3.2.2 The Bai-Perron Test for Multiple Structural Changes

Bai and Perron (1998, 2003) propose a procedure that allows estimating a model with an

unknown number of structural breaks that occur at unspecified dates. In the specified procedure

the number of breaks and their timing are estimated simultaneously with the autoregressive

coefficients. The model considered is an AR(1) process with m breaks, or, equivalently, m + 1

regimes:

xt = αj + βjxt−1 + εt, j = 1, ...,m+ 1. (3.11)

Equation (3.11) allows for m breaks, where the coefficients shift from one stable

autoregressive relationship to a different one. The first break occurs at t1, so the duration of

the first regime is from t = 1 to t = t1, the duration of the second regime is from t1 + 1 to t2
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and so forth until the mth break that lasts from tm + 1 until the end of the dataset. The goal

of the analysis is to determine the number and location of the breakpoints Tj , j = 1, ...,m.

The computation of the coefficient estimates and the breakpoints can be done by applying OLS

segment by segment without constraints among them. The resulting minimal residual sum of

squares is given by

RSS(i, j) =

j∑
i=1

rss(i, j), (3.12)

where rss(i, j) is the minimal residual sum of squares at time j obtained using the sample that

starts at date i. Bai and Perron present the following recursive relation (proposed in Brown, et

al, 1975):

RSS(i, j) = RSS(i, j − 1) + rss(i, j)2. (3.13)

All the relevant information is contained in the values of the triangular matrix SSR(i, j) for the

relevant combinations (i, j). The number of matrix inversions needed is of order O(T ).

Bai and Perron (2003) propose applying a version of the dynamic programming algorithm for

pure and structural change models. The optimal segmentation satisfies the recursion

RSS({Tm,T}) = min
mh≤j≤T−h

[RSS({Tm−1,j}) +RSS(j + 1, T )]. (3.14)

See Bai and Perrion (2003) for details on this dynamic algorithm and Bai and Perron (2003) for

discussion of assumptions underlying the methodology applied.

As mentioned earlier, when applying the Diebold-Yilmaz framework on a rolling window

basis, the method introduces serial autocorrelation in the resulting spillover time series. This

may further lead to a bias in the Bai-Perron estimation procedure. To reduce this bias, the

Bai-Perron procedure has been applied to quarterly net spillover series, which has been obtained

by selecting every 65th rolling window estimate of each net spillover series. Thus, the results in
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Table 3.4 are also presented on a quarterly basis.

3.3 Data

The framework for measuring spillovers is applied to five variables closely related to the

banks’ credit risk: bank CDS spreads, real estate market index, term spread, interbank liquidity

spread and national stock market index. The data frequency of all series is daily and covers the

period from 1st of January 2004 to 31st of December 2012, with a total of (balanced) 2348

observations for each series. The data covers five countries: France, Germany, Italy, Spain and

UK. These five countries were selected as they have continuous series of the five variables

starting from 2004.

All original series exhibited non-stationarity and data transformations were computed (see

below) to achieve stationarity of the series prior to applying the econometric framework of

Diebold and Yilmaz (2012). Augmented Dickey-Fuller and Kwiatkowski–Phillips–Schmidt–

Shin (KPSS) tests were applied to ensure that the transformed series are stationary, results of

this analysis are reported in Table 3.5.

Bank CDS spreads: CDS spreads of individual banks are obtained from Datastream and a

country specific index is calculated by taking an arithmetic mean of all CDS spreads relating

to each country. CMA data are available from January 2004 until September 2010. Starting

from October 2010 until March 2013 Datastream provides CDS quotes obtained from Thomson

Reuters. A total of 73 financial institutions are included in the sample, the list of the index

components is presented in Table 3.6. Since the banks in the sample are all large listed banks

we did not feel that adjusting for the bank size would add to the analysis. The 5-year CDS

contract quotes on senior debt were chosen as these are the most actively traded contracts on

the market (Meng and Ap Gwilym, 2008). In order to avoid issues related to non-stationarity

first differences of the daily series are computed. Figure 3.1 illustrates the time series of CDS

spreads: prior to the crisis period the CDS spreads were close to zero for all countries. This
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reflects low perception of bank credit risk in the EU countries by the financial markets. There

is a significant change in the behaviour of the CDS spreads from mid-2007. By Q3 2008 the

banks’ CDS spreads rose to 2.1% (on average among the countries in the sample) from the

starting point of 0.3%. The most dramatic increase can be observed in the UK, when the CDS

spread average across domestic banks reached a peak over 10% in March 2009.

Real estate market index: The FTSE/European Public Real Estate Association (EPRA, for

short) country specific price indices were obtained from Datastream. These are stock market

index series jointly managed by FTSE and EPRA and are composed of property company

constituents. The indices are designed to represent general trends in eligible real estate

equities. FTSE defines relevant real estate activities as the ownership, sales and development of

income-producing real estate. Daily percent changes are computed in order to make the original

series stationary. It has become a general practice to use listed real estate as a proxy for direct

real estate. The indices for direct real estate markets are compiled at a monthly frequency at best

(most often quarterly) because they are based on the valuations of individual properties; whereas

listed real estate is available daily. Concern that the performance of listed real estate is primarily

driven by stock markets is valid, particularly in the short term. However, numerous authors show

that the medium to long-term performance of listed real estate correlates significantly with the

development of direct real estate markets (e.g. Sebastian and Schätz, 2009; Pavlov and Wachter,

2011).

Interest rate term spread: Term spread, otherwise known as yield spread or the slope of the

yield curve, is computed as the difference between 10-year government bond yield and 3-month

Treasury bill yield. Country specific debt security yield series for both maturities are obtained

from Datastream. The term spread is extensively used as a predictor of real economic activity

and is known to contain information of future interest rate and inflation levels. It has been

widely accepted for a long time that the term spread increases in times of economic contractions
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(Fama, 1990; Estrella and Mishkin, 1995; Estrella, 2005). However, decreasing term spreads for

all five countries in the sample starting in Q2 2007 tell the opposite story. This makes it hard

to predict the relationship between the CDS spreads and term spread. Notwithstanding, this

variable has been shown to be a significant determinant of the CDS spreads and bond spreads

(Collin-Dufresne et al., 2001, Otker-Robe and Podpiera, 2010; Annaert et al., 2013; Galil et al.,

2014; Benbouzid and Mallick, 2013). First differences of the daily series are used in the analysis

to avoid non-stationarity issues.

Interbank liquidity spread: Interbank liquidity spread, otherwise known as TED spread, is

computed as the difference between 3-month Euro Interbank Offered Rate (EURIBOR) (London

Interbank Offered Rate (LIBOR) in case of UK) and 3-month German Treasury bill yield (UK

Treasury bill in the case of UK). Both series are obtained from Datastream. Liquidity spread

is commonly used as an indicator to measure funding liquidity in the general market. A rising

liquidity spread indicates a downturn in the national stock market, as it indicates that interbank

liquidity is being withdrawn (Michaud and Upper, 2008; Angelini et al., 2011; Eisenschmidt

and Tapking, 2009). It is more common to use the spread between a short-term government debt

yield and EURIBOR rate with the same maturity; however, during the recent crisis the country

specific spread is very likely to reflect the local events. As the intention behind using this

variable is capturing the interbank market liquidity rather than individual sovereign credit risk,

German liquidity spread was used in the case of France, Spain and Italy. Again, first differences

of the series are used in the analysis to make the series stationary.

National stock market index: MSCI country specific stock indices are used as proxies for the

overall state of the local economies (following Annaert et al., 2013; Collin-Dufresne et al., 2001;

Ericsson et al., 2009; Galil et al., 2014; Benbouzid and Mallick, 2013). MSCI stock market

indices were obtained from Bloomberg. Daily percentage change transformation is applied in

order to avoid the non-stationarity issues.
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Both Bloomberg and Datastream databases skip weekends and a few major holidays

(Christmas and New Year’s Day) but reproduce yesterday’s closing price on other days on which

a particular national exchange is closed. To keep the panel dataset balanced, closing prices on

days on which three or more of the five series included do not trade are ignored, and such a day

is treated the same as a weekend.

Table 3.1 reports the means, standard deviations and the minimum and maximum values

for each of the five country specific series: banks’ CDS spreads, real estate market index, term

spread, liquidity spread and national stock index. All values are reported in percentage; real

estate and stock market indices report summary statistics on daily percentage changes rather

than the original price indices. Columns 1-4 in the upper section of the table report the main

statistics of the banks’ CDS spreads of each individual country. The CDS spread ranges are wide

for all countries reflecting a significant shift in the credit risk of banks; the widest range can be

observed for the UK from .18% to 10.09% and Spain from .08% to 8.47%. Summary statistics

for real estate index (columns 5-8, upper section) reflect the nature of the real estate market for

the sample period. Minimum and maximum values show a significant fall and rise of the real

estate markets, attributable to the crisis and no-crisis period, respectively. Stock market index

summary statistics (columns 9-12, upper section) show a similar picture in financial markets.

Summary statistics for term spread series (columns 1-4, lower section) reflect the difference in

sovereign credit risk between the periphery and core countries of the EU: average term spread

is highest for Italy and Spain and the minimum and maximum values suggest the same (ranging

from .5% to 6.44% for Italy and from .15% to 6.43% for Spain in comparison to Germany:

−.28% to 4.11%). Columns 5-8 (lower section) report the summary statistics for the liquidity

spread variable.

Table 3.2 shows the sample correlation matrices of original series for each individual country.

The sample correlation coefficients reveal a general pattern among the variables: highest
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pairwise correlation levels can be observed between CDS spreads and real estate indices, CDS

spreads and stock market indices, and real estate and stock market indices.

3.4 Empirical Findings

3.4.1 Total Spillover Index: Full-sample and 260-day Rolling Window Estimation

Table 3.3 reports the full-sample total spillovers within the variables. This is a static analysis

where the ijth entry is the estimated contribution to the forecast error variance of market i

coming from innovations to market j. The off-diagonal row sums (labeled contributions from

others) and column sums (labeled contributions to others) are the “from” and “to” directional

spillovers, and the “from minus to” differences are the net volatility spillovers. The diagonal

elements (own connectednesses) tend to be the highest individual elements of the table. This

table is informative about how shocks to one variable within a country spread to other variables.

The "directional to others" row and "directional from others" column show that for all five

countries the stock index seems to be the most significant transmitter and receiver of shocks (the

spillover index is largest for most countries in the sample, with the exception of "directional from

others" for Spain). Real estate index comes second for all countries except Spain. A closer look

at the tables reveals that this trend is dominated by a high connectedness of the two variables.

CDS spread variable is also one of the most sensitive variables in the sample for both directions

and is mostly affected by shocks to the stock index and real estate index variables.

The total spillover index appears in the lower right corner of the spillover table. It is

approximately the total off-diagonal row sum relative to the total row sum including diagonals,

expressed as a percentage. The total spillovers index shows what percentage of the total

forecast error variance in all five variables comes from spillovers. It is lowest for Spain at 9.9%

suggesting a low connectedness level within the variables, and it is highest for France at 29.6%.

For Germany, Italy and UK it ranges from 23.4% to 24.9%. In summary of Table 3.3, both the

total and directional spillovers over the full sample period were rather low. The full-sample

spillover index analysis provides a good overall picture of the connectedness between the
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variables. However, it is likely to miss the rich dynamics in the banking sector during the sample

period of January 2004 to December 2012.

As a next step, the spillover index is estimated using the 260-day rolling samples which are

reported in Figure 3.2. In the pre-crisis period the spillover index ranged from below 10% to

30% for all countries. After the onset of the financial crisis, however, the spillovers suddenly

jump to 40% and fluctuate strongly in the region 12% to 55% over the remaining sample

period. Four distinctive waves can be observed in the total spillover index. First, June 2007 to

November 2007 coincides with the onset of the financial crisis in the EU. Q3 2007 witnessed

liquidity shortages worldwide and slowdown in the interbank lending, which is reflected by the

first steep rise in the total spillover index. Financial markets became increasingly vulnerable in

response to the subprime crisis that hit the US. In December 2007 the Bank of England and the

ECB announced measures to address elevated pressures in short-term funding markets (ECB,

December 2007), these measures seemed to offer some relief as the spillover index decreased

from 41% to 30% for the UK and from 35% to 22% for Germany. The sudden spike in the

spillover index on the 10th of October 2008 reflects the sudden downturn of financial markets

after an initial positive response to the ECB’s Governing Council lowering its rates (ECB,

October 2008). The next jump in the total spillover index corresponds to the agreement between

the Euro area leaders and IMF to offer financial support to Greece (ECB, March 2010) at the end

of March 2010. The ongoing uncertainty and carrying out of the bailout programmes result in

the spillovers remaining high for the twelve months. Summer of 2011 was an important time in

the EU as a succession of decisions were made by the ECB on the refinancing operation within

the EU (ECB, August 2011). It is interesting to observe that the spillover index for Spain falls

significantly (from 40% to 19%) after February 2011 remains between 15% and 29% for the

remaining of the sample period. This coincides with Spain becoming a prime concern for the

EU after the interest rates on its long-term bonds increased to 7%.
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3.4.2 Net Spillover Indices, Pairwise Spillovers and Structural Breaks

Figures 3.3 to 3.7 reports net spillovers for CDS spreads, real estate, term spread, liquidity

spread and stock index variables within the five countries, respectively. In order to understand

the dynamics of the spillover series and the relationship between the variables at a deeper level,

the net spillover indices need to be analysed in conjuction with the relevant pairwise spillovers

(Figures 3.9 to 3.12) and the break dates estimated using the Bai-Perron procedure (Table 3.4).

As a reminder to the reader, the net spillover from time series i to all other time series j is

calculated as the difference between the gross volatility shocks transmitted to and those received

from all other series. As the most useful information for the analysis can be inferred from

dynamics of the net spillover and net pairwise spillover indices the directional spillover index

series (corresponds to "contributions from others" and "contributions to others" columns in the

total spillover table - Table 3.3) are presented in Figures 3.8 ((a)-(e)) and 3.14 ((a)-(e)).

Following notation in Diebold and Yilmaz (2012), when the index is negative the variable

is called net receiver of shocks and when positive it is called net transmitter of shocks. In

practice, when a particular variable is a net transmitter of shocks its estimated contribution to

the forecast error variance of all other variables is larger than the estimated contribution from all

other variables. Hence, it can be concluded that the effects of shocks to variable i affect other

variables more than the effects of shocks to other variables affect variable i.

3.4.2.1 CDS Spread

Figure 3.3 shows that until the beginning of 2007 the net CDS spillover series have been

broadly unchanging. Both to and from directional spillovers (not reported here) were at a similar

low level for all countries in the sample. Overall, CDS variable became a net receiver of shocks

during the period from mid 2007 to end of 2010. The net pairwise spillover series presented in

Figure 3.10 show that this relationship is mostly caused by shock transmissions from the real

estate index (Figure 3.3 (a)) and stock market index (Figure 3.3 (d)).
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A closer look at the individual countries reveals that the sensitivity of the CDS variable was

most pronounced for France, Germany and Italy as the fluctuations of the index is the strongest

for these countries. Table 3.4 reports that the Bai-Perron multiple break estimation procedure

places the first structural break in the net CDS spillover series in Q3 2006 in Germany and

Q4 2007 in France and Italy. Figure 3.1 shows that this corresponds to time point when the

CDS spread for all countries started rising for the first time after being close to zero since CDS

contracts began actively trading in 2004.

The first structural break in the CDS net spillover index for Germany is detected in Q3 2006

when the index fell from −.35% to −1.28%. The net pairwise spillover indices in Figure 3.10

indicate that this change was driven mostly by changes in the CDS spread - real estate index

(Figure 3.10 (a)) and CDS spread - stock market index relationships (Figure 3.10 (d)).

The first structural break in the net spillover index of CDS for Italy is estimated to be in Q3

2007 when the net CDS variable decreased by 1.65% during the quarter. For France it was Q4

2007 and the CDS net spillover index fell by 2.14%. The timing of the structural break coincides

with a halt in the Italian and French real estate market, respectively. As for the case of Germany,

Figure 3.10 indicates that the changes for both of these countries are driven by the shocks to the

real estate variable (Figure 3.10 (a)).

Figure 3.3 shows that the next major change in CDS variable occurs in Q1 2010; the

Bai-Perron procedure estimates the structural break for this time point for Germany, France

and Spain (see Table 3.4). In Italy, a turning point is not detected until Q2 2010. The CDS net

spillover index changed from being net receiver to net transmitter of shocks. Figure 3.10 shows

that the driver for this change was the relationship of the CDS variable with all other variables

except liquidity spread - a sudden increase in the transmission of shocks from the CDS spread

variable to real estate (Figure 3.10 (a)), term spread (Figure 3.10 (b)) and stock market index

(Figure 3.10 (d)) can be observed. Hence, the source of shocks to these variables appears to be
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an increase in banks’ credit risk. The timing of this turning point coincides with the disclosure

of severe irregularities in Greek accounting procedures (European Commission, January 2010),

and thus, the negotiations on the first sovereign bailout in the European Union. A strong link

between banking sector and sovereign credit risk has been reported in previous literature. See,

for example, Acharya et al., 2012; De Bruyckere et al., 2013; Alter and Schuler, 2012; and

Avino and Cotter, 2014.

The Bai-Perron procedure estimates the next structural break in the CDS net spillovers in Q1

2011 for France, Germany and Spain (see Table 3.4). The CDS variable changed from being net

transmitter to net receiver of shocks. Figure 3.10 indicates that this change was mostly driven

by the relationship between the CDS spread and stock market index (Figure 3.10 (d)). Q1 2011

saw numerous changes within the Eurozone government structure. Some of the key events were

the increase and reorganisation of the European bail-out fund, which was renamed European

Stability Mechanism (previously known as European Financial Stability Facility) (European

Council, January 2011), revealing a new set of rules and guidelines for the upcoming EU-wide

bank stress testing by the European Banking Authority (European Banking Authority, March

2011). This is an indication that the uncertainty in the financial markets affected the credit risk

of banks rather than vice versa.

In Italy, Q3 2011 witnesses a gradual increase in the CDS net spillover index and this

is picked up by the Bai-Perron structural breaks estimation procedure (see Table 3.4). This

coincides with Italy passing a 54bn-euro austerity budget after long negotiations in parliament

(The Guardian, September 2011). September 2011 also saw Italy’s debt rating cut by Standard

& Poor’s, to A from A+ (Bloomberg, September 2011).

The Bai-Perron procedure detects a structural break for the UK in Q3 2011 (see Table 3.4)

and Figure 3.3 shows that the CDS net spillover index had an unprecedented surge during this

time. This seems to be driven by the CDS relationship with the term spread (Figure 3.10 (b))
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and stock market index (Figure 3.10 (d)). This is indicative of the bank credit risk being affected

purely by the investor uncertainty.

3.4.2.2 Real Estate Index

Figure 3.4 illustrates the net real estate spillover index series for five countries (France,

Germany, Italy, Spain and UK) over the sample period 5th of January 2005 to 21st of December

2012. The directional spillovers were cancelling each other out until mid-2007, but started to

increase noticeably since then. Overall, the net real estate spillover index seems to be a net

transmitter of shocks, but fluctuations of the country specific series move quite independently of

each other. The net real estate spillover for Spain fluctuates around zero largely throughout the

whole sample period. Net pairwise spillovers in Figure 3.11 show that the dynamics of the net

spillover index is driven by the real estate relationship with CDS spread (Figure 3.11 (a)) and

term spread (Figure 3.11 (b)) variables.

The Bai-Perron procedure detects a structural break in Germany in Q1 2006. This coincides

with the turmoil in the German Open-End Real Estate Funds (GOEREFs). Open-end real

estate funds work like mutual funds except that they buy property—mostly European office

and retail complexes—instead of stock. In Q1 2006 these funds faced a liquidity drain on an

unprecedented scale due to a devaluation of one of the largest funds, Grundbezits Invest (Bannier

et al., 2008; Fecht and Wedow, 2014).

The structural break in the net real estate spillover index for France is detected in Q3 2006

(see Table 3.4). France experienced the biggest downturn in its real estate markets in the

beginning of 2008, but the timing of first signs of deteriorating house prices coincide with the

structural break as detected by the Bai-Perron procedure (Ferrera and Vigna, 2009).

The Bai-Perron procedure detects three stuctural breaks in Italy: Q2 2007 (a sudden increase

in net spillover index), Q3 2008 (net spillover index dropped dramatically) and Q1 2010 (another

sudden rise in net spillover index). Figure 3.11 ((a) - (d)) shows that the shocks to the real estate
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variable has driven shocks in all variables, with an exception of the Q3 2008 to Q2 2010 period.

During this period the shocks to CDS spread, term spread and stock market index variables

affected real estate variable more than vice versa. Consistent with the CDS series, it indicates

that during this period the real estate variable is driven by events taking place in the financial

markets. In October 2008, the Italian government adopted a series of measures to protect the

financial sector. The measures included guarantees of bank liabilities, increase of retail deposit

guarantees and assistance programme by Banca d’Italia (Banca d’Italia, 2008).

Figure 3.4 reports the net real estate spillover index for Spain. Spain, like many other

countries in the EU, experienced a major property bubble that burst around Q1 2007, but it does

not seem to be reflected as strongly in the net real estate spillovers as for other countries in the

sample. Figure 3.11 shows that the shocks to the real estate variable have affected all other

variables except liquidity (Fig 3.11 (c)) mostly at the start of the financial crisis period. After

that, shocks to the CDS spread (Figure 3.11 (a)) and stock index (Fig 3.11 (d)) were transmitted

to the real estate index. This indicates that the bank credit risk and uncertainty in financial

markets affected shocks to the real estate index more than vice versa. The Bai-Perron procedure

does not detect any structural breaks in the net real estate spillover index for Spain.

Net real estate spillover index for UK has mostly been a net transmitter of shocks. This

effect has been especially pronounced during the crisis period Q3 2007 up to Q3 2008 and when

the real estate market in UK picked up again in 2009. Figure 3.11 ((a) - (c)) shows that the

shocks to the real estate variable have transmitted to CDS spread and term spread more than vice

versa over the entire sample period, and to stock market index from Q3 2010. The Bai-Perron

procedure detects a structural break in the index in Q2 2010; this coincides with the stabilisation

and growth of real estate prices in UK after a sharp fall from the peak of August 2007.

3.4.2.3 Term Spread

Figure 3.5 reports the net term spread spillovers series for the five countries in the sample. The
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net spillover series move closely together until the beginning of 2010 for four countries: France,

Germany, Italy and Spain. Net term spread spillover index for UK follows an independent path

and since the beginning of 2010 the series for all five countries become less correlated. The

Bai-Perron procedure detects one structural break for each country (see Table 3.4). It is detected

in Q3 2005 for France, Germany, Italy and Spain, and two quarters later (Q1, 2006) for the UK.

In the strongly co-moving series of four countries the net term spread spillover index decreases

significantly around the time of the structural break. For example, the year on year (September

2005 to September 2006) decrease of the index was 11% for Germany. Although the term spread

variable has largely continued transmitting more shocks to other variables than it has received,

its effect on the other credit risk variables has decreased significantly. Figure 3.12 reveals that

this dynamics was driven by the relationship between the term spread and all other variables

except liquidity spread (Figure 3.12 (b)). It is worth noting the sharp rise in the net pairwise

spillovers from term spread to all other variables (Fig 3.12 (a)-(d)) in Italy. This coincides with

the timing of bank guarantees undertaken by Banca d’Italia (see previous Section 4.2.2).

In the UK, however, the net term spread spillover index increased by 3.5% from April

2006 to July 2006. There is no ready theory or specific event to explain this difference in

regional dynamics. It helps to look at the general differences in the monetary policy responses

of European Central Bank and Bank of England. There are numerous papers outlining the

differences in the central banks’ responses to the crisis (see, for example, de la Dehesa, 2012;

Lenza et al., 2010). There are several structural differences that directly affect the interest

rate policies of the two central banks, but the three key differences are the following. First,

the monetary transmission mechanisms (MTM) of the two central banks are different. In the

case of the BoE the majority of the MTM is mainly done through financial markets and in the

case of the ECB it is mainly done through banks. Second, the BoE has more than one primary

objective for monetary policy, while the ECB has only one primary objective: price stability.
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Third, decision making at the ECB is much more complex and difficult than that of the BoE. As

a result, the ECB has been much more conservative at reducing interest rates and decisions have

been undertaken at a slower rate. Thus, financial markets have been more sensitive to the interest

rates policies undertaken by the BoE, whereas in the case of the Eurozone financial markets

seem to be driving the changes in the term spread.

3.4.2.4 Interbank Liquidity Spread

Figure 3.6 reports the net liquidity spread spillover index over the sample period. The

variable is mostly a net receiver of shocks from other variables. The dynamics of the index

is quite similar between all the Eurozone countries and moves somewhat independently for

the UK. From the pairwise spillovers presented in Figure 3.13 ((a)-(d)) it can be seen that the

net spillover indices are receivers of shocks from all other variables. The Bai-Perron places a

structural break test for the Eurozone countries very early in the sample, between Q3 and Q4

2005 and in Q3 2007 for the UK. This coincides with the first fluctuations in the liquidity spread

for these countries after a very stable period.

Liquidity spread is commonly used as an indicator to measure funding liquidity in the general

financial market (Michaud and Upper, 2008; Angelini et al., 2011; Eisenschmidt and Tapking,

2009). The empirical findings in this paper imply that the liquidity spread reflects turmoil in

bank credit risk and financial markets in general and not vice versa. However, it has to be noted

that the liquidity spread variable as used in the current analysis may not be an accurate reflection

of the state of interbank lending market, on the grounds that it is being skewed by the ECB’s

monetary policies.

3.4.2.5 National Stock Market Index

Figure 3.7 reports the net stock index spillovers. In Q2 2007 the spillover index increases

significantly for all countries in the sample. It remains a net transmitter of shock for the

remaining sample period and Figure 3.14 ((a)-(d)) reports that this effect can be observed

between all pairwise variables. The Bai-Perron procedure detects a structural break test for
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all countries simultaneously in Q2 2007. This coincides with a sudden fall in all the national

stock market indices in response to the market uncertainty across borders. This indicates that

the shocks to the stock markets in all sample countries strongly influence shocks to all other

variables.

3.5 Conclusion

This paper analyses the total and directional spillovers across carefully selected variables

directly related to the credit risk of financial institutions: bank CDS spread, real estate market

index, interest rate term spread, interbank liquidity spread and national stock market index,

using daily data from January 2004 to December 2012. The spillover analysis is undertaken

within five European Union countries: core countries France and Germany, periphery countries

Spain and Italy, and a reference country UK. Multiple structural break estimation procedure is

employed to detect sudden changes in shock transmission. A number of salient implications can

be drawn from the econometric results reported in this study.

The net spillover indices for all variables are highly time-varying and exhibit strong country

specific features. Overall, the national stock market indices appear to lead the shock transmission

across the five variables. The role of the bank credit risk, measured by the CDS spread, and the

real estate index changes over the course of the crisis. At the start of the crisis the real estate

index is a shock transmitter to all other variables and as the crisis progresses it becomes a shock

receiver and the exact opposite applies to the CDS spread. This lends support to the view that

the real estate plays a significant role in bank stability and initial shocks to the real estate sector

eventually have a strong influence on bank performance. The net term spread and liquidity

spread spillover series also move in opposite directions over the course of the sample period.

This, and the pairwise spillover indices (shocks to term spread appear to transmit to liquidity

spread rather than vice versa) suggest that interest rate changes lead the changes in interbank

liquidity.

82



As for the country specific dynamics, the most obvious outlier appears to be the UK; the

variation from other countries is most pronounced when looking at the term spread variable.

The explanation for this seems to be the general differences in the monetary policy responses of

European Central Bank and Bank of England. Financial markets have been more sensitive to

the interest rates policies undertaken by the BoE, whereas in the case of the Eurozone financial

markets seem to be driving the changes in the term spread. The net real estate index spillovers

exhibit strongest country specific dynamics. This is a reasonable observation as every country

experienced downturn in real estate prices at different times. The national stock markets are

most globalised across the variables in the sample as the net stock market spillovers are strongly

co-moving for all countries.

The Bai-Perron multiple structural break estimation procedure seems to detect sudden

changes in shock transmission only for original shocks, but not for later shocks of the same

nature. For example, a structural break is detected in the net CDS spread spillovers in Q1 2010,

around the first sovereign bailout within the Eurozone of Greece, but not for the subsequent

bailouts of Ireland, Portugal, Cyprus or the second Greek bailout. These results are in line

with findings in earlier literature. Conefrey and Cronin (2013) show that the spillover effect in

Euro area bond markets decrease significantly after the first bailout of Greece. Alter and Beyer

(2014) find evidence that, when analysing the sovereign-bank credit risk spillovers, the systemic

contributions of Euro zone periphery to core countries decrease after the implementation of the

IMF/EU programs.

As pointed out in Bai and Perron (2003), the multiple structural break estimation methodology

is highly dependent on the specification of the testing procedure. The methodology can have a

low statistical power leading to rejection of structural breaks even when they are ‘true’ breaks.

The statistical power of the test is dependent on the dynamics of the underlying series; the

Bai–Perron procedure may “reject” the null of no breaks and identify as a “true” break a certain
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shift in one series and “fail to reject” a break of the exact same magnitude in another series that

is more volatile. Therefore, when analysing the spillover index series, it is important to take into

account the full dynamics of the series and not only the structural breaks detected. The spillover

index methodology can then provide useful information to those tasked with monitoring the

developments in bank credit risk.
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3.6 Tables and Figures 

 

Table 3.1: Summary statistics 

 

Notes: This table reports the mean, standard deviation, minimum and maximum value of banks’ CDS spreads, real estate index, national stock market index, term 

spread and liquidity spread. All numbers are in percentages; real estate and stock market index report summary statistics on daily percentage changes rather than the 

original price indices. All data is daily and covers the period 1
st
 of January 2004 to 31

st
 of December 2012.    

Mean Std Dev Min Max Mean Std Dev Min Max Mean Std Dev Min Max

France 1.32 1.13 0.11 4.48 0.03 1.20 -6.08 6.12 0.01 1.43 -8.89 10.92

Germany 0.94 0.74 0.09 2.71 0.00 1.13 -7.10 6.76 0.03 1.41 -7.12 11.77

Italy 1.36 1.43 0.09 5.97 -0.02 1.96 -10.77 26.80 -0.01 1.52 -8.27 11.61

Spain 1.99 2.16 0.08 8.47 -0.05 2.47 -14.14 61.66 0.01 1.58 -9.61 15.63

UK 1.49 1.50 0.18 10.09 0.01 1.64 -9.29 9.29 0.01 1.32 -8.95 9.98

Mean Std Dev Min Max Mean Std Dev Min Max

France 2.47 1.21 0.38 4.19  -  -  -  - 

Germany 2.07 1.09 -0.28 4.11 1.49 0.88 -0.34 3.16

Italy 3.36 1.66 0.50 6.44  -  -  -  - 

Spain 2.96 1.75 0.15 6.43  -  -  -  -

UK 1.33 1.82 -1.38 3.89 1.08 1.48 -1.05 3.78

Banks'  CDS spread 5-yr Real Estate Price Index Equity Market Price Index

Term Spread Liquidity Spread
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Table 3.2: Sample correlation matrices 

 

Notes: This table reports the sample correlation matrices for the five original (before transformation due to non-stationarity) series of credit risk determinants (banks’ 

CDS spreads, real estate index, term spread, liquidity spread, and national stock market index) for each individual country: France, Germany, Italy, Spain and UK. All 

data is daily and covers the period 1
st
 of January 2004 to 31

st
 of December 2012. 

France Spain

CDS RLE Term Sp Liq Sp Stock Ind CDS RLE Term Sp Liq Sp Stock Ind

CDS 1.00 -0.35 0.59 0.33 -0.68 CDS 1.00 -0.75 0.75 0.35 -0.56

RLE -0.35 1.00 -0.66 -0.62 0.88 RLE -0.75 1.00 -0.86 -0.73 0.77

Term Sp 0.59 -0.66 1.00 0.92 -0.82 Term Sp 0.75 -0.86 1.00 0.78 -0.66

Liq Sp 0.33 -0.62 0.92 1.00 -0.69 Liq Sp 0.35 -0.73 0.78 1.00 -0.54

Stock Ind -0.68 0.88 -0.82 -0.69 1.00 Stock Ind -0.56 0.77 -0.66 -0.54 1.00

Germany UK

CDS RLE Term Sp Liq Sp Stock Ind CDS RLE Term Sp Liq Sp Stock Ind

CDS 1.00 -0.83 0.37 0.42 -0.25 CDS 1.00 -0.64 0.53 0.60 -0.74

RLE -0.83 1.00 -0.63 -0.65 0.55 RLE -0.64 1.00 -0.82 -0.80 0.90

Term Sp 0.37 -0.63 1.00 0.96 -0.64 Term Sp 0.53 -0.82 1.00 0.95 -0.68

Liq Sp 0.42 -0.65 0.96 1.00 -0.63 Liq Sp 0.60 -0.80 0.95 1.00 -0.75

Stock Ind -0.25 0.55 -0.64 -0.63 1.00 Stock Ind -0.74 0.90 -0.68 -0.75 1.00

Italy

CDS RLE Term Sp Liq Sp Stock Ind

CDS 1.00 -0.75 0.68 0.24 -0.81

RLE -0.75 1.00 -0.83 -0.60 0.96

Term Sp 0.68 -0.83 1.00 0.84 -0.90

Liq Sp 0.24 -0.60 0.84 1.00 -0.65

Stock Ind -0.81 0.96 -0.90 -0.65 1.00
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Table 3.3: Total spillover table: full sample estimation 

Notes: This table reports the full-sample total spillovers within the five transformed variables (banks’ CDS spreads, real estate index, term spread, liquidity spread, and 

national stock market index) for each individual country: France, Germany, Italy, Spain and UK. All data is daily and covers the period 1
st
 of January 2004 to 31

st
 of 

December 2012. See Eq (3.6) for calculation of the total spillovers index. 

France Spain

CDS RLE

Term 

Spread

Liquidity 

Spread

Stock 

Index

Directional 

FROM others CDS RLE

Term 

Spread

Liquidity 

Spread

Stock 

Index

Directional 

FROM others

CDS 65.4 13.9 1.2 0 19.5 35 CDS 82.3 3.3 0.3 0 14.1 18

RLE 10.7 57.1 1 0.3 30.9 43 RLE 1.4 93.2 0.1 0 5.2 7

Term Spread 1.2 2.2 89.9 3.3 3.4 10 Term Spread 0.1 0.1 98.4 0.2 1.2 2

Liquidity Spread 2 2.2 6.5 84.4 4.8 16 Liquidity Spread 1.3 0.2 0.6 93.2 4.6 7

Stock Index 13.8 29.4 1.5 0.1 55.2 45 Stock Index 10.9 4.4 1.2 0.1 83.4 17

Directional TO 

others
28 48 10 4 59 148

Directional TO 

others
14 8 2 0 25 50

Directional including 

own
93 105 100 88 114 29.60%

Directional 

including own
96 101 101 94 109 9.90%

Germany UK

CDS RLE

Term 

Spread

Liquidity 

Spread

Stock 

Index

Directional 

FROM others CDS RLE

Term 

Spread

Liquidity 

Spread

Stock 

Index

Directional 

FROM others

CDS 78.3 6.2 4.2 0.4 11 22 CDS 79.3 9.1 0.3 0.6 10.7 21

RLE 3.9 68.2 2.9 0.2 24.8 32 RLE 7.6 64.2 0.1 0.3 27.7 36

Term Spread 2.9 3.6 86.1 0 7.4 14 Term Spread 0.4 0.1 94.3 4.7 0.5 6

Liquidity Spread 1.3 1.2 14.3 78.4 4.7 22 Liquidity Spread 2.4 3.5 4.6 81.1 8.4 19

Stock Index 6.3 23.1 5.5 0.4 64.7 35 Stock Index 7.9 27.5 0.4 0.3 64 36

Directional TO 

others
14 34 27 1 48 124

Directional TO 

others
18 40 5 6 47 117

Directional including 

own
93 102 113 79 113 24.90%

Directional 

including own
98 104 100 87 111 23.40%

Italy

CDS RLE

Term 

Spread

Liquidity 

Spread

Stock 

Index

Directional 

FROM others

CDS 66.3 10.1 1.9 0.1 21.5 34

RLE 9.3 65.4 1 0.4 24 35

Term Spread 2.9 0.5 94.3 0.3 2 6

Liquidity Spread 3.3 1.2 1.2 89.6 4.7 10

Stock Index 16.7 21.4 1.5 0.2 60.2 40

Directional TO 

others
32 33 6 1 52 124

Directional including 

own
99 99 100 91 112 24.80%
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Table 3.4: The Bai-Perron estimation procedure results 

 

Notes: This table reports the Bai-Perron estimation procedure results for the quarterly net spillover series of the five credit risk determinants in the sample (banks’ CDS 

spreads, real estate index, term spread, liquidity spread, and national stock market index) for each individual country: France, Germany, Italy, Spain and UK. The 

sample period is 1
st
 of January 2004 to 31

st
 of December 2012.

France Germany Italy Spain UK France Germany Italy Spain UK

Q4 2007 Q3 2006 Q3 2007 Q1 2010 Q3 2011 Q3 2006 Q1 2006 Q2 2007  - Q2 2010

Q1 2010 Q1 2010 Q2 2010 Q1 2011 Q3 2008

Q1 2011 Q1 2011 Q3 2011 Q1 2010

France Germany Italy Spain UK France Germany Italy Spain UK

Q3 2005 Q3 2005 Q3 2005 Q3 2005 Q1 2006 Q4 2005 Q3 2005 Q3 2005 Q3 2005 Q3 2007

France Germany Italy Spain UK

Q2 2007 Q2 2007 Q2 2007 Q2 2007 Q2 2007

CDS RLE

Term Sp Liquidity Sp

Equity Index
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Table 3.5: Adjusted Dickey-Fuller and KPSS test results 

Notes: This table reports the Adjusted Dickey-Fuller test results for unit root present in time series and the KPSS test results for stationarity of the time series. Part a) reports the test results 

before the data transformations and part b) report the results after the data transformations. Data transformations are applied as follows. For variables CDS spreads, term spread and liquidity 

spread the first differences were calculated. For variables real estate index and stock index percentage change has been calculated. The statistically significant test statistic for the ADF test 

indicates that the presence of a unit root in the time series is rejected. The statistically significant test statistic for the KPSS test indicates that the non-stationarity of the time series is rejected. 

The *** indicates that the test statistic is significant at 1% significance level. 
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Table 3.6: List of financial institutions included in the calculation of the country 

specific banks’ CDS index 

 

  France 

1 AXA France 

2 Banque Fédérative du Crédit Mutuel 

3 BNP Paribas 

4 Credit Agricole 

5 Natixis 

6 Scor 

7 Societe Generale 

8 Wendel 

9 Dexia Crédit Local 

  Germany 

10 Allianz 

11 Deutsche Bank 

12 Bayerische Landesbank  

13 Commerzbank 

14 UniCredit Bank (formerly Bayerische Hypo- und Vereinsbank) 

15 Landesbank Hessen-Thüringen 

16 Landesbank Baden-Württemberg 

17 HSH Nordbank 

18 IKB Deutsche Industriebank 

19 DZ Bank 

20 WestLB 

21 Munich Re Group 

22 Landesbank Saar 

23 Bremer Landesbank 

24 Deutsche Postbank 

25 KfW (formerly KfW Bankengruppe) 

26 Landesbank Berlin 

27 Norddeutsche Landesbank 

28 UniCredit Bank Germany 

  Italy 

29 Assicurazioni Generali 

30 Mediobanka 

31 Banca Italease 

32 Banca Popolare Italiana 

33 Banca Popolare di Milano 

34 Unicredito Italiano 

35 Unione di Banche Italiane 

36 Banca Monte dei Paschi di Siena  

37 Unipol Gruppo Finanziario 

38 Banca Nazionale del Lavoro 
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  Spain 

39 Bankinter 

40 Banco Sabadell 

41 Banco Bilbao Vizcaya Argentaria 

42 Banco de Galicia 

43 Banco Popular Español 

44 Caja de Ahorros del Mediterráneo  

45 La Caixa 

46 Banco Santander Central Hispano 

47 Ibercaja 

48 CatalunyaCaixa 

49 Fundació Bancaixa 

50 Caja Madrid 

  The UK 

51 Santander UK 

52 3i Group 

53 Barclays Bank 

54 Northern Rock 

55 Alliance & Leicester 

56 Aviva 

57 The Royal Bank of Scotland  

58 Standard Chartered Bank UK 

59 HBOS 

60 HSBC Bank 

61 Man Group 

62 Old Mutual  

63 Prudential 

64 Lloyds TSB 

65 Legal & General Group 

66 RSA Insurance Group 

67 The Yorkshire Building Society 

68 Standard Life Funding BV 

69 The Skipton Building Society 

70 Ono Finance 

71 Piraeus Bank Group 

72 FCE Bank 

73 Nationwide Building Society 
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Figure 3.1: Bank CDS spreads 

 

Notes: This figure illustrates bank CDS spread series over the sample period 1
st
 of January 2004 to 31

st
 of 

December 2012 for France, Germany, Italy, Spain and UK. 

 

Figure 3.2: Total spillover index: 260-day rolling window estimation 

 

Notes: This figure illustrates the total spillover index time series from the DY (2012) estimation 

procedure based on 260-day rolling window sample. Total number of observations is 2085, as the rolling 

sample estimation uses 260 observations. All numbers are in percentages. See Eq (3.6) for calculation of 

the total spillovers index. The series covers the period 3
rd

 of January 2004 to 31
st
 of December 2012.  
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Figure 3.3: Net CDS spread spillover index: 260-day rolling window estimation  

 

Notes: This figure illustrates the net CDS spread spillover index time series from the DY (2012) 

estimation procedure based on 260-day rolling window sample. Total number of observations is 2085, as 

the rolling sample estimation uses 260 observations. All numbers are in percentages. See Eq (3.9) for 

calculation of the net spillovers index. The series covers the period 3
rd

 of January 2004 to 31
st
 of 

December 2012.  

 

Figure 3.4: Net real estate index spillover series: 260-day rolling window 

estimation 

 

Notes: This figure illustrates the net real estate index spillover time series from the DY (2012) estimation 

procedure based on 260-day rolling window sample. Total number of observations is 2085, as the rolling 

sample estimation uses 260 observations. All numbers are in percentages. See Eq (3.9) for calculation of 

the net spillovers index. The series covers the period 3
rd

 of January 2004 to 31
st
 of December 2012. 
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Figure 3.5: Net term spread spillover index: 260-day rolling window estimation 

 

Notes: This figure illustrates the net term spread spillover index time series from the DY (2012) 

estimation procedure based on 260-day rolling window sample. Total number of observations is 2085, as 

the rolling sample estimation uses 260 observations. All numbers are in percentages. See Eq (3.9) for 

calculation of the net spillovers index. The series covers the period 3
rd

 of January 2004 to 31
st
 of 

December 2012. 

 

Figure 3.6: Net liquidity spread spillover index: 260-day rolling window estimation 

 

Notes: This figure illustrates the net liquidity spread spillover index time series from the DY (2012) 

estimation procedure based on 260-day rolling window sample. Total number of observations is 2085, as 

the rolling sample estimation uses 260 observations. All numbers are in percentages. See Eq (3.9) for 

calculation of the net spillovers index. The series covers the period 3
rd

 of January 2004 to 31
st
 of 

December 2012.  
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Figure 3.7: Net stock index spillover series: 260-day rolling window estimation 

 

Notes: This figure illustrates the net stock index spillover time series from the DY (2012) estimation 

procedure based on 260-day rolling window sample. Total number of observations is 2085, as the rolling 

sample estimation uses 260 observations. All numbers are in percentages. See Eq (3.9) for calculation of 

the net spillovers index. The series covers the period 3
rd

 of January 2004 to 31
st
 of December 2012. 
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Figure 3.8 Directional spillovers from one variable to all other variables: 260-day 

rolling window estimation 

a) Directional spillovers from CDS spread to all other variables: 260-day 

rolling window estimation 

 

Notes: This figure illustrates the time series of the directional spillovers from the CDS spreads to all other 

variables from the DY (2012) estimation procedure based on 260-day rolling window sample. Total 

number of observations is 2085, as the rolling sample estimation uses 260 observations. All numbers are 

in percentages. See Eq (3.8) for calculation of this directional spillovers index. The series covers the 

period 3
rd

 of January 2004 to 31
st
 of December 2012.  

b) Directional spillovers from real estate index to all other variables: 260-day 

rolling window estimation 

 

Notes: This figure illustrates the time series of the directional spillovers from the real estate index to all 

other variables from the DY (2012) estimation procedure based on 260-day rolling window sample. Total 

number of observations is 2085, as the rolling sample estimation uses 260 observations. All numbers are 

in percentages. See Eq (3.8) for calculation of this directional spillovers index. The series covers the 

period 3
rd

 of January 2004 to 31
st
 of December 2012.  
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c) Directional spillovers from term spread to all other variables: 260-day 

rolling window estimation 

 

Notes: This figure illustrates the time series of the directional spillovers from the term spread to all other 

variables from the DY (2012) estimation procedure based on 260-day rolling window sample. Total 

number of observations is 2085, as the rolling sample estimation uses 260 observations. All numbers are 

in percentages. See Eq (3.8) for calculation of this directional spillovers index. The series covers the 

period 3
rd

 of January 2004 to 31
st
 of December 2012.  

 

d) Directional spillovers from liquidity spread to all other variables: 260-day 

rolling window estimation 

 

Notes: This figure illustrates the time series of the directional spillovers from the liquidity spread to all 

other variables from the DY (2012) estimation procedure based on 260-day rolling window sample. Total 

number of observations is 2085, as the rolling sample estimation uses 260 observations. All numbers are 

in percentages. See Eq (3.8) for calculation of this directional spillovers index. The series covers the 

period 3
rd

 of January 2004 to 31
st
 of December 2012.  

  

0 

5 

10 

15 

20 

25 

France 

Germany 

Italy 

Spain 

UK 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

France 

Germany 

Italy 

Spain 

UK 



98 
 

e) Directional spillovers from stock index to all other variables: 260-day 

rolling window estimation 

 

Notes: This figure illustrates the time series of the directional spillovers from the stock index to all other 

variables from the DY (2012) estimation procedure based on 260-day rolling window sample. Total 

number of observations is 2085, as the rolling sample estimation uses 260 observations. All numbers are 

in percentages. See Eq (3.8) for calculation of this directional spillovers index. The series covers the 

period 3
rd

 of January 2004 to 31
st
 of December 2012.  

Figure 3.9 Directional spillovers to one variable from all other variables: 260-day 

rolling window estimation 

a) Directional spillovers to CDS spread from all other variables: 260-day 

rolling window estimation 

 

Notes: This figure illustrates the time series of the directional spillovers to the stock index from all other 

variables from the DY (2012) estimation procedure based on 260-day rolling window sample. Total 

number of observations is 2085, as the rolling sample estimation uses 260 observations. All numbers are 

in percentages. See Eq (3.7) for calculation of this directional spillovers index. The series covers the 

period 3
rd

 of January 2004 to 31
st
 of December 2012.  
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b) Directional spillovers to real estate index from all other variables: 260-day 

rolling window estimation 

 

Notes: This figure illustrates the time series of the directional spillovers to the real estate index from all 

other variables from the DY (2012) estimation procedure based on 260-day rolling window sample. Total 

number of observations is 2085, as the rolling sample estimation uses 260 observations. All numbers are 

in percentages. See Eq (3.7) for calculation of this directional spillovers index. The series covers the 

period 3
rd

 of January 2004 to 31
st
 of December 2012.  

c) Directional spillovers to term spread from all other variables: 260-day 

rolling window estimation 

 

Notes: This figure illustrates the time series of the directional spillovers to the term spread from all other 

variables from the DY (2012) estimation procedure based on 260-day rolling window sample. Total 

number of observations is 2085, as the rolling sample estimation uses 260 observations. All numbers are 

in percentages. See Eq (3.7) for calculation of this directional spillovers index. The series covers the 

period 3
rd

 of January 2004 to 31
st
 of December 2012.  
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d) Directional spillovers to liquidity spread from all other variables: 260-day 

rolling window estimation 

 

Notes: This figure illustrates the time series of the directional spillovers to the liquidity spread from all 

other variables from the DY (2012) estimation procedure based on 260-day rolling window sample. Total 

number of observations is 2085, as the rolling sample estimation uses 260 observations. All numbers are 

in percentages. See Eq (3.7) for calculation of this directional spillovers index. The series covers the 

period 3
rd

 of January 2004 to 31
st
 of December 2012.  

e) Directional spillovers to stock index from all other variables: 260-day 

rolling window estimation 

 

Notes: This figure illustrates the time series of the directional spillovers to the stock index from all other 

variables from the DY (2012) estimation procedure based on 260-day rolling window sample. Total 

number of observations is 2085, as the rolling sample estimation uses 260 observations. All numbers are 

in percentages. See Eq (3.7) for calculation of this directional spillovers index. The series covers the 

period 3
rd

 of January 2004 to 31
st
 of December 2012.  
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Figure 3.10: Net pairwise spillovers: CDS spread to other variables, 260-day 

rolling window estimation 

(a) Net pairwise spillovers: CDS spread to real estate index 

 

(b)  Net pairwise spillovers: CDS spread to term spread 

 

(c) Net pairwise spillovers: CDS spread to liquidity spread 

 

(d) Net pairwise spillovers: CDS spread to stock index 

 

Notes: This figure illustrates the net pairwise spillover time series from CDS to other variables from the 

DY (2012) estimation procedure based on 260-day rolling window sample. Total number of observations 

is 2085, as the rolling sample estimation uses 260 observations. All numbers are in percentages. See Eq 

(3.10) for calculation of the net pairwise spillovers index. The series covers the period 3
rd

 of January 2004 

to 31
st
 of December 2012.
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Figure 3.11: Net pairwise spillovers: Real estate index to other variables, 260-day 

rolling window estimation 

(a) Net pairwise spillovers: real estate index to CDS spread 

 

(b) Net pairwise spillovers: real estate index to term spread 

 

(c) Net pairwise spillovers: real estate index to liquidity spread 

 

(d) Net pairwise spillovers: real estate index to stock index 

 

Notes: This figure illustrates the net pairwise spillover time series from real estate index to other variables 

from the DY (2012) estimation procedure based on 260-day rolling window sample. Total number of 

observations is 2085, as the rolling sample estimation uses 260 observations. All numbers are in 

percentages. See Eq (3.10) for calculation of the net pairwise spillovers index. The series covers the 

period 3
rd

 of January 2004 to 31
st
 of December 2012. 
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Figure 3.12: Net pairwise spillovers: Term spread to other variables, 260-day 

rolling window estimation 

(a) Net pairwise spillovers: term spread to CDS spread 

 

(b) Net pairwise spillovers: term spread to real estate index 

 

(c) Net pairwise spillovers: term spread to liquidity spread 

 

(d) Net pairwise spillovers: term spread to stock index 

 

Notes: This figure illustrates the net pairwise spillover time series from term spread to other variables 

from the DY (2012) estimation procedure based on 260-day rolling window sample. Total number of 

observations is 2085, as the rolling sample estimation uses 260 observations. All numbers are in 

percentages. See Eq (3.10) for calculation of the net pairwise spillovers index. The series covers the 

period 3
rd

 of January 2004 to 31
st
 of December 2012. 
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Figure 3.13: Net pairwise spillovers: Liquidity spread to other variables, 260-day 

rolling window estimation 

(a) Net pairwise spillovers: liquidity spread to CDS spread 

 

(b) Net pairwise spillovers: liquidity spread to real estate index 

 

(c) Net pairwise spillovers: liquidity spread to term spread 

 

(d) Net pairwise spillovers: liquidity spread to stock index 

 

Notes: This figure illustrates the net pairwise spillover time series from liquidity spread to other variables 

from the DY (2012) estimation procedure based on 260-day rolling window sample. Total number of 

observations is 2085, as the rolling sample estimation uses 260 observations. All numbers are in 

percentages. See Eq (3.10) for calculation of the net pairwise spillovers index. The series covers the 

period 3
rd

 of January 2004 to 31
st
 of December 2012. 

-15 

-10 

-5 

0 

5 
LIQ-CDS France 

LIQ-CDS Germany 

LIQ-CDS Italy 

LIQ-CDS Spain 

LIQ-CDS UK 

-15 

-10 

-5 

0 

5 
LIQ-RLE France 

LIQ-RLE Germany 

LIQ-RLE Italy 

LIQ-RLE Spain 

LIQ-RLE UK 

-10 

-5 

0 

5 
LIQ-TERM SP France 

LIQ-TERM SP Germany 

LIQ-TERM SP Italy 

LIQ-TERM SP Spain 

LIQ-TERM SP UK 

-15 

-10 

-5 

0 

5 
LIQ-IND France 

LIQ-IND Germany 

LIQ-IND Italy 

LIQ-IND Spain 

LIQ-IND UK 



105 
 

Figure 3.14: Net pairwise spillovers: National stock index to other variables, 260-

day rolling window estimation 

(a) Net pairwise spillovers: stock index to CDS spread 

 

(b) Net pairwise spillovers: stock index to real estate index 

 

(c) Net pairwise spillovers: stock index to term spread 

 

(d) Net pairwise spillovers: stock index to liquidity spread 

 

Notes: This figure illustrates the net pairwise spillover time series from stock index to other variables 

from the DY (2012) estimation procedure based on 260-day rolling window sample. Total number of 

observations is 2085, as the rolling sample estimation uses 260 observations. All numbers are in 

percentages. See Eq (3.10) for calculation of the net pairwise spillovers index. The series covers the 

period 3
rd

 of January 2004 to 31
st
 of December 2012.  
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