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Abstract

It is shown that the sample paths of Poisson shot noise with heavy-tailed semi-exponential
distributions satisfy a large deviation principle with a rate function that is insensitive to the
shot shape. This demonstrates that, on the scale of large deviations, paths to rare events do
not depend on the shot shape.
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1 Introduction

Shot noise processes have an extensive range of applications from Physics [10], through Electrical
Engineering [9] and Queueing Theory [8, 4]. They have also been used, for example, in Risk
Theory to model the delay in claim settlement [7, 5]. It has recently been shown that Poisson Shot
Noise (PSN) with i.i.d. heavy tailed semi-exponential shot values satisfies a scalar Large Deviation
Principle (LDP) with a rate function that is insensitive to the shot shape [11]. In this note we extend
this result proving that a sample path LDP holds for this process and, again, the resulting rate
function is insensitive to the shot shape. The insensitivity manifests itself through the LDP having
the same rate function as for a compound Poisson process with similarly distributed increments.
Thus, on the scale of large deviations, the paths to rare events do not depend on the shot shape.
The main result of this note can be viewed as the heavy-tailed counterpart of the sample path LDP
for PSN under light tail conditions [4].

Our proof is inspired by Gantert’s work on the centered partial sums of i.i.d. heavy tailed semi-
exponential distributions [6]. The main novel difficulties stem from a lack of independent increments
in PSN. These are overcome using the regenerative properties of the Poisson process in conjunc-
tion with delicate estimates to create a process with independent increments that is exponentially
equivalent to that under study.

PSN is the following process:

S(t) =
N(t)∑
n=1

H(t− Tn, Zn), t > 0
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where {N(t)}t>0 is a homogeneous Poisson process on (0,∞) with intensity λ > 0, {Tn}n≥1 are
the points of the Poisson process and {Zn}n≥1 form a sequence of i.i.d. random variables taking
values in a measurable space (E,E). The shot shape H : R × E → [0,∞) is assumed measurable
and is such that H(t, z) = 0 for t ≤ 0, and, for any z ∈ E, H(t, z) is non-decreasing with respect
to t. Throughout this paper we assume that the sequences {Tn}n≥1 and {Zn}n≥1 are independent,
and denote by H(∞, z) the shot value, i.e. the limit of H(t, z), as t→∞.

2 Sample path large deviations

We shall prove that the sample paths of PSN satisfy the LDP inD[0, 1], the space of càdlàg functions
defined on [0, 1], equipped with the L1 topology induced by the norm ||f || =

∫ 1
0 |f(t)|dt. The idea

is first to prove an LDP for the finite-dimensional distributions of the process and then lift this
LDP to a principle for the process in D[0, 1] equipped with the topology of point-wise convergence
using the Dawson-Gärtner theorem (see Theorem 4.6.1 in [3]). Finally, one strengthens to the
L1 topology by demonstrating exponential tightness and establishing the upper and lower LDP
bounds.

We begin by introducing basic definitions and recalling the scalar LDP for PSN with heavy tail semi-
exponential distributions as proved in [11]. We say that a family of random variables {Vα}α>0 taking
values in a topological space (M, τ) obeys an LDP with rate function I and speed v : [0,∞) 7→ [0,∞)
if I : M 7→ [0,∞] is a lower semi-continuous function, v is a measurable function such that
v(α) →∞ as α→∞, and the following inequalities hold:

lim sup
α→∞

1
v(α)

logP (Vα ∈ C) ≤ − inf
x∈C

I(x), for all C closed

and

lim inf
α→∞

1
v(α)

logP (Vα ∈ O) ≥ − inf
x∈O

I(x), for all O open.

Lower semi-continuity of I means that its level sets, {x ∈ M : I(x) ≤ c} for c ≥ 0, are closed. If
the level sets are compact, the rate function I is said to be good. The reader is referred to [3] for
an introduction to large deviations theory.

We write f(x) ∼ g(x) if f and g are two non-negative functions such that f(x)/g(x) → 1 as x→∞
and for a non-negative r.v., X, we define F (x) = P (X > x), x ≥ 0. Let r ∈ (0, 1) be a constant.
We say that F or X is heavy tail semi-exponential if F (x) ∼ a(x) exp{−xrL(x)}, where a and L are
non-negative slowly varying functions, i.e. limx→∞ L(tx)/L(x) = 1 for all t > 0 and the same holds
for a. As is well-known a semi-exponential r.v. X has finite moments of all orders, but E[eθX ] = ∞
for all θ > 0. See, for example, [2] for an introduction to semi-exponential distributions.

Theorem 2.1 [Proposition 2.1 [11]] Let a and L be positive slowly varying functions, r ∈ (0, 1) a
positive constant, and define β = λE[H(∞, Z)]. If

lim inf
t→∞

1
trL(t)

logP (H(t, Z) ≥ bt) ≥ −br for all b > 0

and

P (H(∞, Z) ≥ t) ≤ a(t) exp(−trL(t)) for all t sufficiently large,

2



then {S(t)/t}t>0 obeys an LDP in R with speed trL(t) and good, non-convex rate function

I(β)(x) =
{

(x− β)r if x ≥ β
∞ if x < β.

(1)

Using this scalar LDP we first prove that the LDP holds for finite-dimensional distributions. In
doing so, we encounter the primary difficulty when compared to partial sums processes: the in-
crements of PSN are not independent. This is overcome by the construction of an exponentially
equivalent process with independent increments.

Theorem 2.2 Under the assumptions of Theorem 2.1, for any integer k ≥ 1 and real numbers
0 = t0 < t1 < t2 < . . . < tk ≤ 1, the family of random vectors {S(αt1)/α, . . . , S(αtk)/α}α>0

satisfies an LDP in Rk with speed αrL(α) and good rate function

I
(β)
t1,...,tk

(x1, . . . , xk) =
k∑

i=1

(ti − ti−1)rI(β)

(
xi − xi−1

ti − ti−1

)
,

where x0 = 0 and the function I(β) is defined in (1).

Proof: We divide the proof in 5 steps.
Step 1: an approximation with independent increments. Let 0 = t0 < t1 < t2 < . . . <
tk ≤ 1 be fixed. For i = 1, . . . , k, let {N (i)(t)}t>0 be i.i.d. copies of the Poisson process {N(t)}t>0

and {Z(i)
n }n≥1 be i.i.d. copies of the process {Zn}n≥1 that are independent of the Poisson processes

{N (i)(t)}. For 0 < s ≤ t ≤ 1 and i = 1, . . . , k, we define

S(i)(s, t) =
N(i)(s)∑

n=1

H(t− T (i)
n , Z(i)

n ).

By the regenerative property of the Poisson process and the i.i.d. property of the sequence {Zn}n≥1,
the following equality in distribution holds:

(S(t1), S(t2), . . . , S(tk))
d= (S(1)(t1, t1), S(1)(t1, t2) + S(2)(t2 − t1, t2 − t1), . . . ,

S(1)(t1, tk) + S(2)(t2 − t1, tk − t1) + . . .+ S(k)(tk − tk−1, tk − tk−1)).

For α > 0, set

Σ(1)(α, t1, . . . , tk) = α−1 (S(αt1), S(αt2)− S(αt1), . . . , S(αtk)− S(αtk−1)) ,

Σ(2)(α, t1, . . . , tk) =α−1

(
S(1)(αt1, αt1), S(2)(α(t2 − t1), α(t2 − t1)) +

[
S(1)(αt1, αt2)− S(1)(αt1, αt1)

]
,

. . . , S(k)(α(tk − tk−1), α(tk − tk−1))+
k−1∑
i=1

[
S(i)(α(ti − ti−1), α(tk − ti−1))− S(i)(α(ti − ti−1), α(tk−1 − ti−1))

])

and

Σ(3)(α, t1, . . . , tk) = α−1
(
S(1)(αt1, αt1), S(2)(α(t2 − t1), α(t2 − t1)), . . . , S(k)(α(tk − tk−1), α(tk − tk−1))

)
.
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Step 2: exponential equivalence. Next we shall show that the families of random vec-
tors {Σ(2)(α, t1, . . . , tk)}α>0 and {Σ(3)(α, t1, . . . , tk)}α>0 are exponentially equivalent at the speed
αrL(α). This claim follows if we can prove that for fixed s < t the following holds

lim
α→∞

1
αrL(α)

logP

N(αs)∑
n=1

[H(αt− Tn, Zn)−H(αs− Tn, Zn)] > αδ

 = −∞, ∀ δ > 0.

By the Chernoff bound we have that, for any θ > 0,

P

N(αs)∑
n=1

[H(αt− Tn, Zn)−H(αs− Tn, Zn)] > αδ


≤ e−θαδE

[
eθ

PN(αs)
n=1 [H(αt−Tn,Zn)−H(αs−Tn,Zn)]

]
= e−θαδ exp

(
λ

∫ αs

0
E
[
eθ(H(αt−u,Z1)−H(αs−u,Z1)) − 1

]
du
)
.

Therefore

1
αrL(α)

logP

N(αs)∑
n=1

[H(αt− Tn, Zn)−H(αs− Tn, Zn)] > αδ


≤ − θδ

(L(α)/α1−r)
+

λ

αrL(α)

∫ αs

0
E
[
eθ(H(αt−u,Z1)−H(αs−u,Z1)) − 1

]
du.

Let y > β be arbitrarily fixed. In Step 5 we shall show that if we take θ = dαr−1L(α), with
0 < d < (y − β)r−1, then

lim
α→∞

λ

αrL(α)

∫ αs

0
E
[
eθ(H(αt−u,Z1)−H(αs−u,Z1)) − 1

]
du = 0, (2)

so that

lim sup
α→∞

1
αrL(α)

logP

N(αs)∑
n=1

[H(αt− Tn, Zn)−H(αs− Tn, Zn)] > αδ

 ≤ −dδ

and the claim follows by letting first d tend to (y − β)r−1 and then y tend to β.

Step 3: large deviations for the family {Σ(3)(α, t1, . . . , tk)}α>0. By Theorem 2.1 and the
definition of slowly varying function we have that, for any fixed t > 0, the stochastic process
{S(αt)/(αt)}α>0 obeys an LDP on R with speed αrL(α) and good rate function trI(β)(x). Using
the contraction principle (Theorem 4.2.1 in [3]) we have that {S(αt)/α}α>0 obeys an LDP on R
with speed αrL(α) and good rate function trI(β)(x/t). Due to the independence of the processes
{S(i)(t, t)}t>0 (i = 1, . . . , k), Exercise 4.2.7 in [3] yields that {Σ(3)(α, t1, . . . , tk)}α>0 obeys an LDP
on Rk with speed αrL(α) and good rate function

Ĩ
(β)
t1,...,tk

(x1, . . . , xk) =
k∑

i=1

(ti − ti−1)rI(β)

(
xi

ti − ti−1

)
. (3)
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Step 4: conclusion of the proof. By construction Σ(1)(α, t1, . . . , tk)
d= Σ(2)(α, t1, . . . , tk), for

all α > 0. Combining Steps 2 and 3 with Theorem 4.2.13 in [3], we deduce that the family
{Σ(1)(α, t1, . . . , tk)}α>0 obeys an LDP on Rk with speed αrL(α) and good rate function Ĩ

(β)
t1,...,tk

defined in equation (3). The claim follows by an application of the contraction principle with the
function (x1, . . . , xk) 7→ (x1, x1 + x2, . . . , x1 + · · ·+ xk).

Step 5: proof of equation (2). All that remains is the establishment of the assertion in equation
(2). Let k ≥ 1 be an integer such that r < k/(k + 1), which exists as r ∈ (0, 1). By the inequality

ex − 1 ≤ x+
x2

2!
+
x3

3!
+ · · ·+ xk+1

(k + 1)!
ex, ∀x ≥ 0

we have, ∀ α > 0, t ≥ s ≥ 0 and 0 ≤ u ≤ αs,

1
αrL(α)

E[edαr−1L(α)(H(αt−u,Z1)−H(αs−u,Z1)) − 1]

≤ d

α
E[H(αt− u, Z1)−H(αs− u, Z1)]

+
1
2
d2αr−2L(α)E[H2(αt, Z1)] + . . .+

1
k!
dkα(k−1)r−kLk−1(α)E[Hk(αt, Z1)]

+
1

(k + 1)!
dk+1αkr−(k+1)Lk(α)E[Hk+1(αt, Z1)edαr−1L(α)H(αt,Z1)].

So

1
αrL(α)

∫ αs

0
E[edαr−1L(α)(H(αt−u,Z1)−H(αs−u,Z1)) − 1] du

≤ d

α

∫ αs

0
E[H(αt− u, Z1)−H(αs− u, Z1)] du

+
s

2
d2αr−1L(α)E[H2(αt, Z1)] + . . .+

s

k!
dkα(k−1)(r−1)Lk−1(α)E[Hk(αt, Z1)]

+
s

(k + 1)!
dk+1αk(r−1)Lk(α)E[Hk+1(αt, Z1)edαr−1L(α)H(αt,Z1)].

By the assumption on the distribution of H(∞, Z1) we have E[Hn(∞, Z1)] <∞ for any n ≥ 1, so
that all the terms in the third line of the above inequality go to zero as α → ∞. By a change of
variable we deduce

d

α

∫ αs

0
E[H(αt− u, Z1)−H(αs− u, Z1)] du = ds

∫ 1

0
E[H(α(t− zs), Z1)−H(αs(1− z), Z1)] dz

and this latter term goes to zero as α→∞ by the dominated convergence theorem. Therefore, we
only need to prove

lim
α→∞

αk(r−1)Lk(α)E[Hk+1(αt, Z1)edαr−1L(α)H(αt,Z1)] = 0.

Note that for an arbitrary fixed T > 0

E[Hk+1(αt, Z1)edαr−1L(α)H(αt,Z1)]

= E[Hk+1(αt, Z1)edαr−1L(α)H(αt,Z1)1{H(αt, Z1) < T}]

+ E[Hk+1(αt, Z1)edαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T}]

≤ T k+1edαr−1L(α)T + E[Hk+1(αt, Z1)edαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T}].
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Since limα→∞ αr−1L(α) = 0, the claim follows if we prove

lim
α→∞

αk(r−1)Lk(α)E[Hk+1(αt, Z1)edαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T}] = 0. (4)

By the choice of k ≥ 1 we have that k(r − 1) + r(1 + ε)−1 < 0, for all ε > 0. An application of
Hölder’s inequality with conjugate exponents (1 + ε)/ε and 1 + ε yields

E[Hk+1(αt, Z1)edαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T}]
≤ (E[H(k+1)(1+ε)/ε(αt, Z1)1{H(αt, Z1) ≥ T}])ε/(1+ε)

× (E[e(1+ε)dαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T}])1/(1+ε).

Note that

(E[H(k+1)(1+ε)/ε(αt, Z1)1{H(αt, Z1) ≥ T}])ε/(1+ε) ≤ (E[H(k+1)(1+ε)/ε(∞, Z1)])ε/(1+ε) ∈ (0,∞).

Thus (4) follows if we show

lim
α→∞

αk(r−1)Lk(α)(E[e(1+ε)dαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T}])1/(1+ε) = 0.

This in turn follows if

lim sup
α→∞

1
αrL(α)

E[e(1+ε)dαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T}] <∞. (5)

Indeed (5) gives, for all α large enough and a positive constant K1 > 0,

(E[e(1+ε)dαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T}])1/(1+ε) ≤ K1α
r/(1+ε)L(α)1/(1+ε).

Then

lim sup
α→∞

αk(r−1)Lk(α)(E[e(1+ε)dαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T}])(1+ε)−1

≤ K1 lim
α→∞

αk(r−1)+r(1+ε)−1
Lk+(1+ε)−1

(α) = 0,

where the latter equality follows because k(r− 1) + r(1 + ε)−1 < 0 and L is slowly varying. In the
remainder of the proof we establish the veracity of equation (5). Note that, if X is a non-negative
r.v., z > 0 and 0 < U <∞, we have

E[ezX1{X ≥ U}] ≤
∫ ∞

U
zezsP (X > s) ds+ ezUP (X ≥ U).

Then, for all α big enough,

E[e(1+ε)dαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T}]
αrL(α)

≤ (1 + ε)d
α

∫ ∞

T
e(1+ε)dαr−1L(α)s P (H(∞, Z1) > s) ds+

e(1+ε)dαr−1L(α)T

αrL(α)
.

Therefore, for (5) it suffices to check

lim sup
α→∞

∫ ∞

T

eK2αr−1L(α)s

α
P (H(∞, Z1) > s) ds <∞, for some T > 0. (6)
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where we set K2 = (1 + ε)d. Note that the sequence

lim sup
α→∞

∫ M

T

eK2αr−1L(α)s

α
P (H(∞, Z1) > s) ds, M ≥ 1

is non-decreasing with supremum

lim sup
α→∞

∫ ∞

T

eK2αr−1L(α)s

α
P (H(∞, Z1) > s) ds.

Now, let M ≥ 1 and y > β be arbitrarily fixed and note that for all α > M/(y − β)∫ M

T

eK2αr−1L(α)s

α
P (H(∞, Z1) > s) ds ≤

∫ α(y−β)

T

eK2αr−1L(α)s

α
P (H(∞, Z1) > s) ds

≤
∫ ∞

T

eK2αr−1L(α)s

α
P (H(∞, Z1) > s) ds.

Taking first the limit as α→∞ and then the limit as M →∞, we deduce

lim sup
α→∞

∫ ∞

T

eK2αr−1L(α)s

α
P (H(∞, Z1) > s) ds = lim sup

α→∞

∫ α(y−β)

T

eK2αr−1L(α)s

α
P (H(∞, Z1) > s) ds.

We will show that for T large enough,

lim sup
α→∞

∫ α(y−β)

T

eK2αr−1L(α)s

α
P (H(∞, Z1) > s) ds = 0, (7)

and equation (6) follows.

Proving equation (7) follows exactly as in Proposition 2.2 in [11] from equation (18) to the end of
the proof of part (ii). To make the current exposition self-contained, we provide these details here.
For a fixed r0 ∈ (0, r), by Theorem 1.5.4 of [1] we have L(y)/y1−r ∼ ψ1(y) and a(y)/yr0 ∼ ψ2(y),
where ψ1 and ψ2 are non-increasing functions. So, for any ε′ > 0 there exists yε′ such that for all
y ≥ yε′ we have

(1− ε′)ψ1(y) < L(y)/y1−r < (1 + ε′)ψ1(y) and a(y)/yr0 < (1 + ε′)ψ2(y). (8)

By assumption, the tail of H(∞, Z1) is bounded above by a(t) exp(−trL(t)) for all t large enough,
say for all t ≥ t. In the following we take T > max{yε′ , t̄}. By the upper bound on the tail of
H(∞, Z1), T > t and the change of variable z = s/[α(y − β)], setting K3 = K2(y − β) we have∫ α(y−β)

T

eK2αr−1L(α)s

α
P (H(∞, Z1) > s) ds

≤ (y − β)
∫ 1

T/[α(y−β)]
a(zα(y − β)) exp{K3α

rL(α)z − (zα)r(y − β)rL(zα(y − β))}dz. (9)

Since T > yε′ , by (8) and the monotonicity of ψ1 we have, for all z ∈ (T/[α(y − β)], 1),

L(zα(y − β))
[zα(y − β)]1−r

>

(
1− ε′

1 + ε′

)
L(α(y − β))
[α(y − β)]1−r

and so the right hand side of (9) is less than or equal to

(y − β)
∫ 1

T/[α(y−β)]
a(zα(y − β)) e

−K3αrL(α)

»
(y−β)r−1

K2

“
1−ε′
1+ε′

”
L(α(y−β))

L(α)
−1

–
z
dz. (10)
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By the choice of d we can select ε > 0 sufficiently small that (y− β)r−1/K2 > 1. Consequently, we
can choose ε′ sufficiently small that

K4 =
(

1− ε′

1 + ε′

)2 (y − β)r−1

K2
− 1 > 0.

Since L is slowly varying in correspondence of ε′ there exists t′ = t′(y, β, ε′) such that, for all α ≥ t′,
L(α(y − β))/L(α) > (1− ε′)/(1 + ε′). Thus, using (10), we have∫ α(y−β)

T

eK2αr−1L(α)s

t
P (H(∞, Z1) > s) ds

≤ (y − β)

(
sup

z∈[T/(α(y−β)),1]
a(zα(y − β))

)∫ 1

T/[α(y−β)]
exp{−K5α

rL(α)z}dz

= K6(e−K7αr−1L(α) − e−K5αrL(α))
supz∈[T/(α(y−β)),1] a(zα(y − β))

αrL(α)
, for all α large enough

where K5 = K3K4, K6 = (y − β)/K5 and K7 = K5T/(y − β). Due to the slow variation of L,
K6(e−K7αr−1L(α) − e−K5αrL(α)) converges to K6 as α→∞. So (7) follows if

lim
α→∞

supz∈[T/(α(y−β)),1] a(zα(y − β))
αrL(α)

= 0.

Since T > yε′ , by (8) and the monotonicity of ψ2 we have, for all z ∈ (T/[α(y − β)], 1),

a(zα(y − β)) < (1 + ε′)[zα(y − β)]r0ψ2(zα(y − β)) ≤ (1 + ε′)[α(y − β)]r0ψ2(T ).

So
supz∈[T/(α(y−β)),1] a(zα(y − β))

αrL(α)
≤ (1 + ε′)(y − β)r0ψ2(T )

αr−r0L(α)

and this latter term goes to zero as α→∞ due to the slow variation of L and the choice of r0.
�

Armed with the finite-dimensional LDP in Theorem 2.2 we now complete the programme of proof
by establishing the sample path LDP holds in the topology of point-wise convergence and then in
the L1 topology. As a simple transformation of the rate function in question coincides with that for
the centered partial sums of i.i.d. heavy-tailed semi-exponential random variables, we can appeal
to results in [6] to assert its goodness.

Theorem 2.3 Under the assumptions of Theorem 2.1, the family {S(α·)/α}α>0 obeys an LDP on
D[0, 1] equipped with the topology of point-wise convergence with speed αrL(α) and good, non-convex
rate function

J (β)(f) =

{∑
(f(t+)− f(t−))r if f ∈ Dβ[0, 1]

∞ otherwise
(11)

where the sum is taken over all the points of discontinuity of f and

D(β)[0, 1] = {f ∈ D[0, 1] : f is linearly increasing with slope β between jumps,
which are non-negative}.
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Proof: For k ≥ 1, define the set of indexes

Ik = {(t1, . . . , tk) : t0 = 0 < t1 < . . . < tk ≤ 1}.

By the Dawson-Gärtner Theorem it follows from Theorem 2.2 that {S(α·)/α}α>0 obeys an LDP
on D[0, 1] equipped with the topology of point-wise convergence with speed αrL(α) and good rate
function

J̃ (β)(f(t1), . . . , f(tk)) = sup
k≥1,(t1,...,tk)∈Ik

I
(β)
t1,...,tk

(f(t1), . . . , f(tk)). (12)

By the contraction principle with the map f(t) 7→ f(t)−βt, {S(α·)/α−β·}α>0 satisfies an LDP in
D[0, 1] equipped with the topology of point-wise convergence and a rate function J̃ (0) as defined in
equation (12). This rate function coincides with the rate function IT defined in [6] for the centered
partial sums of i.i.d. heavy-tailed semi-exponential distributions. In Lemma 4 of [6] it is established
that J̃ (0) coincides with J (0) (I on page 1358 of [6]) defined in equation (11). Thus the identification
of J̃ (β) with the J (β) follows from another application of the contraction principle with the map
f(t) 7→ f(t) + βt. As this rate function mimics that found in [6], its goodness in the L1 topology
is proved in Lemma 8 there. The lack of convexity can be seen noting that if J (β)(f) < ∞ and
J (β)(g) <∞, then for any γ ∈ (0, 1)

J (β)(γf + (1− γ)g) = γrJ (β)(f) + (1− γ)rJ (β)(g) > γJ (β)(f) + (1− γ)J (β)(g).

In order to strengthen this LDP from the topology of point-wise convergence to the L1 topology, we
prove exponential tightness and use this property to directly prove that the upper and lower large
deviation bounds hold in this topology. Exponential tightness alone is not sufficient to establish the
LDP in the L1 topology as, when equipped with the topology of point-wise convergence, D[0, 1] is
not Hausdorff. For exponential tightness we must establish the existence of compact sets {KL}L>0

in the L1 topology such that

lim sup
α→∞

1
αrL(α)

logP
(
S(α·)
α

∈ Kc
L

)
≤ −L, (13)

where Kc
L denotes the complement of KL. For L > 0, consider the sets

KL =
{
f ∈ D[0, 1] : var[0,1](f) ≤ L1/r + β

}
,

where var[0,1](f) is the total variation of f on [0, 1]. Compactness of KL is shown in Lemma 5 [6].
Note that

P

(
S(α·)
α

∈ Kc
L

)
≤ P

(
S(α)
α

≥ L1/r + β

)
and thus equation (13) follows from an application of Theorem 2.1. Using the sets {KL}L>0 again,
note that, for any closed set C in the L1 topology, we have that

P

(
S(α·)
α

∈ C
)
≤ P

(
S(α·)
α

∈ C ∩KL

)
+ P

(
S(α·)
α

∈ Kc
L

)
.

As C ∩KL is closed in the topology of point-wise convergence, we can apply the LDP upper bound
in that topology in addition to the identification of J̃ (β) with J (β) and the exponential tightness,
to obtain the LDP upper bound

lim sup
α→∞

1
αrL(α)

logP
(
S(α·)
α

∈ C
)
≤ − inf

f∈C
J (β)(f).
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To prove the LDP lower bound,

lim inf
α→∞

1
αrL(α)

logP
(
S(α·)
α

∈ O
)
≥ − inf

f∈O
J (β)(f),

for any open set O in the L1 topology, it is enough to show that

lim inf
α→∞

1
αrL(α)

logP
(
S(α·)
α

∈ Oδ(f)
)
≥ −J (β)(f),

for all f such that J (β)(f) <∞ and

Oδ(f) =
{
g :

∫ 1

0
|f(t)− g(t)|dt < δ

}
.

For n > 0 consider the following set

O(n)(f) =
{
g non-decreasing :

∣∣∣∣g(kn
)
− f

(
k

n

)∣∣∣∣ < 1
n

for all k ∈ {1, . . . , n}
}
.

For n sufficiently large, O(n)(f) ⊂ Oδ(f). To see this, define the intervals I1 = [0, 1/n] and
Ik = ((k − 1)/n, k/n] for k = 2, . . . , n. As g ∈ O(n)(f) and f , g are non-decreasing, on the interval
Ik we have

|f(t)− g(t)| ≤ f

(
k

n

)
− f

(
k − 1
n

)
+

2
n

and so ∫
Ik

|f(t)− g(t)|dt ≤ 1
n

(
f

(
k

n

)
− f

(
k − 1
n

))
+

2
n2
.

Thus ∫ 1

0
|f(t)− g(t)|dt =

n∑
k=1

∫
Ik

|f(t)− g(t)|dt

≤ n

(
2
n2

)
+

n∑
k=1

1
n

(
f

(
k

n

)
− f

(
k − 1
n

))
=

2
n

+
1
n

(f(1)− f(0)).

As the right hand side is decreasing in n, we have that O(n)(f) ⊂ Oδ(f) for n sufficiently large. As
S(t) is non-decreasing almost surely, for n sufficiently large

P (S(α·)/α ∈ Oδ(f)) ≥ P (S(α·)/α ∈ O(n)(f)).

To prove the LDP lower bound and complete the proof, we note that by Theorem 2.2 it follows
that

lim inf
α→∞

1
αrL(α)

logP (S(α·)/α ∈ O(n)(f))

= lim inf
α→∞

1
αrL(α)

logP (|S(αk/n)/α− f(k/n)| < 1/n, k ∈ {1, . . . , n})

≥ − inf
(x1,...,xn)∈

Qn
k=1(f(k/n)−1/n,f(k/n)+1/n)

I
(β)
(1/n,2/n,...,1)(x1, . . . , xn)

≥ −
n∑

i=1

(1/n)rI(β)(n(f(i/n)− f(i− 1/n))) ≥ −Jβ(f).

�
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[6] N. Gantert, Functional Erdős-Renyi laws for semiexponential random variables, Ann. Probab.
26 (1998), no. 3, 1356–1369.
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