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Abstract— Analysis of the 802.11 CSMA/CA mechanism has
received considerable attention recently. Bianchi [1] presents an
analytic model under a saturated traffic assumption. Bianchi’s
model is accurate, but typical network conditions are non-
saturated and heterogenous. We present an extension of his
model to a non-saturated environment. The model’s predictions,
validated against simulation, accurately capture many interesting
features of non-saturated operation. For example, the model
predicts that peak throughput occurs prior to saturation. Our
model allows stations to have different traffic arrival rates,
enabling us to address the question of fairness between competing
flows. Although we use a specific arrival process, it encompasses
a wide range interesting traffic types including, in particular,
VoIP.

Index Terms— 802.11, CSMA/CA, non-saturated traffic, het-
erogenous network.

I. I NTRODUCTION

The 802.11 wireless LAN standard has been widely de-
ployed during recent years and has received considerable
research attention. The 802.11 MAC layer uses a CSMA/CA
algorithm with binary exponential back-off to regulate access
to the shared wireless channel. While this CSMA/CA algo-
rithm has been the subject of numerous empirical studies, an
analytic framework for reasoning about its properties remains
notably lacking. Developing analysis tools is desirable not
only because of the wide deployment of 802.11 equipment
but also because the CSMA/CA mechanism continues to play
a central role in new standards proposals such as 802.11e.
A key difficulty in the mathematical modeling of the 802.11
MAC lies in the large number of states that may exist (scaling
exponentially with the number of stations). In his seminal
paper, Bianchi [1] addressed this difficulty by assuming that
(i) every station is saturated (i.e. always has a packet waiting
to be transmitted), (ii) the packet collision probability is
constant regardless of the state or station considered and
(iii) transmission error is a result of packets colliding and is
not caused by medium errors. Provided that every station is
indeed saturated, the resulting model is remarkably accurate.
However, the saturation assumption is unlikely to be valid in
real 802.11 networks. Data traffic such as web and email is
typically bursty in nature while streaming traffic such as voice
operates at relatively low rates and often in an on-off manner.
Hence, for most real traffic the demanded transmission rate is
variable with significant idle periods, i.e. stations are usually
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far from being saturated. Our aim in this paper is to derive a
mathematical model of CSMA/CA that relaxes the restriction
to saturated operation while retaining as much as possible of
the attractive simplicity of Bianchi’s model, in particular, the
ability to obtain analytic relationships.

In Section II the general model is introduced and solved. In
Section III its predictions are verified through ns2 simulation
for homogenous stations and heterogenous stations that have
one of two distinct arrival rates. In Section IV fairness in the
heterogenous case is discussed. In Section V the model lim-
itations, and its possible extension, are discussed. In Section
VI other approaches to non-saturated modeling are discussed.
Concluding remarks are in section VII.

II. M ODEL OF NON-SATURATED HETEROGENOUS

STATIONS

Following the seminal paper of Bianchi [1], much of the
analytic work on 802.11 MAC performance has focused on
saturated networks where each station always has a packet
to send. For notable examples, see [2], [3]. The saturation
assumption enables queueing dynamics to be neglected and
avoids the need for detailed modeling of traffic characteristics,
making these networks particularly tractable.

Networks do not typically operate in saturated conditions.
Internet applications, such as web-browsing, e-mail and voice
over IP exhibit bursty or on-off traffic characteristics. Creating
an analytic model that includes fine detail of traffic-arrivals
and queueing behavior, as well as 802.11 MAC operation,
presents a significant challenge. We introduce a model with
traffic and buffering assumptions that make it sufficiently
simple to give explicit expressions for the quantities of interest
(throughput per station and collision probabilities), butstill
capture key effects of non-saturated operation. Although our
traffic assumptions form only a subset of the possible arrival
processes, we will see they are useful in modeling a wide
range of traffic, including voice conversations. As in [1], our
fundamental assumption is that each station has a fixed prob-
ability of collision when it attempts to transmit, irrespective
of its history.

Bianchi [1] presents a Markov model where each station
is modeled by a pair of integers(i, k). The back-off stage,
i, starts at 0 at the first attempt to transmit a packet and
is increased by 1 every time a transmission attempt results
in a collision, up to a maximum valuem. It is reset after
a successful transmission. The counter,k is initially chosen
uniformly between[0, Wi − 1], where typicallyWi = 2iW0

is the range of the counter andW0 is the 802.11 parameter
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Fig. 1. Non-saturated Markov Chain.

CWmin. While the medium is idle, the counter is decremented.
Transmission is attempted whenk = 0.

We introduce new states(0, k)e for k ∈ [0, W0 − 1],
representing a node which has transmitted a packet, but has
none waiting. This is called postbackoff. The first two stages
of the new chain are depicted in Figure 1. Note thati = 0 in
all such states, because ifi > 0 then a collision has occurred,
so we must have a packet awaiting transmission.

We assume that for each station there is a constant proba-
bility 1 − q that the station’s buffer has no packets awaiting
transmission at the start of each counter decrement. This
enables us to derive relationships between the per-station
quantities:q, the probability of at least one packet awaiting
transmission at the start of a counter decrement;m, the
maximum backoff stage;p, the probability of collision given
the station is attempting transmission;P , the Markov chain’s
transition matrix;b, the chain’s stationary distribution; and
τ , the stationary distribution’s probability that the station
transmits in a slot. These relationships can be solved forp
and τ , and network throughput predicted. It is important to
note that the Markov chain’s evolution is not real-time, and
so the estimation of throughput requires an estimate of the
average state duration.

Under our assumptions, we have for0 < k < Wi

0 < i ≤ m, P [(i, k − 1)|(i, k)] = 1,
P [(0, k − 1)e|(0, k)e] = 1 − q,
P [(0, k − 1)|(0, k)e] = q.

If the counter reaches 0 and a packet is queued, then we
begin a transmission. We assume there is a station-dependent
probability p that other stations transmit at the same time,
resulting in a collision. In the case of a collision we must
increase the backoff stage (or discard). In the case of a
successful transmission we return to backoff stage 0 and the
station’s buffer is empty with probability1−q. In the case with
infinitely many retransmission attempts we need introduce no
extra per-station parameters and for0 ≤ i ≤ m andk ≥ 0 we
have

P [(0, k)e|(i, 0)] = (1−p)(1−q)
W0

,

P [(0, k)|(i, 0)] = (1−p)q
W0

,

P [(min(i + 1, m), k)|(i, 0)] = p

Wmin(i+1,m)
.

Naturally, these transitions could be adapted to allow discards
after a certain number of transmission attempts.

The final transitions are from the(0, 0)e state, where
postbackoff is complete, but the station’s buffer is empty.

In this case we remain in this state if the station’s buffer
remains empty. If a packet arrives we have three possibilities:
successful transmission, collision or, if the medium is busy,
the 802.11 MAC begins another stage-0 backoff, now with a
packet. WithPidle denoting the probability that the medium is
idle during a typical slot, the transitions from the(0, 0)e state
are:

P [(0, 0)e|(0, 0)e] = 1 − q +
qPidle(1−p)

W0
,

k > 0, P [(0, k)e|(0, 0)e] =
qPidle(1−p)

W0
,

k ≥ 0, P [(1, k)|(0, 0)e] =
qPidlep

W1
,

k ≥ 0, P [(0, k)|(0, 0)e] =
q(1−Pidle)

W0
.

Observe thatp, the probability of a collision given that we
are about to transmit, is the probability that at least one
other station is transmitting. Using the assumption that station
collision probabilities are history independent, this is also the
probability that the medium is busy if we know the station
under consideration is silent. Hence we substitutePidle = 1−p.

Given the collision probabilityp for this station in the
system and per-station parametersq, Wi andm we may solve
for a stationary distribution of this Markov chain. This will
enable us to determine the probability,τ , that this station is
attempting transmission in a typical slot.

First we make observations that aid in the deduction of the
stationary distribution. Withb(i, k) and b(0, k)e denoting the
stationary probability of being in states(i, k) and (0, k)e, as
b is a probability distribution we have

m
∑

i=0

Wi−1
∑

k=0

b(i, k) +

W0−1
∑

k=0

b(0, k)e = 1. (1)

We will write all probabilities in term ofb(0, 0)e and use
the normalization in equation (1) to determineb(0, 0)e. We
have the following relations. To be in the sub-chain(1, k), a
collision must have occurred from state(0, 0) or an arrival
to state(0, 0)e followed by detection of an idle medium and
then a collision, so thatb(1, 0) = b(0, 0)p + b(0, 0)eq(1 −
p)p. Neglecting packet discard, fori > 1 we haveb(i, 0) =
pi−1b(1, 0) and so

∑

i≥1

b(i, 0) =
b(1, 0)

1 − p
=

b(0, 0)p + b(0, 0)eq(1 − p)p

1 − p
. (2)

The keystone in the calculation is then the determination of
b(0, W0−1)e. Transitions into(0, W0−1)e from (0, 0)e occur
if there is an arrival, the medium is sensed idle and no collision
occurs. Transitions into(0, W0 − 1)e also occur from(i, 0) if
no collision and no arrival occurs

b(0, W0 − 1)e = b(0, 0)e
q(1−p)2

W0
+ (1−p)(1−q)

W0

∑

i≥0 b(i, 0).
(3)

Combining equations (2) and (3) gives

b(0, W0 − 1)e = b(0, 0)e

(1 − p)q(1 − pq)

W0
+ b(0, 0)

1 − q

W0
.

We then have forW0 − 1 > k > 0, b(0, k)e = (1− q)b(0, k+
1)e+b(0, W0−1)e, with b(0, k)e on the left hand side replaced
by qb(0, 0)e if k = 0. Straightforward recursion leads to



expressions forb(0, k)e in terms ofb(0, 0)e and b(0, 0), and
so we find

b(0,0)e

b(0,0) = 1−q
q

(

1−(1−q)W0

qW0−(1−p)(1−pq)(1−(1−q)W0 )

)

. (4)

Using these equations we can determine the second sum in
equation (1)

W0−1
∑

k=0

b(0, k)e = b(0, 0)e

qW0

1 − (1 − q)W0
.

The (0, k) chain can then be tackled, starting with the relation

b(0, W0 − 1) =
∑

i≥0

b(i, 0)
(1 − p)q

W0
+ b(0, 0)e

qp

W0
.

Iteration leads to
∑W0−1

k=0 b(0, k) = b(0, 0)e

[

q
1−q

W0+1
2

(

q2W0

1−(1−q)W
0

+ p(1 − q) − q(1 − p)2
)

+ qW0(qW0+q−2)

2(1−(1−q)W
0 )

+ 1 − q
]

.

Using equation (4) we can determineb(1, 0) in terms of
b(0, 0)e:

b(1, 0) = b(0, 0)e

pq2

1 − q

(

W0

1 − (1 − q)W
0

− (1 − p)2
)

.

Finally, after algebra, the normalization (1) gives

1/b(0,0)e
= (1 − q) + q2W0(W0+1)

2(1−(1−q)W0 )

+ q(W0+1)
2(1−q)

(

q2W0

1−(1−q)W0
+ p(1 − q) − q(1 − p)2

)

+ pq2

2(1−q)(1−p)

(

W0

1−(1−q)W0
− (1 − p)2

)

(

2W0
1−p−p(2p)m−1

1−2p
+ 1

)

.

(5)
The main quantity of interest isτ , the probability that

the station is attempting transmission. A station attempts
transmission if it is in the state(i, 0) (for any i) or if it is
in the state(0, 0)e, a packet arrives and the medium is sensed
idle. Thusτ = q(1−p)b(0, 0)e +

∑

i≥0 b(i, 0), which reduces
to

τ = b(0, 0)e

(

q2W0

(1−p)(1−q)(1−(1−q)W0 )
− q2(1−p)

1−q

)

, (6)

whereb(0, 0)e is given in equation (5), so thatτ is expressed
solely in terms ofp, q, W0 and m. While q, W0 and m
are fixed for each station, in order to determine the collision
probability, p, we must give a relation between the stations
competing for the medium.

Consider the case wheren stations are present, labeled
l = 1, . . . , n. Equation (6) gives an expression forτl, the
per-station transmission probability, in terms of a per-station
arrival processql and a per-station collision probabilitypl.
Observe that

1 − pl =
∏

j 6=l

(1 − τj), for l = 1, . . . , n, (7)

that is, there is no collision for stationl when all other stations
are not transmitting. Withn stations, (6) and (7) provide2n
coupled non-linear equations which can be solved numerically

for pl andτl. Observe that(1− pi)(1− τi) is the same for all
i = 1, . . . , n and represents the probability that the medium
is idle (as we observed before1 − pi is the probability that
other stations are silent and1 − τi is the probability that this
station is silent). Note that these equations imply that different
stations’ collision probabilities are not the same unless their
transmission probabilities are equal. We remark that in thecase
where the stations are homogenous, the equations (7) reduce
to 1 − p = (1 − τ)n−1. Placing the system in saturation by
setting q = 1, the model reduces to that of Bianchi [1], as
expected.

The length of each state in the Markov chain is not a fixed
period of real time. Each state may be occupied by a successful
transmission, a collision or the medium being idle. To convert
between states and real time, we must calculate the expected
time spent per state, which is given by

Es = (1 − Ptr)σ +
∑n

i=1 Psi
Tsi

+
∑n

r=2

∑

1≤k1<···<kr≤n Pc:k1...kr
Tc:k1...kr

,
(8)

where: Psi
= τi

∏

j 6=i(1 − τj) is the probability stationi
successfully transmits;Tsi

is the expected time taken for a
successful transmission from stationi, which can easily be
calculated from expected payload size, physical data rate and
MAC parameters;Pc:k1...kr

=
∏r

i=1 τkr

∏

j 6=k1...kr
(1 − τj),

the probability that only the stations labeledk1 to kr expe-
rience a collision by attempting transmission;Tc:k1...kr

is the
expected time taken for a collision from stations labeledk1 to
kr, which is readily calculated from payload size distributions,
physical data rate and MAC parameters;Ptr = 1−

∏n

i=1(1−
τi) is the probability at least one station attempts transmission;
andσ is the slot-time. See Table I for an example calculation
of Ts andTc with fixed payload sizes.

Once the mean state time is known, we can estimate the
proportion of time that the medium is used by each station for
successfully transferring data:

Si = (Psi
Li)/Es, (9)

whereLi is the expected time spent transmitting payload data
for sourcei. The normalized throughput of the system is then

S =

n
∑

i=1

Si. (10)

Thus in order to determine the throughput and collision
probability for each station, and the overall throughput, one
first solves equations (7) using equations (5) and (6). Then
one uses equations (8), (9) and (10).

To study fairness of the 802.11 MAC layer, we will solve
the model for two groups of stations, where all stations within
each group have the same station parameters including arrival
rate and payload size. Suppose there aren1 stations in the first
class andn2 stations in the second class, then we may solve
for the collision probabilitiesp1 andp2 for a station in each
group using (7):

1 − p1 = (1 − τ1)
n1−1(1 − τ2)

n2 ,
1 − p2 = (1 − τ1)

n1(1 − τ2)
n2−1.



Letting Ts be the time for a successful transmission andTc

be the time for a collision,

Es = (Ps1 + Ps2)Ts + (1 − Ps1 − Ps2)Tc + (1 − Ptr)σ,

wherePsi is the probability that a station in classi, i = 1, 2,
successfully transmits. Normalized throughput for each class
is S1 = Ps1L1/Es and S2 = Ps2L2/Es, whereLi is the
average payload duration for a station in classi.

III. M ODEL VERIFICATION

We first consider a homogenous group of stations and then
consider the heterogenous setting where each station has one
of two arrival rates. Station parameters1 are shown in Table I.

We compare predictions of the model from Section II with
simulations using the ns2 based 802.11 simulator produced by
TU-Berlin [4]. We compare model predictions with simulation
for various numbers of stations and arrival rates.

In order to move between model and simulation arrival rates,
we use the following logic. Queues are set as small as ns2 will
permit and traffic arrivals are Poisson. Since we have small
buffers, the parameterqi is the probability that at least one
packet arrives in the expected time spent per state,Es defined
in equation (8). In simulation, the probability that at least one
packet arrives duringEs is one minus the probability that
the first inter-packet time is greater thanEs. Hence, when
inter-packet arrival times are exponentially distributedthe
exponential rateλi should be set so thatqi = 1−exp(−λiEs),
i.e. λi = − log(1− qi)/Es. With λi so chosen, the arrival rate
in the model and in simulation agree.

For the homogeneous case, Figure 2 shows how collision
probability depends on the total normalized offered load.
Figure 3 shows how the normalized throughput of the link
depends on the total normalized offered load. In all cases
there is good agreement between the model and simulations.
The model has captured a number of important features of the
behavior, including: the linear relationship between the offered
load and throughput when well below saturation; the behavior
of throughput as predicted by Bianchi’s model and simulation
at high offered loads (corresponding to saturation); for larger
numbers of stations the maximum throughput is achieved
before saturation in both the model and simulation; The point
at which this maximum occurs is relatively insensitive to the
number of stations; and a complex transition from under-
loaded to saturated.

For the heterogenous setting of where stations are divided
into two classes with each class having a different arrival rate,
Figure 4 shows the model’s normalized throughput prediction
for a station in each class, withn1 = 12 and n2 = 24.
The throughput is plotted against normalized arrival rate for
a station in each class. We take a representative slice through
this surface along the line where the arrival rate to the second
group is 1/4 of that of the first group. Figure 5 shows

1Note that the 802.11 standards do not specify a length for ACKTimeout.
Thus the length of a collision may depend on whether a stationwas involved
in the collision (including a vendor selected ACKTimeout) or was an onlooker
(then using EIFS). We chooseTc = Ts, following the spirit for the 802.11
standard. For a model of what occurs when they are set differently in a
saturated situation, see Robinson and Randhawa [3].
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Fig. 6. Throughput for station-pairs sending 64kbps on-offtraffic streams.

predicted and simulated throughputs and collision probabilities
against overall normalized offered load. There is good match
between predicted and observed throughputs, although the
simulated collision probabilities are slightly lower thanthe
model predicts. The collision probabilities of a station ineach
class are always close, but not the same. As commented after
equation (7), this is expected because of an asymmetry in the
system: a station in class 1 sees 11 other class 1 stations and
24 class 2 stations; a station in class 2 sees 12 class 1 stations
and 23 class 2 stations.

We have taken a large number of slices for ranges of values
of n1 and n2. For smaller numbers of users, we have found
that while the predicted throughputs are accurate, the predicted
collision probabilities are typically underestimates. For larger
number of stations, the estimates’ accuracy increases.

As a case-study we consider the predictions of the model in
a situation that represents VoIP traffic in an ad-hoc network.
Parameters for the voice calls are taken from [5]: 64kbs on-off
traffic streams where the on and off periods are distributed with
mean 1.5 seconds. Periods of less than 240ms are increased to
240ms in length, to reproduce the minimum talk-spurt period.
Traffic is between pairs of stations; the on period of one station
corresponds to the off period of another. When modeled, we
treat each pair of stations as a single transmitter. Figure 6
shows the predicted and simulated throughput, as the number
of station-pairs is increased. It can be seen that the model
makes remarkably accurate throughput predictions.



W0 31 L 364us = 500.0 bytes @ 11Mbps
m 5 Ts 944us = Header + L + SIFS +δ + ACK + δ + DIFS
σ 20us Tc 944us = Header + L + SIFS +δ + ACKTimeout
SIFS 10us DIFS 50us = 2σ + SIFS
δ 2us ACK 304us = 192 bits @ 1Mbps + 14 bytes @ 1Mbps

TABLE I

PARAMETERS VALUES FOR MODEL AND SIMULATION.
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IV. FAIRNESS

Having validated the 2-class model in section III, we con-
sider the model’s predictions regarding protocol fairness. With
n1 = 5, n2 = 15, Figure 7 shows the normalized throughput
of a station in each class against the normalized offered load
of a station in each class. Station parameters are those in
Table I, but with 1500byte payloads. Taking a slice along the
line where the offered load from stations in both classes are
equal, shown in Figure 8, demonstrates fairness in this case.
The collision probabilities and throughputs of all stations are
equal.

Taking slices through Figure 7 when the offered loads
of stations in each class differ, however, reveals long term
unfairness that is different to known short-term issues. Wefix
the normalized arrival rate in class 1 per-station to be eachof
the four values0.01, 0.02, 0.05 and0.1 and vary the arrival
rate per-station in class 2. Note that when class 1 stations
offer 0.1 normalized load, although they are not saturated the
offered load exceeds the network’s capacity, even when no
class 2 stations are present.

Overall normalized throughput and per-station collision
probabilities are shown in Figure 9. Collision probabilities
of stations in each class are approximately equal, with a
maximum difference of 5% for the lowest class 1 offered load
(0.01) and heavily loaded class 2 stations. At higher loads the
overall channel throughput is insensitive to the class 1 arrival
rate, but the bandwidth share does depend on the class 1 arrival
rate; this is shown in Figure 10 where normalized throughput
for a source in each class is shown against normalized offered
load per source for a station in class 2.

In Figures 10 (a), (b) and (c), the network is underloaded for
small class 2 offered load, so that the class 1 stations are not
adversely affected by class 2. When the class 2 stations offer
the same load as class 1 stations, the system is homogeneous
and each station gets the same share of bandwidth. However,
when the class 2 load ramps up beyond this level, class 1
stations lose their bandwidth share. The biggest drop from
bandwidth fairness occurs when class 2 station are saturated,

i.e. always have a packet (q2 = 1). The percentage drop in
throughput from fair share for these four class 1 offered loads
are 16%, 32%, 22% and 8% for Figures 10 (a), (b), (c) and (d)
respectively. The network is far from being fair, with greedy
stations being able to steal bandwidth.

This unfairness has Quality of Service (QoS) implications.
To demonstrate this we consider a scenario representing a
single voice-call between two stations competing with stations
carrying TCP connections. The voice-call pair is modeled
as in Section III. The stations with TCP connections have
1500 byte payloads and are saturated. Figure 11 shows that
collision probabilities are approximately equal for the VoIP
and TCP stations, but the TCP sources steal bandwidth from
the VoIP calls, with 5 TCP flows sufficient to reduce the VoIP
throughput by 50%. Note that this is despite the fair-share
of the channel for the VoIP station being roughly an order of
magnitude above the throughput of the VoIP station (this share
is not accessible due to the non-saturated nature of the VoIP
traffic).

V. M ODEL L IMITATIONS

We have shown that the Markov chain model has a relatively
tractable analytic solution. We have considered a simple queue
model in this paper, however it is clearly possible to introduce
more complex traffic and queue models without adding further
states into the Markov chain. For example, theq values could
be calculated using more elaborate queueing modeling. Also,
the probability that a station’s buffer is empty immediately
after successful transmission could be made dependent on the
backoff stage at which that transmission took place. These
probabilities could be obtained from traffic and queue model-
ing or even estimated from a running system. Alternatively,
larger buffers could be explicitly modeled by significantly
increasing the number of states in the Markov chain.

VI. RELATED WORK

There are alternative approaches to non-saturated modeling.
In [6] a modification of [1] is considered where a probabilityof
not transmitting is introduced that represents a station having
no data to send. The model is not predictive as this probability
is not known as a function of load and must be estimated
from simulation. In [7] idle states are added after packet
transmission to represent bursty arrivals in a way that does
not account for postbackoff, a key bandwidth saving feature
of the 802.11 MAC. In [8] a Markov model where states are
of fixed real-time length is introduced, but by virtue of its
design it cannot predict the pre-saturation peak in throughput.
In [9] a model focusing on multi-rate situations is presented,
but not solved analytically and is subject to limited validation.
In [10] a non-Markov model is developed, but is based on an
unjustified assumption that the saturated setting providesgood
approximation to certain unsaturated quantities. It appears to
produce inaccurate predictions. None of these previous models
have gone beyond the homogeneous setting and so have not
been able to consider fairness issues for competing traffic
types. Thep-persistent approach to modeling the 802.11 MAC
has also been studied extensively, for recent work see [11] and
the references therein.
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Fig. 11. VoIP and TCP.

VII. C ONCLUSIONS

We have presented a model and analysis of the 802.11
MAC under non-saturated and heterogenous conditions. The
model’s predictions were validated against simulation and
seen to accurately capture many interesting features of non-
saturated operation, including predicting that peak throughput
occurs prior to saturation. We address the question of fairness
between competing flows showing, for example, that saturated
data flows may significantly reduce the bandwidth available to
low-rate VoIP flows.
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