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Modeling, Analysis and Impact of a Long
Transitory Phase in Random Access Protocols

Cristina Cano and David Malone

Abstract—In random access protocols, the service rate depends
on the number of stations with a packet buffered for transmission.
We demonstrate via numerical analysis that this state-dependent
rate along with the consideration of Poisson traffic and infinite
(or large enough to be considered infinite) buffer size may cause
a high-throughput and extremely long (in the order of hours)
transitory phase when traffic arrivals are right above the stability
limit. We also perform an experimental evaluation to provide
further insight into the characterisation of this transito ry phase
of the network by analysing statistical properties of its duration.
The identification of the presence as well as the characterisation
of this behaviour is crucial to avoid misprediction, which has a
significant potential impact on network performance and opti-
misation. Furthermore, we discuss practical implicationsof this
finding and propose a distributed and low-complexity mechanism
to keep the network operating in the high-throughput phase.

Index Terms—Stability, random access protocols, mean field
analysis, decoupling approximation, DCF, Aloha, Homeplug.

I. I NTRODUCTION

A common characteristic of random access protocols is the
provision of a service rate that is dependent on the actual
number of stations with a packet pending for transmission
(backlogged stations). We show in this work that this state-
dependent service rate, in combination with exponentially
distributed packet interarrivals, may cause an extremely long
transitory period (of the order of magnitude of hours) under
certain conditions. In particular, when the queue length of
the stations is large enough to be considered infinite and we
operate right after the stability limit of the network. Consider,
for example, a network formed by50 nodes contending for the
channel using Homeplug 1.0 Medium Access Control (MAC)
[1]. Fig. 1 shows the instantaneous throughput (measured ev-
ery second). Observe the long time during which the network
remains in a high-throughput phase and how the behaviour of
throughput suddenly changes.

To illustrate why this effect takes place, consider a set
of nodes with no previous packets buffered for transmission
generating packets at a rate slightly higher than the maximum
rate the network could serve in saturation. In this situation,
the probability that a large percentage of the nodes contend
for the channel at the same time is small. Thus, compared
to the case in which all the stations are backlogged, the time
to transmit a packet is reduced as the conditional collision
probability is smaller. Consequently, the probability that a
large number of packets accumulate for transmission is also
reduced and higher throughput than that achieved when all
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Fig. 1. Evolution of instantaneous throughput in Homeplug MAC from [1].

stations are saturated can be obtained. However, after the
stability limit of the network and under infinite queue size,
this situation cannot be maintained in the long run. Eventually,
the number of backlogged stations increases and so does the
time to transmit a packet, leading to a consecutive increase
of the queued packets and moving the network to saturation
(the stable operating point). We show in this work that the
time it takes the network to reach the long-term stability
can be extremely long, though this depends on, among other
parameters, the value of the packet generation rate.

We build upon previous literature on mean field and queue
stability analysis of random access protocols and provide anu-
merical evaluation to demonstrate the potential extremelylong
duration of this transitory phase as well as the conditions under
which it may occur. Moreover, we provide more insight into
the characterisation of its duration by means of experimental
evaluations. As far as we know, this is the first work that
demonstrates and characterises this transitory phase, crucial
to avoid misprediction of performance results. The specific
contributions are as follows:

1) A demonstration via numerical analysis that in a coupled
system of queues of length long enough to be considered
infinite there may be a long transitory phase when the
packet arrival rate is slightly higher than the maximum
load that the system could serve in saturation. We also
perform an extensive experimental evaluation to support
this finding.

2) Further insight into the statistical properties of the dura-
tion of this transitory phase.

3) We contribute further understanding of random access
protocols with the aim of avoiding misprediction of
results that have a significant potential impact on per-
formance evaluation, parametrisation and optimisation.

4) We discuss practical implications of our findings and
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provide a simple and distributed mechanism to keep the
network in the high-throughput phase, which provides
substantial gains in network performance.

The remainder of this article is organised as follows. In
Section II, we motivate this work by providing an overview
of related work as well as previous results affected by
misprediction. Then, in Section III, we build upon previous
literature to demonstrate that the high-throughput phase is
transitory and describe the challenges involved in its detection,
both analytical and experimental. After that, we describe the
methodology used in this work to bothi) demonstrate the
transitory phase may have a potentially long duration and
ii) provide more insight into its statistical properties. Results
are presented in Section V. Then, a discussion on practical
implications, including a mechanism to keep the network
operating in the transitory phase, is provided in Section VI.
Finally, we conclude the paper with some final remarks.

II. M OTIVATION

We have detected the long transitory period in a range of
random access protocols, including Aloha and the Distributed
Coordination Function (DCF) defined in IEEE 802.11 [2] (as
will be shown in Section V) as well as the Homeplug channel
access procedure [3] (see Fig. 1 and also [1]). A common
feature of these protocols is that the time to transmit a packet
depends on the actual number of contending stations (those
stations that are associated to the network and that have a
packet pending for transmission). When the traffic arrival rate
is just above the level at which we expect the network to be sta-
ble, we find that this variability in service rate combined with
the variability in traffic arrivals can lead to a high-throughput
long-transitory phase before the queues saturate. However,
under infinite, or large enough to be considered infinite, queue
size, the queues will eventually become unstable. In these
conditions, a larger number of stations contend for the channel
reducing throughput to that found in saturation. The possibility
of a long transitory phase for random access protocols in
this regime has already been postulated [4], however without
experimental findings or proof. The high-throughput phase was
also described in [5]. The authors argued that the network
is unstable in this regime and showed experimentally the
change of behaviour. Here we go further and demonstrate
that the phase that provides the saturation throughput is, in
fact, the only stable operation of the network. Thus, the high-
throughput phase corresponds to a transitory period. Moreover,
we demonstrate and characterise its potentially long duration.

We first found the long transitory behaviour in Homeplug
MAC [1]. In that work, we experimentally show the evolution
of the instantaneous throughput and find that after a long
period of time, the queues start to fill with packets and the
throughput faces a sharp decrease to the saturation throughput.
We also discuss that analytical models based on the common
approximation of decoupling queue states and service times
are not able to differentiate between the transitory and the
stable solutions and that care should be taken when performing
experimental evaluations (for completeness, we will briefly
address these problems in Section III). One of the contributions

in [1] is to show that previous results under these conditions [6]
are incomplete, as their simulation and analytic model results
correspond to the network performance of the transitory phase.

In this work we show that this effect is not Homeplug-
specific but common to many random access protocols. We
demonstrate that the high-throughput phase is transitory and
that its duration may be extremely long (see Sections III
and V, respectively). We also give more insight into the
magnitude and distribution of the time it takes the network
to reach the stable phase (see Section V). We believe these
contributions are crucial to avoid misprediction of results,
both from analysis and simulation, that have a potentially
significant impact on performance evaluation and comparison,
configuration of network channel access parameters and in
optimisation analysis. Misprediction of results can lead to
wrong conclusions with a clear impact on network perfor-
mance, especially in this particular case, as the transitory is
a higher-throughput phase compared to the stable solution.
Moreover, the difference in throughput among the transitory
and stable phases, depending on channel access parameters and
conditions, can be extremely large (more than a50% reduction
in some scenarios). These findings make the detection of such
misprediction in performance evaluation even more relevant.

A clear example of such misprediction in IEEE 802.11
can be found in [7], where an analytical model based on the
decoupling approximation and infinite queue size is proposed.
Higher throughput than the one in saturation is predicted when,
for the conditions specified,50 and100 nodes are contending
for the channel and the packet arrival rate is approaching
saturation. However, we can observe disagreement in that re-
gion when comparing their analytical and experimental results
(see Fig. 6 in [7]). In particular, the throughput found from
simulations for the higher packet arrival rates in that region
corresponds to neither the saturated throughput nor the highest
throughput phase, an effect we believe is caused by averaging
results from the transitory phase and the stable operation.

III. T RANSITORY AND STABLE OPERATION OF THE

NETWORK

In this section, we first build upon previous literature to
show that the lowest-throughput phase corresponds to the
stationary operation of the network. Then, we discuss the
challenges involved, both analytical and experimental, in
identifying the long-term stable solution of the network. We
provide techniques to overcome these challenges in order to
obtain a valid performance prediction, also from analytical and
experimental point of views.

A. Stability Analysis

Building upon the results in [8], where the queue stability of
a system of parallel, coupled queues with infinite buffer size is
studied, we demonstrate that the stable (stationary) operation
of the network corresponds to saturation, as follows.

Theorem 1:Let X = (X1, ..., XN ) be the queue length
process of a system ofN parallel and homogeneous queues
with infinite buffer sizes, strictly positive and Poisson-
distributed arrival rates (λi, with 1 ≤ i ≤ N denoting a given
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queue) and bounded state-dependent service ratesµi(x). If ∃i
that satisfies:

λi > lim sup
xi→∞

sup
xj:j 6=i

µi(x). (1)

Then, independently of the initial state:

min
i
(xi(t))t→∞ > 0. (2)

Proof: Such a process is shown to be transient in [8]
if Eq. 1 is satisfied. Thus, it follows thatxi(t) tends to go
to infinity. Therefore, witht → ∞ the number of packets
waiting for transmission at queuei will be higher than zero.
Moreover, assuming homogeneity, having an unstable queue in
the system implies that all the other queues are also unstable
[9]. Thus, the condition in Eq. 2 holds by applying the same
proof for all N queues. In such conditions the operation of
the network corresponds to saturation (all nodes have at least
a packet pending for transmission).

B. Identifying the Stable Operation: Analytical Challenges

When analysing the performance of a network formed by a
set of nodes using a random access protocol, the decoupling
approximation is commonly used in order to make the analysis
tractable. Under the decoupling approximation each queue
is modelled as independent of the rest of queues in the
network. However, this assumption, although practical under
a range of circumstances, can provide two different solutions
for throughput in certain regimes [10]. In particular, under the
conditions we have detected the long transitory phase:i) when
the packet arrival rate is slightly higher than the maximum
load that the system could serve in saturation andii) under
infinite (or large enough to be considered infinite) buffer size.
These models involve solving a fixed point equation, however,
in contrast to saturated models, the solution may not be unique
in models that consider unsaturated conditions.

The fundamental limitation of these analytical models is that
they do not consider the number of instantaneous contending
stations, i.e., the number of queues that have at least a packet
buffered at the same time. Neglecting this fact makes it
impossible to capture the actual regime in which the queues
operate. This is caused by the possibility of facing two extreme
cases: the queues being mostly empty or saturated conditions.
This effect is in fact related to the transitory phase, the system
operates in a high-throughput phase, that corresponds to one
of the solutions the analytical model converges to, and then,
moves to the saturated network operation, which corresponds
to the other solution. The relation between the packet arrivals
rates for which we observe two different solutions and so the
potential for a long transitory phase is studied in this section.

For the two best-known random access protocols, Aloha and
DCF, we illustrate here how analytical models based on the
decoupling approximation may exhibit two solutions by vary-
ing the initial conditions of our iterative solver. Furthermore,
we use these analytical models to obtain the service rate in
saturation (the stability limit of the network), a metric that
allows us to identify when there is a potential for the long

transitory phase to take place. UsingTheorem 1, we define
the stability condition asλ < µsat, whereµsat denotes the
service rate whenN stations are contending for the channel.
When the stability condition of the network is not satisfied,
there is potential to bothi) obtain different solutions from
the analysis andii) find a long transitory phase from one
solution to the other. However, note that whenλ >> µsat,
we expect the probability of finding a transitory period to
decrease as the probability of having a large number of the
nodes simultaneously contending for the channel increases.

1) Aloha: We take a standard renewal reward approach
[11], [12] to model the network performance of an Aloha
network. The analytical model used is described in Appendix
A. To make comparison with DCF easier, parameters shown
in Table I are used. The contention window (W ) is set to32
and the data payload (L) is set to1500 bytes. Results for the
aggregate throughput for different number of nodes (N ) and
packet arrival rates (λ), as well as the service rate in saturated
conditions for different values ofN , are depicted in Fig. 2.

Observe that, whenλ is slightly higher than the maximum
service rate in saturation for a givenN (shown in Fig.
2(b)), the analysis converges to two different solutions for
throughput (Fig. 2(a)). The solution labelled asAnalysis 1is
obtained by using initial conditions representing saturation for
the numerical method, i.e.,:i) number of idle slots between
renewal events equal to0, ii) queue occupancy equal to
1, iii) probability of finding the queue non empty after a
transmission equal to1 and iv) transmission attempt rate set
to a high value (0.5). On the contrary, the solution labelled as
Analysis 2considers the opposite case (lightly-loaded initial
conditions for the numerical method):i) number of idle slots
between renewal events equal to a large value (1000), ii) queue
occupancy equal to0, iii) probability of finding the queue non
empty after a transmission equal to0 and iv) transmission
attempt rate set to a small value (1 · 10−5). Note that both
solutions represent a fixed point of the model.

The range of packet arrival rates for which we obtain the
two solutions increases with the number of nodes in the
network. The reasons behind this result are twofold. First,with
a small number of nodes, the probability (independently of the
service rate) that all of them have a packet for transmission
at the same time is higher. Second, with higherN , there is
a higher range of possible operating points before reaching
the saturated service rate. Observe that, under these specific
conditions, whenN = 10 there is no discrepancy among the
two different solutions and thus, we do not expect the long
transitory phase to occur.

2) DCF: We have also studied the effect of obtaining
two different solutions from the analysis for a network with
nodes using the DCF random access protocol. The renewal
reward approach presented in Appendix B has been used for
this purpose. Fig. 3 shows the aggregated throughput as well
as the service rate in saturated conditions for two different
combinations of the contention parameters. We have analysed
the cases in which the minimum contention window (W ) is
set to8 and32 and the number of backoff stages (m) is equal
to 3 and5. Thus, with maximum contention windows being64
and 1024, respectively (for full details of IEEE 802.11 DCF
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(a) Throughput
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(b) Saturated Service Rate

Fig. 2. The two solutions obtained from the renewal reward analysis for the aggregated throughput and service rate in saturated conditions in Aloha.
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(a) Throughput (W = 8, m = 3)
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(b) Throughput (W = 32, m = 5)
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(c) Saturated Service Rate

Fig. 3. The two solutions obtained from the renewal reward analysis for the aggregated throughput and service rate in saturated conditions in DCF.

TABLE I
SYSTEM PARAMETERS OF THEIEEE 802.11B SPECIFICATION[2].

Parameter Value in IEEE 802.11b
Rdata 11 Mbps

Rbasic/RPHY 1 Mbps
LMACH 272 bits

LPLCPPre 144 bits
LPLCPH 48 bits
Lack 112 bits
σ 20 µs

DIFS 50 µs
SIFS 10 µs

see [2]). The different solutions labelled asAnalysis 1and
Analysis 2have been obtained as in the last subsection.

Also, as found for Aloha, when the packet arrival rate is
immediately higher than the service rate in saturation (depicted
in Fig. 3(c)), there is a potential for obtaining two solutions
from the analysis. We observe in this case that the range of
packet arrival rates for which two solutions appear is higher
with W = 8 and m = 3 than for W = 32 and m = 5
(Fig. 3(a) and 3(b)). This is caused by the larger difference
between the maximum throughput that can be achieved with
a reduced number of backlogged stations and the saturation
throughput. Note how the saturation throughput with the
smaller contention window and number of backoff stages is
much lower than when the contention window is larger.

Observe also that, despite our efforts to choose the initial

values for the solver to produce two solutions, only one
solution is obtained when the two solutions are very close.
This can be observed in Fig. 3(a) and 3(b) forN = 10 when
the packet arrival rate is close to the maximum service rate
the system could serve in saturation. However, the existence
of two different solutions for throughput in those conditions
has been confirmed with the methodology used in [10].

In conclusion, it is crucial to know the two-solution exis-
tence when interpreting results from the analysis in order to
avoid misprediction. In fact, this is the reason for the incorrect
predicted long-term performance of IEEE 802.11 presented in
[7] and the Homeplug MAC in [6]. The decoupling approxi-
mation along with a model exhibiting two solutions resulted
in incomplete results from the analysis. Furthermore, in [6],
agreement was found comparing the performance obtained
from the analysis with simulations, leading the authors to
believe the analytical model was validated. Given the long
transitory phase, care must be also taken when running an
experimental evaluation as we will discuss later in this section.
Thus, verifying whether the stability condition is satisfied
comparing the maximum service rate (Figs. 2(b) and 3(c))
and the actual packet arrival rate (λ) is crucial to guarantee
that outcomes correspond to long-term network operation.

3) Previous Efforts on Modelling Coupled Dynamics:
Despite the vast majority of analytical models of random
access protocols being based on the decoupling approximation,
some authors have already pointed out the inaccuracy of this
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assumption and have made efforts on trying to model the
coupled dynamics of the system of queues (e.g. [13], [14]).
The main problem in considering the number of packets at
each buffer and modelling the coupled behaviour remains in
the large resulting state space. Keeping track of the numberof
packets buffered for transmission at each queue translatesinto
a state space ofQN , whereQ denotes the maximum length
of the queues andN the number of stations. Consequently,
even for small queue lengths the complexity of the system is
considerably higher than modelling the network assuming that
the decoupling approximation holds. Furthermore, asQ tends
to infinity, the analysis becomes intractable. We will describe
this issue in more detail in Section IV.

A state-dependent model that considers the actual number
of contending stations is proposed in [13]. The analysis tracks
the queue evolution of a tagged station and approximates
the probability that any of the other non-tagged stations find
themselves with an empty buffer after a given transmission.
The approximation taken in that work considers that this prob-
ability depends only on the number of competing stations and
is derived from the buffer occupancy probability of the tagged
station (assuming the backoff stage of the non-tagged station
differs at most by one). Based also on a state-dependent service
rate approach, an analytical model with reduced complexityis
proposed in [14]. However, as opposed to [13], the stationary
distribution is used to derive the probability that a departure
from a non-tagged queue leaves the queue empty.

In this work, we will also apply the state-dependent service
rate approach to model the duration of the transitory periodin
Section IV. However, we will define a simpler approximation
to compute the probability of stations having an empty queue
after a packet transmission. As will be shown in Section IV,
we consider the queue occupancy probability after a packet
transmission to be only dependent on the current state (number
of backlogged stations). This assumption will prove adequate
to demonstrate the transitory phase being of long duration.

C. Identifying the Stable Operation: Experimental Challenges

When λ >> µsat, the system rapidly moves to the stable
solution. However, performing an experimental evaluation
right after the stability limit of the network can provide wrong
results as the length of the transitory phase can be extremely
long (see Fig. 1 in the introductory section). If the experiments
are started with the queues empty, it can take a long time
to reach the stable solution since the system has to reach a
point at which a large number of nodes are simultaneously
contending for the channel and start to have their queues filled
with an increasing number of packets.

One way to obtain the stable results is to start with the
queues empty, run the experiments for a long time until the
system changes to the stable solution and then start taking the
statistics of the performance metrics of interest. Note that, due
to the extremely long duration of the transient, the statistics
from the transitory phase must be discarded in order to obtain
the valid performance results even when setting a long time
horizon. However, we suggest a more practical way to force
the system to enter into the stable operation: to start the exper-
iments with a number of packets preloaded in the queues. If

the queues are unstable, we have started the experiments closer
to the stationary regime, and will see the long-term throughput
more quickly. This technique is based on the recommendation
to set the initial conditions to those in steady-state proposed
in [15]. Method shown to be more effective in estimating the
steady-state mean if compared to truncation (discarding the
transients caused by initial conditions). The drawback of this
technique is that, if the queues are stable, there is a transitory
phase during which those extra packets are released. However,
this technique proved useful in predicting the performance
even in unsaturated conditions in [1]. Thus, demonstratingthat,
although care has to be taken when selecting the amount of
packets to preload queues and the time horizon, nodes are able
to release these packets in a reasonable amount of time.

IV. M ETHODS AND METRICS TOASSESS THELENGTH OF

THE TRANSITORY PERIOD

In this section, we describe the methods and metrics selected
to get more insight into the duration and distribution of the
transitory phase. For each method we will define which metrics
of interest can be obtained in order to estimate the value of
interest, i.e., the instant at which the transitory phase ends.
Results will be presented in Section V.

A. Evaluation Methods

The evaluation methods considered in this work are:i) a
queueing system with coupled service rates,ii) an analytic
model of the number of backlogged stations andiii) a network
simulation framework. We next describe them in detail and
discuss their complexity and accuracy.

1) Method 1 - Queueing system with coupled service rates:
We model the system ofN parallel queues as a discrete
Markov process inZN

+ in which each state represents the
number of packets waiting for transmission at each queue:
X = (X1, ..., XN ). We assume the system of parallel queues
to be homogeneous, i.e., same maximum queue length, packet
arrival and average service rate at all queues. The number
of backlogged stations in a given statex is denoted bynx

and represents the number of queues with at least one packet
pending for transmission. We take into account exponentially
distributed packet arrivals at rateλ packets/s. The service
rate (µ(nx)) is also considered to be exponentially distributed
as well as state-dependent. Such dependence on the actual
state models the impact of the number of backlogged stations
(nx) on performance metrics such as the conditional collision
probability and/or the average backoff duration (depending
on the access protocol in use). Note that the state-dependent
service rate can be chosen to match the access protocol of
interest (Aloha, DCF, Homeplug MAC, etc.). With all these
considerations, the transition probabilities among the different
states of this process can be defined as:

P (x 7→ x+ ei ≤ q) =
λ

Nλ+ nxµ(nx)
,

P (x 7→ x− ei ≥ 0) =
µ(nx)

Nλ+ nxµ(nx)
, (3)
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with the relational operators being element-wise,q and ei
being the allQ andi-th unit vectors inZN

+ , respectively. The
number of backlogged stations in statex is computed as:

nx =
N
∑

i=1

I(xi), (4)

whereI(xi) is the indication function of having at least one
packet pending for transmission in queuei:

I(xi) =

{

1 if xi > 0,
0 otherwise.

(5)

Although this system provides a close description of the be-
haviour of the network, the complexity of solving it explicitly
is prohibitive. Note that its state space is of the order ofQN

and we are interested in the case in whichQ → ∞. Therefore,
the system is computationally intractable even considering
small N and taking into account that the transition matrix
is sparse. However, we can perform Monte Carlo simulations
of this process in order to experimentally characterise the
duration and distribution of the transitory phase.

2) Method 2 - Modelling the number of backlogged sta-
tions: With the goal of simplifying the system of coupled
queues described inMethod 1, we consider now a discrete
Markov process inZ+ in which every state represents the num-
ber of backlogged stations (X = nx). We consider the queue
occupancy probability after a packet transmission independent
of the previous states. Thus, the probability that a stationthat
has transmitted a packet remains still backlogged is modelled
as the standard queue busy probability:ρx = λ/µ(x), where
x denotes the current state, i.e., the number of backlogged
stations. Using this approximation, we are effectively ignoring
the queue length and only considering whether the queue has
a packet pending for transmission. Note thatρx is, in fact, not
memory-less. However, this assumption allows us to reduce
the computational complexity of the previous analysis while
still preserving information about the queue occupancies,
crucial to obtain insight into the transitory phase.

We set the number of states of the Markov Chain to1+N ′

(from having no backlogged station up to the case in which
N ′ stations are backlogged), whereN ′ is the smallest value
of N for which the conditionλ < µ(N ′) is no longer
satisfied. Observe thatρx > 1 whenN ′ stations have a packet
pending for transmission. Thus, we consider the last state to be
absorbing, i.e.,P (N ′ 7→ N ′) = 1. The transition probabilities
for x < N ′ are shown in Eq. 6.

P (x 7→ x+ 1 ≤ N ′) =
(N − x)λ

(N − x)λ+ xµ(x)
,

P (x 7→ x− 1 ≥ 0) =
xµ(x)(1 − ρx)

(N − x)λ+ xµ(x)
,

P (x 7→ x) =
xµ(x)ρx

(N − x)λ+ xµ(x)
. (6)

The state space and complexity of this system is signifi-
cantly reduced compared toMethod 1 as the need to keep
track of the queue occupancy at every queue is removed,

reducing the state space toN ′ +1. However, it only provides
an approximation of the actual behaviour of the network.

3) Method 3 - Network Simulations:We have also used
a network simulator based on the SENSE framework [16].
Packet interarrival times are modelled as exponentially dis-
tributed while the service rate strictly follows the DCF random
access procedure. The results obtained from simulations are
the closest to the real behaviour of the network as the assump-
tions considered are minimal. However, network simulations
are time consuming and thus, they are impractical to derive
conclusions for a large range of conditions. Network simu-
lations are used in this work to evaluate the accuracy of the
outcomes obtained from the previously described methods as
well as to obtain results that closely match the actual behaviour
of the network.

4) Embedded Time vs. Real Time:Note that fromMethod
1 and Method 2we obtain number of events (packet arrivals
and departures) while inMethod 3we measure time in sec-
onds. However, we will use Gillespie’s stochastic simulation
algorithm (direct method) [17] in Method 1to compute at each
packet arrival and departure the time interval to the next event.

B. Metrics

The metrics we have defined aim to provide a close es-
timation of the time at which the system moves from the
transitory phase to the stable behaviour. However, depending
on the method, some limitations apply. We describe the
different metrics and how they relate to the previously defined
evaluation methods next.

1) Metric 1 - Hitting Time of a Limiting State:Starting with
the queues empty, we first consider the instant, on average, at
which a limiting state (a state for which the stability condition
is not satisfied) is first hit. This metric allows us to track the
time elapsed since the network start-up untilN ′ stations are
backlogged.

By means of Monte Carlo simulations of the system de-
scribed inMethod 1we can easily compute the number of
events (packet arrival/departures), on average, to hit oneof the
limiting states. On the contrary, usingMethod 2, we can obtain
the average number of events to hit statex = N ′ starting
from x = 0 (denoted ash(0)) by solving the system of linear
equations formed by Eq. 7 along withh(N ′) = 0.

h(x < N ′) = 1 +
(N − x)λ

(N − x)λ + xµ(x)
h(x+ 1)

+
xµ(x)(1 − ρx)

(N − x)λ + xµ(x)
h(x− 1 > 0)

+
xµ(x)ρx

(N − x)λ + xµ(x)
h(x).

(7)

This analysis is extremely computationally efficient and
thus, can be used to perform an extensive numerical evaluation.
However, results are affected by the approximation taken
removing the need to track the queue occupancies in the
system as described inMethod 2. Moreover, observe that this
metric allows us to get some insight into the duration of the
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(a) Simulation Run 1
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(b) Simulation Run 2

Fig. 4. Evolution of the queue occupancy (maximum, average,minimum)
of theN nodes for two simulation runs in DCF (λ = 7.5 packets/s). Hitting
instant of first state such thatλ > µ(nx) also displayed (vertical line).

transitory phase but also that havingN ′ backlogged stations
does not guarantee that the system moves to the stable phase.
If the number of packets in the queues is reduced, there is
still some probability that the stations are able to transmit
those packets without facing an increase in the number of
packets waiting for transmission. Thus, keeping the systemin
the transitory phase. Therefore, the average number of events
to hit stateN ′ is a lower bound of the events necessary to
escape from the transitory period.

To illustrate this fact, we track the queue evolution at every
time instant (packet arrival/departure) using Monte Carlosim-
ulations of the system described inMethod 1. The minimum,
average and maximum queue length ofN = 50 nodes using
the DCF protocol withλ = 7.5 packets/s for two different
simulation runs are depicted in Fig. 4. Observe that the queue
occupancies remain low during a long time interval until they
start to increase to the maximum queue length. We plot the
instant at which the limiting state (firstx such thatλ > µ(nx))
is first reached (vertical line). Note that, in Fig. 4(a), this
instant coincides with the moment at which the queues start
to be filled with packets. However, in Fig. 4(b), the system is
able to recover from this situation and remain in the transitory
phase for a longer time interval.

Observe that in order to improve the prediction of the
duration of the transitory phase, we could consider inMethod
2 that after hitting a limiting state there is a certain probability

to return to stateN ′−1, to remain in stateN ′ and to enter into
absorption. These probabilities are dependent on the number
of packets waiting for transmission at the different queues.
However, recall that no information on the queue occupancies
at each node is maintained inMethod 2.

2) Metric 2 - Last InstantN − 1 Stations Backlogged:
A more accurate metric is to track, after the average queue
lengths have exceeded a certain threshold (θ), the last instant
at whichN − 1 stations were backlogged:

TE = sup{t < Tθ : ∃i.xi(t) = 0}, (8)

whereTθ = inf{t > 0 : x̄(t) > θ}. After TE, we can as-
sume the transitory phase has ended as, from that instant on,N
stations will be contending for the channel. Thus, the network
behaviour will be the stable (stationary) one given that all
queues will have at least one packet pending for transmission,
i.e., saturation conditions. Observe that the limitation of this
metric is that it can only be assessed through experimental
evaluation. Therefore, we can only evaluate this metric running
Monte Carlo simulations in the system described inMethod 1
and usingMethod 3. However, this metric allows us to provide
accurate results on the duration of the transitory phase andit
can be used to asses the accuracy ofMetric 1.

V. RESULTS

We present here the results obtained from the previously
described evaluation methods. We first describe the outcomes
obtained from a numerical analysis based onMethod 2that
allows us to derive conclusions about the duration of the long
transitory phase under certain conditions. Then, we perform
an experimental evaluation to provide more insight into the
duration and distribution of the transitory phase. The accuracy
of the considered methods and metrics is also evaluated.

A. Numerical Analysis

The numerical analysis usingMethod 2 (modelling the
number of backlogged stations) is the most efficient approach
to obtain insight into the duration of the transitory phase
under a range of different conditions. We present in this
section the results and conclusions it provides as well as an
evaluation of its accuracy by comparing results withMethod
1 (the system with coupled service rates). The former allows
us to demonstrate the long duration of the transitory phase
and the conditions under which it occurs. The latter provides
insight into the limitation of our approximation to model the
number of backlogged stations instead of tracking the number
of packets at each queue.

1) Duration of the Transitory Phase:Here we show via
numerical analysis usingMethod 2andMetric 1 (hitting times
to a limiting state) that the duration of the transitory phase
is extremely long under certain conditions. We have solved
the system of linear equations presented in Section IV-B1
consideringN = 50 nodes for Aloha (W = 32) and the DCF
(W = 8,m = 3 andW = 32,m = 5), which are the same
parameters used in Section III-B. The state-dependent service
rates (µ(x)) for the different protocols and configurations are
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(b) DCF (W = 8, m = 3)
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(c) DCF (W = 32, m = 5)

Fig. 5. Results ofMetric 1 (average number of events to hit stateN ′ such thatλ < µ(N ′) is no longer satisfied) usingMethod 2(modelling the number
of backlogged stations).

obtained from the analytical models presented in Appendix
A and B, respectively, considering saturated conditions. The
average number of events to hit stateN ′ for different arrival
rates are shown in Fig. 5. Observe that, in all cases considered,
as the packet arrival rate increases, the average number of
events to hit stateN ′ tends to zero. On the contrary, for
reduced packet arrival rates, it is of a high order of magnitude.
Considering thatMetric 1 is a lower bound of the time at
which the transitory phase ends, these results demonstratethat
for packet arrival rates slightly higher than the maximum rate
that can be achieved in saturation (µ(N)), the duration of the
transitory phase is extremely long.

2) Accuracy of Method 2:Comparing results ofMethod
1 (the system with coupled service rates) andMethod 2
(modelling the number of backlogged stations) we can get
insight into the accuracy of the approximation considered in
Method 2 to model the probability that a station that has
transmitted a packet remains still backlogged. For this purpose
we compare results ofMetric 1 (hitting times to a limiting
state) for both evaluation approaches. Fig. 6 shows the relative
error ofMetric 1using both methods for the different protocols
considered and various packet arrival rates. Parameters are
as the ones used in Fig. 5 while average values inMethod
1 are obtained from1000 simulation runs and considering a
maximum queue size equal to1000 packets. The magnitude
of the relative error as well as how it increases with the
reduction of the packet arrival rate can be observed in Fig. 6.
Although not shown in Fig. 6 (as absolute values are depicted),
the value obtained forMetric 1 from Method 1 is, in all
cases evaluated, higher than the one obtained fromMethod 2.
Therefore, despite of the large errors, the conclusions derived
in the previous subsection hold as results shown in Fig. 5
correspond to a lower bound of the actual duration of the
transitory phase. Thus, we conclude that whileMethod 2
shows a long transitory phase duration, a more detailed queue
model is required to estimate its actual length.

B. Experimental Evaluation

We now perform an experimental evaluation usingMethod 1
(the system with coupled service rates) andMethod 3(network
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Fig. 6. Relative error (ratio) ofMetric1 (hitting times to a limiting state)
obtained usingMethod 2(modelling the number of backlogged stations) vs.
Method 1(the system with coupled service rates).

simulations) to obtain more insight into the duration and
the distribution of the transitory phase. We also evaluate the
accuracy of the analysis inMethod 1by comparing the results
with those obtained inMethod 3.

1) Duration and Distribution of the Transitory Phase:We
track the last timeN − 1 stations were backlogged once the
average queue occupancy has reached a value higher than
a given threshold (as described inMetric 2). We consider
this threshold to be equal toθ = 0.75Q while the other
considerations are as in the last subsection (N = 50, pa-
rameters described in Section III-B andQ = 1000 packets).
The empirical Cumulative Distribution Function (CDF) ofTE

obtained from1000 simulation runs for different packet arrival
rates for DCF withW = 32,m = 5 using Method 1 and
Method 3are shown in Fig. 7 and 8, respectively. We can
observe in Fig. 7(a) and 8(a) a considerable mismatch in
magnitude betweenMethod 1andMethod 3for small packet
arrival rates (we will further discuss this issue in the next
subsection). However, for higher packet arrival rates, we can
see thatMethod 1 provides increased accuracy. Important
aspects to be noted here are the extremely long duration
observed in network simulations for small packet arrival rates
as well as the distribution of the metric of interest. First,note
that the actual length of the transitory period in simulations
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(b) λ = 7.75 packets/s
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Fig. 7. Empirical CDF ofMetric 2 (last instantN − 1 stations backlogged) usingMethod 1 (the system with coupled service rates) in DCF with
W = 32, m = 5. Inverse Gaussian distribution with parameters selected to best fit the empirical distribution also depicted.
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(b) λ = 7.75 packets/s

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TE [s]

F
(T

E
)

 

 

Empirical
Inv. Gaussian µ= 261.1, λ=2337

(c) λ = 8 packets/s

Fig. 8. Empirical CDF ofMetric 2 (last instantN − 1 stations backlogged) usingMethod 3(network simulator) in DCF withW = 32, m = 5. Inverse
Gaussian (and exponential in Fig. 8(a)) distribution with parameters selected to best fit the empirical distribution also depicted.

when the packet arrival rate is7.5 packets/s is in the order
of several hours (Fig. 8(a)). Second, observe that for shorter
durations of the transitory period (Figs. 7(a-c) and Figs. 8(b-
c)), the empirical distribution resembles that of an inverse
Gaussian. In fact, both lognormal and Birnbaum-Saunders
distributions provided similar goodness of fit (in terms of
negative log likelihood) as the inverse Gaussian. However,we
have presented the latter due to its relation to the distribution
of first hitting times in ordinary diffusion processes [18].Note
that Metric 2 can be seen as the first time at which a certain
boundary is reached and that the actual process can be seen
as a random walk, which corresponds to a diffusion process
in the scaling limit. However, for longer durations of the
transitory period (Fig. 8(a)), the distribution obtained can be
better described as an exponential. These results suggest that
the actual distribution could be described as a combination
of both distributions, with the exponential one having more
influence for longer durations (smaller packet arrival rates) and
the inverse Gaussian being more relevant for shorter durations
(higher packet arrival rates).

2) Accuracy of Method 1:We evaluate here in more detail
the accuracy ofMethod 1compared to network simulations
(Method 3). To this end, we show in Table II the average time
at whichN − 1 stations were backlogged before an average
queue occupancy ofθ = 0.75Q is detected (i.e.,Metric 2). In
order to get more insight into the accuracy ofMethod 1we

consider here even smaller packet arrival rates than in the last
subsection (although still higher than the stability limit). As
can be observed from Table II,Method 1provides subtantially
shorter predictions ofMetric 2 than what is obtained using
Method 3. Recall that the difference betweenMethod 1and
Method 3is the assumption of exponentially distributed service
times in Method 1. In fact, the channel access delay in DCF
when considering the idle backoff periods, overhearing other
transmissions as well as the effects of the collision probability,
has been shown to be better charactised by a heavy-tailed
distribution under the infinite retry limit assumption [19].
This suggests that the actual variability in service times is
the underlining cause of obtaining longer transitory phases
than those predicted considering the service time exponentially
distributed. Therefore, we expectMethod 1to provide a lower
bound on the time for the transitory phase to end. Note that
this outcome supports the conclusions derived via numerical
analysis, i.e., results shown in Fig. 5 correspond to an effective
lower bound of the actual time the system moves to the stable
behaviour.

VI. PRACTICAL IMPLICATIONS

In this section, we discuss different implications of the long
transitory phase for real implementations. First, we describe
the implications of the transitory being of extremely long
duration, then we overview the effect of the assumption of
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TABLE II
COMPARISON OFMetric 2 (LAST INSTANT N − 1 STATIONS BACKLOGGED)
OBTAINED USING Method 1(THE SYSTEM WITH COUPLED SERVICE RATES)

AND Method 3(NETWORK SIMULATOR) IN DCF WITH W = 32, m = 5.

λ [packets/s] TE (Method 1) TE (Method 3)

7.1 31.76 h -

7.2 2.05 h -

7.25 51.17 min -

7.5 4.90 min. 19.57 h

7.75 1.87 min. 12.57 min.

8 1.10 min. 4.35 min.

exponential interarrival of packets and finally, we providea
practical way to take advantage of the high-throughput phase.

A. The Extremely Long Duration

We have shown that, under certain conditions, the system
rapidly moves to the stable operation. However, there is also
the potential to face a long transitory phase. In the latter case,
the network has to remain under the same conditions for a long
period of time (of the order of magnitude of hours). However,
this situation is unlikely to occur in current wireless networks
in which moderate dynamics, such as nodes joining/leaving the
network and traffic pattern variations, may be present. Thus,
under certain conditions (especially at packet arrival rates
slightly higher than the maximum service rate), results from
the transitory-phase may actually be the performance obtained
in real scenarios. Therefore, it is important to consider both
results when analysing the performance of these networks. In
the same way that the results from the transitory phase only
describe a certain behaviour of the network, to only consider
stable performance can also produce disagreement between
the actual and the predicted evaluation, especially in scenarios
with high network dynamics.

B. Non-Poisson Traffic

One of the crucial assumptions in this work is the considera-
tion of Poisson traffic. This is a common assumption in many
analytical models and experimental evaluations. However,it
is important to highlight here that this consideration has a
direct impact on the probability of having a certain number
of stations with a packet pending for transmission. Moreover,
it also affects the probability of having a node leave the set
of contending stations once a packet is transmitted, i.e., the
probability that after a transmission the station is left with an
empty queue. In practical scenarios, some packet interrarival
times may be well characterised with an exponential distribu-
tion. However, other traffic sources as constant bit rate (coming
from multimedia applications) or bursty traffic may also be
present. Moreover, a combination of all these may occur at
the same or at different stations in the network.

When considering only constant bit rate traffic, we have
observed in simulations that the network either remains in
the transitory phase for the whole experiment or immediately
moves to the stable behaviour. In the former case, there seems
to be an artificial scheduling caused by the traffic source,

in which the probability that several stations have a packet
pending for transmission at the same time can be considered
negligible. The latter case is observed when the instant at
which the first packet is generated coincides in time (or it is
very close) among the different contending stations. In that
case, the transitory phase does not occur and the network
operates in the stable phase from the start-up.

A similar behaviour is expected to be found with bursty
traffic. Note that, depending on the burst size and interval
between bursts, stations will either not coincide with packets
pending for transmission or they will simultaneously contend
at certain intervals. These situations can lead to an oscillating
behaviour in which saturation throughput may be observed in
certain periods, while in others, the network may be operating
in the high-throughput phase. Thus, we believe that the traffic
arrivals will influence what combination of transitory and long
term behaviour dominate in practice.

C. Exploiting the High-Throughput Phase

Since the transitory phase corresponds to high-throughput
performance, it can be beneficial to take advantage of the
existence of the long transitory phase. Observe that, giventhat
there is a small collision probability in the transitory phase,
it is desirable that stations operate under these conditions
as long as possible. One way to force the system to move
back to the transitory behaviour is to delete all packets in the
queues when saturated behaviour is detected, as proposed in
[4]. Assuming that the packets loaded in the queues experience
an unacceptable large delay in saturation conditions, it can
be beneficial to delete them and rely on higher layers for
retransmission. However, it has to be considered that a non-
coordinated reset of the buffer will not ensure the return
to the transitory period. Thus, a centralised controller that
detects and notifies stations to take this action simultaneously
is needed. Furthermore, an increase of traffic load may appear
due to retransmissions at higher layers, creating a potential for
oscillatory behaviour.

Here we propose a distributed and simple solution to
further increase the duration of the long transitory phase.
To this aim, we introduce an exponentially-distributed delay
after successful transmissions at the MAC layer during which
stations do not attempt transmission of the next packet in
the queue (if any). Note that this mechanism is equivalent
to artificially increase the probability that a station thathas
successfully transmitted is left with an empty buffer. With
a proper setting of this artificial delay, we can reduce the
probability of having a high number of stations contending
for the channel and thus, keep the network in the transitory
phase. To illustrate the benefits of this proposal we show
in Fig. 9 the temporal evolution of the throughput (in1s
intervals) obtained fromMethod 3for different packet arrival
rates using DCF withN = 50,W = 32,m = 5 and the same
parameters used through this article (shown in Table I). The
change in behaviour can be clearly observed: the instantaneous
throughput moves from one of the solutions predicted by the
analytical model (solution labelled withAnalysis 1 in Fig.
3(b)) to the saturated solution (labelled asAnalysis 2in the
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(c) λ = 8 packets/s

Fig. 9. Evolution of instantaneous throughput from a singlesimulation run usingMethod 3(network simulator) in DCF withW = 32, m = 5.
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Fig. 10. Evolution of instantaneous throughput from a single simulation run usingMethod 3(network simulator) in DCF withW = 32, m = 5 with
exponential delay after successful packet transmissions.

same figure) at a given instant of time. Then, in Fig. 10, we
show the instantaneous throughput achieved by adding the ex-
tra delay after successful packet transmissions (exponentially
distributed with mean equal to2/µ(N)). We can observe how
there is no change of behaviour and the network operates
in the high-throughput phase (solution labelled asAnalysis 1
in Fig. 3(b)) for a longer time than the maximum transitory
duration observed in our experimental evaluation (Fig. 8).Note
that operating in non-saturated conditions results in a smaller
average delay compared to when the network is saturated.
Thus, in general, despite adding an extra delay per successful
packet transmission, the delay performance of the network is
improved. Furthermore, this technique may prove useful to
prevent oscillatory behaviour caused by traffic patterns other
than Poisson distributed.

VII. F INAL REMARKS

In this work we have first demonstrated that there may be a
potentially long transitory phase in many random access pro-
tocols when we operate right after the stability limit and under
certain circumstances, such as infinite (or large enough to be
considered infinite) buffer size and exponentially distributed
interarrival of packets at the MAC layer. For this purpose,
we have defined a simplified analytical model that considers
the number of backlogged stations instead of keeping track
of the queue occupancies at each node. This approximation
has allowed us to compute an effective lower bound on the

actual duration of the transitory phase by making the analysis
tractable and amenable to numerical evaluation.

Second, with the goal of providing more insight on the
duration of the transitory phase, we have performed an ex-
perimental evaluation using bothi) Monte Carlo simulations
of a system of parallel coupled queues andii) a network
simulator. Experimental results validate the analytical findings
and show the duration of the transitory phase to be in the order
of hours under certain conditions and well characterised bya
combination of inverse Gaussian and exponential distributions.

We have also discussed the practical implications of our
findings. On one side, we state that a complete evaluation
under the circumstances described in this work must consider
both, the transitory as well as the stable results. Given the
extremely long transitory duration, the change in behaviour
may be difficult to observe in real implementations where
high dynamics are present. Thus, performance results from
the transitory, instead of the stable, phase may correspondto
observations in real deployments. We have also highlighted
the importance of the assumption of exponential interarrival
of packets. In practical implementations, we may find traffic
patterns that differ from this consideration, which may affect
the duration of the transitory phase as well as potentially
causing an oscillatory behaviour in network performance.
Finally, we have also suggested a distributed and simple
method to keep the network operating in the transitory phase.
Given the substantial difference in throughput that can be
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observed in certain cases between the transitory and stable
phases, maintaining the network in the transitory period can
provide substantial benefits in throughput as well as delay.

We have established the relation between performance
misprediction errors withi) the use of iterative solvers of
analytical models based on the decoupling approximation and
ii) the presence of the extremely long transitory phase in exper-
imental evaluations. We believe these findings, along with the
characterisation of the duration of the transitory phase wehave
also presented in this work, are necessary to draw complete
conclusions on network performance. Moreover, given the
significant potential magnitude of these misprediction errors
as well as their impact on predicted performance, optimisation
analysis and MAC parameter configuration, we consider the
outcomes of this work even more relevant.

APPENDIX A
RENEWAL REWARD ANALYSIS - ALOHA

We take a renewal reward approach [11], [12], [20], [21]
motivated by the fact that the attempt rate of a given node can
be viewed as a regenerative process. This approach allows
us to compute metrics of interest without the need to solve
all state probabilities of the Markov Chain embedded in
the analysis. We also apply the decoupling approximation
to model both: i) the conditional (given that a packet is
transmitted) collision probability andii) the buffer occupancy
probability right after a transmission, as independent of the
backoff stage at which the packet is transmitted.

The rest of assumptions and considerations taken into
account are the typical:i) infinite, or large enough to be
considered infinite, buffer size and retry limit,ii) exponentially
distributed interarrival of packets,iii) ideal channel conditions,
and iv) that all nodes are in mutual coverage range, that is, all
nodes can overhear each other’s transmissions.

Assuming an infinite buffer size, the mean queue occupancy
(ρ) of a node is derived considering the time needed to release
a packet from the queue (D), called service time, and the
packet arrival rate from the network layer (λ) as:

ρ = min(λD, 1). (9)

The service time is computed as the sum of the following
three components:i) the total time on average spent in
transmitting packets that result in a collision,ii) the time spent
successfully transmitting the packet andiii) the total average
backoff duration until the successful frame transmission (equal
to W

2
σ for Aloha, σ being the duration of an empty slot):

D = (nt − 1)

(

W

2
σ + Tc

)

+
W

2
σ + Ts, (10)

wherent is the average number of attempts to successfully
transmit a packet. The duration of an empty slot (σ), a
successful transmission (Ts) and a collision (Tc) are computed
as shown in Eq. 11. We have considered the same packet
interframe spaces as in DCF for comparison purposes [2].

σ = Ts = Tc = DIFS+ Tfra + SIFS+ Tack, (11)

whereTfra andTack denote the times to transmit the frame
and the acknowledgement, respectively. Considering also the
DCF protocol, we computeTfra as shown in Eq. 12 andTack

as in Eq. 13.

Tfra =
LPLCPPre + LPLCPH

RPHY

+
LMACH

Rbasic

+
L

Rdata

, (12)

Tack =
LPLCPPre + LPLCPH

RPHY

+
Lack

Rbasic

, (13)

beingLPLCPPre, LPLCPH, LMACH, Lack andL the length
of the PLCP preamble, PLCP header, MAC header, acknowl-
edgement and data payload, respectively, whileRPHY, Rbasic

andRdata denote the physical, basic and data rates [2].
Under the decoupling assumption with an infinite number

of retries, the average number of attempts to transmit a frame
(nt) is computed as shown in Eq. 14.

nt =
1

1− p
, (14)

where the conditional collision probability (p) is obtained
as the complementary of having at least one of the othern−1
nodes transmitting a frame in the same slot (Eq. 15), withτ
denoting the attempt rate of a node.

p = 1− (1− τ)n−1 (15)

We view the attempt rate as a regenerative process, where
the renewal events are when the MAC begins processing a new
frame. Thus, we apply the renewal reward theorem (Eq. 16).

τ =
nt

nt

(

W
2
+ 1

)

+ I
(16)

The termI in Eq. 16 accounts for the number of slots in
idle state (when there is no packet waiting in the queue for
transmission) and is computed as the probability of having an
empty queue over the probability of a packet arrival in a slot.
Considering an M/M/1 queue, we then computeI as in Eq. 17.

I =
1− ρ

1− e−λσ
(17)

Finally, we obtain the throughput as:

S = ρ
L

D
(18)

APPENDIX B
RENEWAL REWARD ANALYSIS - DCF

The analysis used for DCF is similar to the one presented
for Aloha in Appendix A. The service time now takes into
account the average number of slots waiting for the backoff to
expire (E[w]). Moreover, we need to consider that the duration
of a backoff slot is also no longerσ but that it depends on
the transmissions of the other nodes in the network. The new
expression for the service time is:

D = (nt − 1)(E[w]α + Tc) + E[w]α+ Ts, (19)
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whereα is the average slot duration while the node is in
backoff and the transmission attempt probability changes as:

τ =
nt

nt (E[w] + 1) + I
, (20)

whereI now considers the average slot duration (α):

I =
1− ρ

1− e−λα
. (21)

The average slot duration while the node is in backoff
is derived depending on the type of slot that is overheard
(Eq. 22). A slot can be empty if no other node transmits (that
occurs withpe probability) and, in such a case, its duration
is σ (defined in [2]). Otherwise, it can be occupied due to a
successful transmission (that happens with probabilityps) or
a collision (that occurs withpc probability), with durationsTs

andTc, respectively.

α = psTs + pcTc + peσ (22)

Probabilitiesps, pe andpc are obtained as follows:

ps = (n− 1)τ(1 − τ)n−2,

pe = (1− τ)n−1,

pc = 1− ps − pe. (23)

Finally, the average number of backoff slots can be com-
puted as shown in Eq. 24 derived in [12].

E[w] =
1− p− p(2p)m

1− 2p

W

2
−

1

2
(24)
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