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1. Introduction

Detailed understanding of the physical conditions which enable formation of zero-
energy modes presents both formidable challenges and interesting applications. For
example, Majorana zero-energy modes have attracted considerable attention recently,
as they exhibit non-Abelian fractional statistics [1] which offer attractive applications
in topological quantum information processing [2, 3] by providing intrinsic protection of
quantum information against noise. They are believed to be realised as edge states in
fractional quantum Hall systems with filling ν = 5/2 and in p-wave superconductors.

Zero-energy modes, and particularly Majorana modes, have also been investigated
in the more abstract setting of lattice models with topological phases, particularly in
the context of the Kitaev honeycomb lattice model [4] subjected to a weak magnetic
field, which exhibits a non-Abelian topological phase of the Ising type. Such modes
are also found in the large-size (thermodynamic) limit [5], where they are localised on
edges. The relative simplicity of the model allows for its possible realisation in atomic [6]
and molecular systems [7]; the initial step in doing so will likely be a proof-of-principle
realisation of the model for a small finite size. It appears conceivable that in that case
the existence of zero modes may be verified using, for example, spectroscopy.

Here we present a purely analytical treatment of the Kitaev honeycomb lattice model
and determine the criteria under which zero-energy modes can occur in the specific case
where the lattice has a finite number of sites (and thus its spectrum is gapped) and there is
no external magnetic field. We emphasise that these zero-energy modes are different from
the Majorana modes of the Ising topological phase of the model, but we believe their
existence still remains interesting: they are exact zero-energy modes and they can be
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fully characterised analytically in some situations. Specifically, we provide some definite
analytical results for several topologies: toroidal, cylindrical (or, equivalently, annular)
and rectangular. Moreover, the existence of these zero-energy modes is independent of
certain bulk properties, which suggests that they may be localised on boundaries rather
than in the interior of the lattice. They may also emerge in finite-size realisations of the
Kitaev honeycomb model.

In section 2, we present a brief review of the model. The reader is referred to [4] for the
original approach, and to [8, 5] and the references therein for the particular formulation
and notation we use here. In section 3, we discuss the toroidal and cylindrical cases in
the context of our formulation and show how results in the former can lead to results in
the latter. Section 4 deals with the criteria for the existence of zero-energy modes in the
cylindrical topology along with a technique for actually constructing them. In doing so,
we find definite restrictions on the possible boundary conditions and vortex configurations
based on the size of our cylinder. We finish with some comments on what happens when
we have a rectangular lattice.

2. Review of the model

The honeycomb model proposed in [4] places the spins at the vertices of a hexagonal
lattice. Each spin is coupled to its three nearest neighbours according to their relative
locations, labelled the x, y and z directions, such that the lattice Hamiltonian is given by

H0 = −
∑

α=x,y,z

∑

i,j

JαKα
i,j, (2.1)

where Kα
i,j = σα

i σα
j gives the nearest-neighbour interaction between spins at adjacent sites

i and j. The model with Hamiltonian H0 exhibits one gapless phase and three Abelian
topological phases which are unitarily equivalent to the toric code on a square lattice [9]
in the fourth order in perturbation theory. The addition of a weak magnetic field results
in turning the gapless phase into a non-Abelian topological phase of the Ising universality
class.

In [8], a novel exact solution of the model was presented that provides a
unified description of both Abelian and non-Abelian topological phases and allows the
detailed investigation of zero modes. The model is first exactly mapped onto a new
representation given by effective spins and hardcore bosons on a square lattice [10] and
then fermionised using a Jordan–Wigner type fermionisation procedure. The resulting
fermionic Hamiltonian is

H = 1
2

∑

�q,�q′

(
c†�q c�q

)( ξ�q�q′ Δ�q�q′

Δ†
�q�q′ −ξT

�q�q′

)(
c�q′

c†�q′

)
, (2.2)

where �q = (qx, qy) labels the N = NxNy points on the lattice (assumed to be finite). The
N ×N matrices ξ and Δ are, respectively, Hermitian and antisymmetric operator-valued
matrices which depend on the strengths Jx,y,z of the spin–spin couplings. (They also
depend on the strength of any applied magnetic field; however, we only consider the case
when there is no such field.)
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The eigenstates of the above Hamiltonian will depend on the fermion content at each
point on the lattice, and also the vortex content of each plaquette and the boundary
conditions of the states which are described below. The first of these is explicitly encoded
in the operators c�q and c†�q which satisfy the familiar anticommutation relations

{c�q, c�q′} = {c†�q, c†�q′} = 0, {c�q, c
†
�q′} = δ�q,�q′ (2.3)

and thus respectively annihilate and create fermions at lattice site �q.
An important role in the investigation of the model is played by the vortex operators.

If the vertices of a given hexagon are labelled in a clockwise direction starting with the
bottommost one (at position �q), then the vortex operators are defined as

W�q = σz
1σ

x
2σy

3σ
z
4σ

x
5σy

6 . (2.4)

These operators all commute with each other and square to unity. If there is a vortex
on the plaquette, then W�q = −1, and if there is not, W�q = +1. They naturally extend
into the fermionic representation where the operator W�q is associated with the square
plaquette labelled by the point �q at its lower left-hand corner.

The W operators and their eigenvalues are not independent on a torus: their product
must be equal to unity. Furthermore, if both Nx and Ny are even, then the torus may be
bicoloured in a chequerboard fashion and the products of the ‘black’ plaquettes and the
‘red’ plaquettes must separately be equal to unity.

In addition to the vortex operators, the boundary conditions need to be considered in
the case of nonplanar topologies like the torus or cylinder. These are defined through

two operators �
(x)
0 and �

(y)
0 which tell us the boundary conditions in the x and y

directions. These have eigenvalues ±1 which, after fermionisation, correspond respectively
to antiperiodic or periodic boundary conditions on the wavefunction. For example, a

fermionic wavefunction with �
(x)
0 = +1 and �

(y)
0 = −1 is antiperiodic in the x direction

and periodic in the y direction.

Thus, the eigenstates of H will be labelled by the eigenvalues of �
(x)
0 and �

(y)
0

(boundary conditions) as well as the value of each W�q (vortex configuration, subject
to the aforementioned constraints). The vortices and boundary conditions appear in the
fermionic Hamiltonian above through the matrices ξ and Δ; we shall explicitly state how
these depend on vortex configurations and boundary conditions in section 3.

3. Toroidal and cylindrical topologies

A considerable body of work using the Kitaev honeycomb model has been done for systems
which are toroidal, namely where the states are periodic or antiperiodic in both the x and
y directions. We now discuss how we incorporate these two periodicities in our particular
case, and how, from this, we may also get a model which is (anti)periodic in only one of
the directions, i.e. a cylindrical model.

The toroidal nature of the system is given by identifying qx +Nx with qx and qy +Ny

with qy. We adopt the convention that the fundamental region is qx = 0, 1, . . . , Nx−1 and
qy = 0, 1, . . . , Ny − 1. However, for our matrix indices, we choose the following ordering:
the site at (qx, qy) corresponds to the index qx + Nxqy + 1. In other words, we start with
site 1 at (0, 0), move across in the x direction to site Nx at (Nx − 1, 0), then move back
and up so that site Nx + 1 is at (0, 1). We continue moving to the right and up until we
reach the final site NxNy at (Nx − 1, Ny − 1) (see figure 1). In this basis, we find that the
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Figure 1. Plaquette ordering. The indices of the matrices ξ and Δ in the
Hamiltonian label the plaquettes as shown above. Note that, for the toroidal
topology, the left and right sides are identified with one another, as are the top
and bottom edges.

matrices ξ and Δ in (2.2) are

ξ = 1
2

(
A + AT

)
, Δ = 1

2

(
A − AT

)
(3.1)

where A is the real matrix with entries Aij given by

2JxXi when i = rNx, j = (r − 1)Nx + 1 for r = 1, . . . , Ny,

2JyYi when i = (Ny − 1)Nx + r, j = r for r = 1, . . . , Nx,

2Jzδij + 2JxXiδi+1,j + 2JyYiδi+Nx,j otherwise,

(3.2)

where Xi and Yi are operators whose values depend on the plaquette and boundary-
condition operators. When i = 1, . . . , Nx−1, Xi = 1; when i is a multiple of Nx (i.e. along
the right edge), then

XrNx =

⎧
⎪⎪⎨

⎪⎪⎩

−�
(x)
0 r = 1

−�
(x)
0

r−2∏

q′y=0

W(Nx−1,q′y) r = 2, . . . , Ny

(3.3)

and when i is any other value, expressed as qx + Nxqy + 1 with qx �= Nx − 1 and qy �= 0,
then

Xqx+Nxqy+1 =

qy−1∏

q′y=0

W(qx,q′y). (3.4)

doi:10.1088/1742-5468/2011/06/P06020 5

http://dx.doi.org/10.1088/1742-5468/2011/06/P06020


J.S
tat.M

ech.
(2011)

P
06020

Existence of zero-energy modes

The Y operators are simpler: when i is a site anywhere other than the top edge, Yi = 1.
On the top edge, where qy = Ny −1, i has the form Nx(Ny −1)+ r for r = 1, . . . , Nx, and

YNx(Ny−1)+r = −�
(y)
0

r−2∏

qx=0

Ny−1∏

qy=0

W(qx,qy). (3.5)

Another way of thinking about the matrix A is to write it in terms of blocks: it is
an N × N matrix which can be broken down into an Ny × Ny matrix whose entries are
themselves Nx×Nx submatrices. Only 2Ny of these submatrices are nonzero; the diagonal
entries A1, . . . ,ANy , the submatrices D1, . . . ,DNy−1 immediately above the diagonal and
the submatrix DNy in the lower left-hand corner of A:

A =

⎛

⎜⎜⎜⎝

A1 D1 0 . . . 0
0 A2 D2 . . . 0
· · · · ·
0 0 . . . ANy−1 DNy−1

DNy 0 . . . 0 ANy

⎞

⎟⎟⎟⎠ . (3.6)

In the basis we have chosen, the form of the Nx ×Nx submatrices are reasonably simple:
the Ds are purely diagonal, with entries

(Dr)ab = 2JyY(r−1)Nx+aδab. (3.7)

The As have the same general form that A itself does: the only nonzero entries of
Ar are the diagonal elements 2Jz, the entries 2JxX(r−1)Nx+1 through 2JxX(r−1)Nx+Nx−1

immediately above the diagonal and 2JxX(r−1)Nx+Nx in the lower left-hand corner:

(Ar)ab =

⎧
⎪⎨

⎪⎩

2Jz for a = b, a = 1, . . . Nx

2JxXr+a−1 for a = b − 1, a = 1, . . .Nx − 1

2JxXr+Nx−1 for a = Nx, b = 1.

(3.8)

When we are on a torus, all the X and Y operators will be ±1, depending on
the periodicities and vortex configuration we have. However, note that the operator

�
(y)
0 appears only in those terms in the Hamiltonian connecting the sites at (qx, 0) to

(qx, Ny − 1). In our basis, these correspond to the i = (Nx − 1)Ny + qx + 1, j = qx + 1
entries of A, which are precisely the entries in DNy . Severing these links—i.e. setting the

coupling strengths between them to zero—is thus completely equivalent to taking �
(y)
0 = 0

(figure 2). In other words, all results obtained for our Hamiltonian expressed in terms of

�
(y)
0 are not only valid on a torus, with �

(y)
0 = ±1 as appropriate, but also for a cylinder

when �
(y)
0 = 0. Periodicity in the x direction is still described by �

(x)
0 = ±1, but now our

system has a finite height Ny − 1 in the y direction. This is not saying that the original

operator �
(y)
0 has zero as an eigenvalue; rather that it does not appear in the Hamiltonian

at all when we have a cylinder. Taking �
(y)
0 = 0 is simply a convenient and consistent way

of setting all coupling strengths between the top and bottom edges to zero. (Although
these edges are straight when the plaquettes are represented as squares, they are in fact
zigzag-shaped in the original hexagonal lattice.)
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Figure 2. Coupling between edges. The highlighted (red) link above gives the
coupling between the site at (r−1, Ny −1) and the site at (r−1, Ny) = (r−1, 0).
Its strength is −Jy�

(y)
0 times the values of the plaquette operators of the shaded

region. Thus, severing this link is equivalent to setting �
(y)
0 to zero.

The usefulness of the basis we have chosen may now be seen by noting that, if �
(y)
0 = 0,

then DNy also vanishes and A is block upper-triangular. Manipulating such matrices is
often easier than non-upper-triangular ones, and we shall see that this is indeed the case
when we look at the criteria for zero-energy states.

One important point to remember, though: for a torus, we also had constraints on
the plaquette operators W�q, namely that their product was unity on a general torus, and,
if the torus was bicolourable, that each of the ‘black’ and ‘red’ plaquette products was
separately unity. However, on a cylinder, these constraints no longer apply: any vortex

configuration is now possible. Thus, simply setting �
(y)
0 to zero for any toroidal result

gives a valid result on a cylinder only for a particular vortex configuration which satisfies
the plaquette constraints just mentioned. We by no means obtain any information for an
arbitrary energy eigenstate of our cylindrical lattice.

We could, of course, have taken �
(x)
0 = 0 to obtain a cylinder circular in the y direction

and of width Nx−1 in the x direction. Although A looks somewhat different in this case—
it is not block upper-triangular, although the individual A submatrices are—all the results

are precisely the same as for the �
(y)
0 = 0 case with the x and y directions swapped. This

symmetry allows us to define, without loss of generality, a cylindrical topology as one with

�
(y)
0 = 0 and �

(x)
0 = ±1.

As a last comment in this section, note that we could of course set both �
(x)
0 and �

(y)
0

to zero, which results in a rectangular system of width Nx − 1 and height Ny − 1. Thus,

we could obtain information about such states from a cylindrical lattice with �
(y)
0 = 0 by

leaving �
(x)
0 arbitrary, and then setting �

(x)
0 to zero. In this case, we need not worry about

relaxing any constraints on the vortex configuration.
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4. Existence of zero-energy states

Now that we have quantified how toroidal, cylindrical and rectangular topologies are
incorporated into our model, we now determine the conditions under which we can find
states which have zero energy. In this section, we look at the most general topology, the
toroidal.

The key to finding zero-energy states for any of the topologies lies in the fact that
the matrix appearing in (2.2) has eigenvalues which appear in N pairs E and −E; if we
label the nonnegative members of each pair as En for n = 1, . . . , N , then

det2N

(
ξ Δ

Δ† −ξT

)
=

N∏

n=1

En

N∏

n=1

(−En) (4.1)

= (−1)N

(
N∏

n=1

En

)2

. (4.2)

The requirement for the existence of zero-energy states is therefore the vanishing of this
determinant.

However, note that the above matrix is similar to one whose entries involve only the
matrix A: (

ξ Δ
Δ† −ξT

)
= S · A · S−1 (4.3)

where

S :=
1√
2

(
I I
−I I

)
. (4.4)

and

A :=

(
0 A

AT 0

)
. (4.5)

Thus,

det2NA = (−1)N

(
N∏

n=1

En

)2

. (4.6)

But the determinant of a purely block off-diagonal matrix is easily computed:

det2N

(
0 A

AT 0

)
= detN

(−AAT
)

(4.7)

= (−1)N (detNA)2 . (4.8)

Therefore
N∏

n=0

En = |detNA|. (4.9)
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We conclude that a zero-energy mode is only possible when the determinant of A vanishes.
This requires the existence of a nonzero vector w such that A · w = 0; if we write w as

w =

⎛

⎜⎜⎜⎜⎜⎝

w1

w2

·
·
·

wNy

⎞

⎟⎟⎟⎟⎟⎠
(4.10)

where each wr is an Nx-dimensional column vector, then the condition that w is a null
eigenvector of A becomes

Ar · wr + Dr · wr+1 = 0 for r = 1, . . . , Ny − 1,

ANy · wNy + DNy · w1 = 0 otherwise.
(4.11)

Since all of the Y s appearing in D1 through DNy−1 are nonzero, these matrices are
invertible (in fact, Y�q = 1 in all these matrices, meaning that each one is simply 2Jy

times the Nx ×Nx identity matrix); this means that we can eliminate all but w1 from the
above equations to obtain

[DNy − (−1)NyANy · D−1
Ny−1 · ANy−1 · . . . · D−1

1 · A1] · w1 = 0. (4.12)

If w1 = 0, (4.11) implies that wr = 0 for all r, so if we require a nontrivial solution to
A · w = 0, we see that the vanishing of the determinant of A implies

detNx [DNy − (−1)NyANy · D−1
Ny−1 · ANy−1 · . . . · D−1

1 · A1] = 0. (4.13)

This is therefore a necessary and sufficient condition that must be satisfied for the existence

of zero-energy eigenstates. The determinant is an Nxth-degree polynomial in �
(x)
0 and �

(y)
0 ,

and its vanishing thus imposes constraints on the vortex configuration and coupling-

constant strengths for toric (�
(x,y)
0 = ±1), cylindrical (�

(x)
0 = ±1, �

(y)
0 = 0) and rectangular

(�
(x)
0 = �

(y)
0 = 0) topologies.

The toroidal case is unsurprisingly the most difficult, and it is not obvious that we
can compute the above determinant analytically for systems of arbitrary size, vortex
configuration and coupling strengths. For this topology, the only way to find the particular
states for which the determinant vanishes may be through numerical methods. On the
other hand, we can learn a great deal about the cylindrical and rectangular cases purely
analytically, and so we concentrate on these cases in sections 5 and 6.

Before doing so, it is worth emphasising that we consider only systems of finite size
and with no external magnetic field. This makes our model fundamentally different from
some others which predict zero-energy modes; for example, it has been shown [11] that, if
there are an even number of vortices on a torus, there are an equal number of fermionic
modes whose energies tend exponentially towards zero as the separation between vortices
increases, but this occurs only for a nonzero magnetic field in the thermodynamic limit.
Thus, any comparison between such results and any we would obtain using (4.13) to find
zero-energy states on a torus would have to be done with a degree of caution, and so we
do not attempt to make any such connections in this work.
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5. Cylindrical case

Equation (4.13) holds for all topologies, but unlike the toroidal case, where finding
configurations which satisfy this condition analytically may be very difficult, we now

show that we can find exact solutions if we go to a cylindrical topology where �
(y)
0 = 0.

If we make this assumption, then DNy = 0 and, since all of the other Ds have nonzero
determinant, (4.13) implies

Ny∏

r=1

detNxAr = 0. (5.1)

So at least one of the A submatrices must have zero determinant, and thus a null
eigenvector. Determining the conditions under which this can occur involves some
relatively straightforward but lengthy calculations, which are detailed in the appendix;
here we just present the main results.

5.1. Criteria for zero-energy states

The coupling strengths in the x and z directions, Jx and Jz, must have the same
magnitude, with no restriction on Jy. (By convention, we assume the spin–spin interaction
is ferromagnetic and for the rest of this discussion take Jx = Jz = J > 0.) The fact that
Jy plays no role strongly suggests that any zero-energy states do not exist in the interior
of the cylinder (where all the y couplings are) but rather on the boundaries.

The vortex configurations which permit zero-energy states are characterised by two
integers R and R̄, which take on values from 1 to Ny subject to the constraint R ≤ R̄.
These vortex configurations must be one of three types:

(i) R = 1: if Nx is odd, then �
(x)
0 = +1; if Nx is even, �

(x)
0 = −1. For either case, there

must be an even number of vortices in total between the cylinder’s lower edge and
qy = R̄ − 1, an odd number in the strip between R̄ − 1 and R̄, and an even number
in each individual strip from R̄ to the cylinder’s top edge.

(ii) R = 2, . . . , Ny − 1: if Nx is odd, then �
(x)
0 = −1; if Nx is even, �

(x)
0 = +1. For either

case, there must be an even number of vortices in each strip from the cylinder’s lower
edge to qy = R − 2, an odd number in the strip between R − 2 and R − 1, an even
number in total between R− 1 and R̄− 1, an odd number between R̄− 1 and R̄, and
an even number in each individual strip from R̄ to the cylinder’s top edge.

(iii) R = R̄ = Ny: if Nx is odd, then �
(x)
0 = −1; if Nx is even, �

(x)
0 = +1. For either case,

there must be an even number of vortices in each strip from the cylinder’s lower edge
to qy = Ny − 2 and an odd number in the strip between Ny − 2 and the cylinder’s top
edge at qy = R − 1.

For a given (R, R̄) vortex configuration, the null eigenvectors ω(R,R̄) of A are

ω(R,R̄) =

(
w̄(R̄)

w(R)

)
. (5.2)
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where

w̄(R̄) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
·
0

w̄∗̄
R

w̄
(R̄)

R̄+1·
w̄

(R̄)
Ny

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, w(R) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

w
(R)
1

w
(R)
2

·
w∗

R

0
·
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.3)

The components of these vectors are determined by the vortex configuration via

w∗
R ∝

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
−XR

XRXR+1

·
·
·

−(−1)NxXRXR+1 . . .XR+Nx−2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (5.4)

w̄∗̄
R

is found by replacing R by R̄ in the above, and the other components are given by

w(R)
r := (−1)r−R−1A−1

r · Dr · . . . · A−1
R−1 · DR−1 · w∗

R, (5.5)

w̄(R̄)
r := (−1)R̄−r

(AT
r

)−1 · Dr · · ·
(AT

R̄+1

)−1 · DR̄+1 · w̄∗̄
R. (5.6)

5.2. Discussion and examples

We may use the criteria just presented to determine under what circumstances—if any—a
given vortex configuration admits a zero-energy mode. For example, consider a cylinder
with no vortices: if we already assume Jx = Jz, then a zero mode can exist if R = 1
and R̄ = Ny, as this is the only case that allows an even number of vortices in the region

between qy = 0 and qy = R̄− 1 = Ny − 1, namely the entire cylinder. Then if (Nx, �
(x)
0 ) is

either (odd, +1) or (even, −1), a zero-energy mode exists. All W operators are +1 in this
case, and so all the X operators are known and the w and w̄ vectors may be determined.

The existence of zero-energy modes for the case where every plaquette contains a
vortex depends on Nx: if it is even, then each strip has an even number of vortices in
it. The exact same argument as that just presented for the zero-vortex case leads us to

conclude that we will have a zero-energy state if R = 1, R̄ = Ny and �
(x)
0 = −1.

If Nx is odd, then each strip contains an odd number of vortices; this immediately
implies that we may only have zero-energy modes for R̄ = Ny, because all other values
require at least one strip with an even number of vortices between R̄ − 1 and Ny − 1.
Similarly, sectors with R > 2 are excluded, because these sectors require at least one strip
with an even number of vortices between qy = 0 and qy = R−2. We know that the region
between qy = R − 1 and qy = Ny − 2 must contain an even number of vortices, and since
this region contains (Ny − R − 1)Nx plaquettes in total, we conclude that R = 1 if Ny is

even and R = 2 if Ny is odd. The former requires that �
(x)
0 is +1 if a zero-energy state is

to exist, the latter that it is −1.
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Figure 3. Zero-energy vortex configuration. The above figure wraps around
horizontally but not vertically, and so describes an Nx = Ny = 5 cylinder. The
presence of a vortex on a plaquette is indicated by a minus sign, so if �

(x)
0 = −1,

then the above vortex configuration corresponds to an R = 2, R̄ = 4 zero-energy
state.

An example of a vortex configuration—neither empty nor full—which admits a zero-
energy mode on an Nx = 5, Ny = 5 cylinder is given in figure 3.

We may now find explicitly the creation and annihilation operators for the zero modes
in any given (R, R̄) sector: following the standard Bogoliubov–Hartree–Fock procedure
(cf [12]), the Hamiltonian (2.2) becomes

H =
∑

i

Ei

(
a†

iai − 1
2

)
, (5.7)

where a†
i and ai are the creation and annihilation operators of the fermionic eigenstates

with (nonzero) energy Ei. The zero-mode operators are constructed as follows: the
Hamiltonian H is written in our basis as

H = 1
4
( c† − c c† + c )

(
0 A

AT 0

)(
c − c†

c + c†

)
(5.8)

(where the sum over lattice sites has been dropped for clarity). The matrix is diagonalised
to the form U · E · U−1, where E is the diagonal matrix whose elements are the energy
eigenvalues; therefore, if we choose a basis so that the zero eigenvalue appears as the first
diagonal element in E , then the first column of U is the null eigenvector ω(R,R̄). Therefore,
the operators γ and γ† corresponding to the (R, R̄) zero mode are given by

γ† =
1√
2

( c† − c c† + c ) ·
(

w̄
w

)
(5.9)

=
1√
2
(w̄ + w) · c† +

1√
2
(w̄ − w) · c, (5.10)
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γ =
1√
2
(w̄ − w) · c† +

1√
2
(w̄ + w) · c. (5.11)

(We have suppressed the superscripts on w(R) and w̄(R̄) for the sake of convenience.) It is
straightforward to use (2.3) to show that

{γ, γ} = {γ†, γ†} = |w̄|2 − |w|2, (5.12)

{γ, γ†} = |w̄|2 + |w|2. (5.13)

Recall that w and w̄ were determined only up to a multiplicative factor, so if we
normalise them so that they both have norm 1/

√
2 (and hence |ω| = 1), then we see

that {γ, γ} = {γ†, γ†} = 0 and {γ, γ†} = 1, and these therefore may be interpreted as the
zero-mode creation and annihilation operators for the (R, R̄) vortex configuration.

6. Rectangular case

The remaining topology which is incorporated in our model is the rectangular one, in
which we do not assume that states have any sort of periodic boundary conditions.

We have argued that, if �
(x)
0 is left as a variable in any calculations for a cylindrical

topology, we can obtain results for a rectangle of size (Nx − 1) × (Ny − 1) simply by

setting it to zero. Since we have left �
(x)
0 as unspecified in (A.4), we can conclude that

the rectangular case permits no zero modes: setting �
(x)
0 = 0 immediately shows that each

Ar has determinant (2J)N , and so the product of their determinants, which is also the
product of the nonnegative half of the energy eigenvalues, is manifestly positive and so
En > 0 for all n. There can therefore be no zero-energy modes on a rectangular lattice in
the absence of an external magnetic field.

7. Conclusions

We have explained how one can use the fermionisation scheme presented in [8] to obtain
results about the finite Kitaev honeycomb model on cylindrical and rectangular lattices
from a toroidal lattice. This is done by using the fact that setting one of the boundary-
condition operators to zero is entirely equivalent to removing the links between a row of
sites, and thus introducing an edge. This technique is general enough to include all vortex
configurations and coupling strengths.

As the existence of zero-energy fermions in the model can be of great interest, we then
set out to find the necessary criteria under which such states can exist for a lattice of finite
size. Our choice of basis then allowed us to write down an equation which guarantees at
least one vanishing energy eigenstate.

Although this equation arose from considering a toroidal system, it also applies to a
cylindrical lattice in the manner described, and we showed that any existing zero modes
were completely characterised by two integers (whose values depended on the size of the
cylinder). We then explicitly constructed the operators which create and annihilate any
one of these modes. We finished with a proof that there can be no zero-energy modes
when the lattice is rectangular.

Although our results were completely analytical, they were necessarily limited; for
example, although we made some brief comments about what happens when the topology
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is toroidal, we did not consider this case due to the difficulty of obtaining analytical
results. Although we found the necessary criteria for the existence of a zero-energy state,
actually applying it to tori with arbitrary boundary conditions, coupling strengths and
vortex configurations seemed mathematically intractable. In principle, it should not be
difficult to use numerical methods to obtain useful results, but that is beyond the scope
of this paper.

However, even though we were far more successful in finding the exact conditions for
which zero modes exist for cylindrical systems, it must be stressed that said conditions
are necessary but possibly not restrictive enough. For instance, although we showed that
there must be two integers R and R̄ associated with any zero modes such that R ≤ R̄, it
may be that there are stronger restrictions on these two numbers due to other aspects of
the model that we have not considered here.

Also, as the degeneracy of a given energy eigenstate is quite important in any theory
(and can sometimes give very deep insight into the fundamental physics), counting up the
different number of ways in which any of these zero-energy modes can be realised must
be addressed. But, as with the necessary-versus-sufficient question just mentioned, our
approach may not be fully considering all the facets of the model to allow us to assign a
definite degeneracy to any one of our zero modes.

Throughout this work, we have assumed that there is no external magnetic field. The
question of what happens to the zero modes we have found when such a field is present
is a possible avenue for investigation. Because the terms introduced to the Hamiltonian
by a weak magnetic field are similar to those already present, we feel that the approach
described here may yield some exact results and hope to investigate this case in future.

Finally, merely showing the existence of zero-energy states still leaves open the
question of what type of states they are. Even though we find these exist on a cylinder
only when two of the coupling strengths have the same magnitude, the remaining coupling
constant plays no role whatsoever, which strongly suggests that our states do not exist in
the bulk of the lattice, but only on the cylinder’s edges. Although this does not necessarily
preclude zero modes localised around individual vortices, it seems more likely that they
propagate purely along the circular boundaries of the cylinder. However, our analysis in
this paper at no point makes a distinction between localised and nonlocalised zero-energy
states, and so we cannot at present say anything more definite. Future research along the
lines presented in this work is needed to address these issues.
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Appendix

In this appendix, we present the details of the computations that lead us to the results
summarised in section 5.1.
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The condition for the existence of zero-energy modes for a cylindrical topology is

Ny∏

r=1

detNxAr = 0, (A.1)

and thus at least one of the As must have zero determinant. The determinant of any of
these submatrices is straightforward to compute from (3.8):

detNxAr = (2Jz)
Nx − (−1)Nx(2Jx)

Nx

Nx∏

a=1

Xr+a−1. (A.2)

We can now see immediately one of the necessary conditions for the existence of zero-
energy modes: since all of the X operators can only have values ±1, this can never vanish
unless |Jx| = |Jz|. We assume from now on that Jx = Jz.

The product of the X operators is also straightforward to compute from (3.4): we
first define

X̄r :=

⎧
⎪⎪⎨

⎪⎪⎩

1 for r = 1,
r−2∏

qy=0

Nx−1∏

qx=0

W�q for r = 2, . . . , Ny.
(A.3)

Pictorially, X̄r is the product of all plaquette operators enclosed within the cylindrical
strip between qy = 0 and qy = r − 1. With this

detNxAr = (2J)Nx [1 + (−1)Nx�
(x)
0 X̄r]. (A.4)

Thus, Ar has zero determinant only when the lattice size, boundary conditions and

vortex configuration are such that (−1)Nx�
(x)
0 X̄r = −1 (with the only other possible

value, 2(2J)Nx, occurring when (−1)Nx�
(x)
0 X̄r = +1). This implies the following: the

characteristic equation for Ar is easily shown to be

detNx(Ar − λI) = (2J)Nx

[(
1 − λ

2J

)Nx

+ (−1)Nx�
(x)
0 X̄r

]
. (A.5)

When (−1)Nx�
(x)
0 X̄r = −1, λ = 0 is a root of multiplicity one, so Ar has at most one null

eigenvalue. Thus, there is only one null eigenvector (up to scalar multiplication) w∗
r for

each Ar when its determinant vanishes. In fact, this eigenvector is easily shown to be

w∗
r ∝

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
−Xr

XrXr+1

.

.

.
−(−1)NxXrXr+1 . . .Xr+Nx−2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(A.6)

(where we have used X2
i = 1 and the zero-determinant condition Xr . . .Xr+Nx−1 =

−�
(x)
0 X̄r = (−1)Nx).
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We are now able to construct the null eigenvectors of A explicitly: assume R is the
largest value of r for which the subvectors wr do not vanish, i.e. wR �= 0 and wr>R = 0.
(4.11) immediately implies that Ar ·wr+Dr ·wr+1 = 0 for r = 1, . . . , R−1 and AR ·wR = 0.
By assumption, wR is nonzero, so this implies that AR has determinant zero and wR is
the null eigenvector w∗

R of AR given by (A.6). However, (4.11) may be used to show that

wr = (−1)r−s+1D−1
r−1 · Ar−1 · . . . · D−1

s · As · ws (A.7)

for all r > s, which implies that

(−1)R−s+1D−1
R−1 · AR−1 · · · · · D−1

s · As · ws = w∗
R (A.8)

for s = 1, . . . , R − 1. Since w∗
R �= 0, then the above implies not only that none of the

subvectors w1 through wR−1 can be zero, but also that none of the other A submatrices
can have vanishing determinant.

An important caveat: strictly speaking, the preceding statement is not true, as the
matrix equation M · x = b can have solutions for x even if det M = 0 provided that b is
a null eigenvector of the adjugate of M . However, since the eigenvalues of the plaquette
operators are entirely independent in a cylindrical topology, the likelihood that wNy is

simultaneously a null eigenvector of ANy and the adjugate of D−1
Ny−1 · ANy−1 · · · · · D−1

s · As

is small. This case—if it is even possible—may indeed be very interesting in its own right,
but we do not consider it in this work, and we assume that (A.8) implies that all the
matrices As for s < R are invertible.

Since w∗
R is known and all of the matrices on the left-hand side of (A.8) are assumed

to be invertible, w1 through wR−1 are entirely determined. Furthermore, we know that
each Ar has only one null eigenvector, so all null eigenvectors of A are uniquely given by

w(R) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

w
(R)
1

w
(R)
2

·
w∗

R

0
·
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.9)

where AR has zero determinant and null eigenvector w∗
R given by (A.6), detNxAr =

2(2J)Nx for r = 1, . . . , R − 1 and

w(R)
r := (−1)r−R−1A−1

r · Dr · · · · · A−1
R−1 · DR−1 · w∗

R. (A.10)

Since R = 1, . . . , Ny, it follows that there are Ny distinct null eigenvectors of A.
We have just determined the conditions for which A has a null eigenvector; however,

this does not fully specify the zero modes of the full Hamiltonian, since we need to find
the conditions under which there exists a 2N -dimensional vector ω satisfying

A · ω = 0. (A.11)

If we denote the top N components of ω by the vector w̄ and the bottom N by w, then
the form of A from (4.5) gives the two equations

A · w = 0, AT · w̄ = 0. (A.12)
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We have already considered the first of these; we consider the second similarly, by first
defining the Nx-dimensional vectors w̄r with r = 1, . . . , Ny, by

w̄ =

⎛

⎜⎜⎜⎜⎜⎝

w̄1

w̄2

·
·
·

w̄Ny

⎞

⎟⎟⎟⎟⎟⎠
(A.13)

so that, when DNy = 0,

AT
1 · w̄1 = 0, (A.14)

AT
r · w̄r + Dr · w̄r−1 = 0 (A.15)

for r = 2, . . . , Ny. (We have used the fact that each D is diagonal and thus is symmetric.)
Now, by letting R̄ be the smallest value of r for which w̄r �= 0, we can repeat the
previous argument almost verbatim to find that AT

R̄
must be singular, w̄R̄ must be its

null eigenvector w̄∗̄
R

given by

w̄∗̄
R ∝

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
−XR̄

XR̄XR̄+1

·
·
·

−(−1)NxXR̄ . . .XR̄+Nx−2,

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(A.16)

and all of the matrices AT
R̄+1

through AT
Ny

must have nonvanishing determinant, giving

the nonzero subvectors w̄
(R̄)
r as

w̄(R̄)
r := (−1)R̄−r(AT

r )−1 · Dr · · · · · (AT
R̄+1)

−1 · DR̄+1 · w̄∗̄
R (A.17)

for r = R̄ + 1, . . . , Ny. These give the nonzero components of the null eigenvector w̄(R̄) of
AT.

Recall that the determinant of the transpose of a matrix is the same as the
nontransposed one, so the preceding argument tells us that there has to be an R̄ such
that AR̄ is singular but that Ar for r = R̄ + 1, . . . , Ny are not. However, we had already
determined that there must be an R such that detNxAR = 0 but detNxAr �= 0 for
r = 1, . . . , R. The only way to reconcile these two results is to require R ≤ R̄. Therefore,
every zero mode is a linear combination of zero modes labelled by R and R̄:

ω(R,R̄) =

(
w̄(R̄)

w(R)

)
. (A.18)

We can now use (A.4) and the above analysis to look at what combinations of
cylinder size, boundary conditions and vortex configurations allow zero modes in our
system. First, consider the R = 1 zero mode: (A.4) tells us that detNxA1 = 0 requires

(−1)Nx�
(x)
0 X̄1 = −1. But X̄1 = +1, so we see that this mode is possible only if (i) Nx

is odd and our state is antiperiodic or (ii) Nx is even and our state is periodic. Both of
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these are possible independent of the vortex configuration, so we need look at the values

of R̄. R̄ can take on any value for this case, and since we know that (−1)Nx�
(x)
0 = −1,

then the vanishing of AR̄ requires X̄R̄ = +1 and the nonvanishing of Ar for r > R̄ means
that X̄r = −1 for r = R̄ + 1, . . . , Ny. The first of these requires there be an even number
of vortices in the region between the cylinder’s lower edge and qy = R̄ − 1.

But recall that the X̄ operators are built up from the bottom edge (at qy = 0) by
one-plaquette-thick strips, so that X̄r is the product of all the plaquette operators in the
bottommost r − 1 strips. Thus, the difference in the eigenvalues of X̄r and X̄r+1 is the
product of the plaquette operators in the strip between qy = r − 1 and qy = r. Since
X̄R̄ is positive but X̄R̄+1 is negative, this tells us that there must be an odd number of
vortices in the strip between R̄ − 1 and R̄. However, since X̄r does not change sign as r
increases from R̄ + 1, this means that each additional strip must contain an even number
of vortices.

When R = 2, . . . , Ny − 1, (A.4) tells us that X̄R = −(−1)Nx�
(x)
0 and X̄r = (−1)Nx�

(x)
0

for r = 1, . . . , R − 1. Putting r = 1 into the second of these gives the opposite state
as just described, i.e. either Nx-odd/periodic or Nx-even/antiperiodic. For either case,

(−1)Nx�
(x)
0 = +1, which immediately tells us that X̄r = +1 for all r from 1 to R − 1, and

X̄R = −1. Thus, each individual one-plaquette-thick strip from the bottom to R−2 must
contain an even number of vortices while the one between R − 2 and R − 1 has an odd
number.

The condition (−1)Nx�
(x)
0 = +1 also tells us that, for R̄ ≥ R, X̄R̄ = −1 and X̄r = +1

for r = R̄ + 1, . . . , Ny. Since we already know that the region between the bottom and
R − 1 has an odd number of vortices, the region between R − 1 and R̄ − 1 contains an
even number because X̄R̄ is also negative. But X̄r then becomes positive, so R̄ − 1 to R̄
has an odd number of vortices, and each individual strip thereafter has an even number.

The remaining case is R = Ny, which also requires R̄ = Ny. Thus, (−1)Nx�
(x)
0 = +1,

X̄r = +1 for r = 1, . . . , Ny − 1 and X̄R = −1. This requires every single strip between
qy = 0 and qy = Ny −2 to have an even number of vortices, but the topmost strip contains
an odd number.

References

[1] Read N and Green D, 2000 Phys. Rev. B 61 10267
[2] Freedman M H, Kitaev A, Larsen M J and Wang Z, 2003 Bull. Am. Math. Soc. 40 31
[3] Nayak C, Simon S H, Stern A, Freedman M H and Das Sarma S, 2008 Rev. Mod. Phys. 80 1083
[4] Kitaev A, 2006 Ann. Phys., NY 321 2
[5] Kells G and Vala J, 2010 Phys. Rev. B 82 125122
[6] Duan L-M, Demler E and Lukin M D, 2003 Phys. Rev. Lett. 91 090402
[7] Micheli A, Brennen G K and Zoller P, 2006 Nature Phys. 2 341
[8] Kells G, Slingerland J K and Vala J, 2009 Phys. Rev. B 80 125415
[9] Kitaev A, 2003 Ann. Phys., NY 303 2

[10] Schmidt K P, Dusuel S and Vidal J, 2008 Phys. Rev. Lett. 100 057208
[11] Volovik G E, 1993 JETP Lett. 57 244
[12] Ring P and Schuck P, 2004 The Nuclear Many-Body Problem 3rd edn (Berlin: Springer) p 611

doi:10.1088/1742-5468/2011/06/P06020 18

http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1090/S0273-0979-02-00964-3
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1103/PhysRevB.82.125122
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1038/nphys287
http://dx.doi.org/10.1103/PhysRevB.80.125415
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/PhysRevLett.100.057208
http://dx.doi.org/10.1088/1742-5468/2011/06/P06020

	1. Introduction
	2. Review of the model
	3. Toroidal and cylindrical topologies
	4. Existence of zero-energy states
	5. Cylindrical case
	5.1. Criteria for zero-energy states
	5.2. Discussion and examples

	6. Rectangular case
	7. Conclusions
	Acknowledgments
	Appendix
	References



