
Using a Class Abstraction Technique
to Predict Faults in OO Classes

A case study through six releases of the Eclipse JDT

Djuradj Babich and Peter J. Clarke
School of Computing

and Information Sciences
Florida International University

Miami, FL 33199, USA
{dbabi001, clarkep}@cis.fiu.edu

James F. Power
Department of

Computer Science
National University of Ireland

Maynooth, Co. Kildare
jpower@cs.nuim.ie

B. M. Golam Kibria
Department of

Mathematics & Statistics
Florida International University

Miami, FL 33199, USA
kibriag@fiu.edu

ABSTRACT
In this paper, we propose an innovative suite of metrics
based on a class abstraction that uses a taxonomy for OO
classes (CAT) to capture aspects of software complexity
through combinations of class characteristics. We empiri-
cally validate their ability to predict fault prone classes us-
ing fault data for six versions of the Java-based open-source
Eclipse Integrated Development Environment. We conclude
that this proposed CAT metric suite, even though it treats
classes in groups rather than individually, is as effective as
the traditional Chidamber and Kemerer metrics in identify-
ing fault-prone classes.

1. INTRODUCTION
Since quantitative methods have significantly demonstrated

their usefulness in other sciences, computer science researchers
have worked hard to bring similar approaches to software de-
velopment in the form of software metrics, a measure of some
property of software code or its specifications. A plethora
of OO design metrics has been proposed to help evaluate
software design quality [4, 2, 6]. In order to demonstrate
the usefulness of a metric during development of commer-
cial applications, numerous empirical validations have also
been performed and published within the literature. Many
empirical studies on software metrics have linked quantita-
tive design structures in OO designs to fault-proneness of
classes [9, 10, 13], and most studies consistently use the
Chidamber and Kemerer (CK) metric suite as a touchstone
in predicting OO software quality [6]. Consequently, we use
CK metrics as a comparison tool in this study.

In this paper, we present similar work from the empir-
ical validation standpoint, but with an innovative suite of
metrics based on a Class Abstraction that uses a Taxonomy
for OO classes (CAT) to capture aspects of software com-
plexity through combinations of class characteristics. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

advantage of our approach is that it significantly reduces
the analysis overhead by grouping classes based on these
characteristics. A potential disadvantage of our approach is
that important information may be lost by using taxonomy
entries rather than full analysis data.

We empirically validate the ability of the CAT metrics to
predict fault-prone classes using fault data for six versions of
the Java-based open-source Eclipse Integrated Development
Environment (IDE) [17]. We conclude that our proposed
metric suite and CK metrics both produce statistical mod-
els that effectively identify fault-prone classes. Evaluating
generated prediction models across six Eclipse IDE versions
suggests that models generated from our proposed metrics
are at least as effective in assessing the quality of OO classes
as their CK metrics model counterpart.

The reminder of the paper is organized as follows. The
class abstraction using the taxonomy of OO classes is re-
viewed in Section 2. Details of the empirical study are given
in Section 3 and the prediction models are described and
analysed in Section 4. Finally, we present the related work
in Section 5 and conclude in Section 6.

2. CLASS ABSTRACTION
The class abstraction technique used in this paper is the

taxonomy of OO classes previously described by Clarke et
al. [7]; in this section we summarise its main elements.

• The taxonomy of OO classes is defined in terms of
class characteristics.

• The class characteristics for a given class C are de-
fined as the properties of the features (attributes and
methods) in C and the dependencies C has with other
types (built-in and user-defined) in the implementa-
tion.

• The properties of the features in C describe how cri-
teria such as types, accessibility, shared class features,
polymorphism, dynamic binding, deferred features, ex-
ception handling, and concurrency are represented in
the attributes and routines of C.

• The dependencies C has with other types are real-
ized through declarations and definitions of C ’s fea-
tures, and C ’s role in an inheritance hierarchy.

The artifact generated when a class is cataloged using the
taxonomy is referred to as a cataloged entry.



Table 1: Descriptors used in a cataloged entry for a
Java class.

Descriptors
Nomenclature Attributes Routines

(Public) (Transient) (Final)
(Final) (Volatile) (Native)

(Has-Nested) New (Generic)
(Has-Inner) Recursive New
(Interface) Concurrent Recursive

(Implements) Polymorphic Redefined
(Serializable) Private Concurrent

Generic Protected Synchronized
Concurrent Public Exception-R
Abstract Constant Exception-H

Inheritance-free Static Has-Polymorphic
Parent - Non-Virtual

External Child - Virtual
Internal Child - Deferred

- - Private
- - Protected
- - Public
- - Static

A cataloged entry is a 5-tuple (C, N, A, R, F ), where:

• C is the fully qualified name of the class.

• N, the Nomenclature Component, represents a group
(or taxon) in the taxonomy and contains a single entry.

• A, the Attributes Component, is a list of entries repre-
senting the different groups of attributes.

• R, the Routines Component, is a list of entries repre-
senting the different groups of routines.

• F, the Feature Classification Component, is a list of
entries summarizing the inherited features.

Each group listed in the components C, N, A, R, or F
is referred as a component entry and consists of two parts:
(1) the modifier that identifies the characteristics of the en-
try, and (2) a list of type families that identifies the types
associated with that entry. A modifier consists of a list of
descriptors (core and add-on) representing the class charac-
teristics. The core descriptors represent class characteristics
found in most OO languages and the add-on descriptors rep-
resent characteristics peculiar to a given language. Table 1
shows the descriptors used in the modifier part of the compo-
nent entries in the Nomenclature, Attributes and Routines
components, respectively. The add-on descriptors are shown
in parentheses. The names of the descriptors were chosen
to symbolize the characteristic they represent. For example,
the add-on descriptor Final, Column 1 Row 2, indicates that
the definition of the class is complete and no subclasses are
allowed.

A more detailed explanation of the descriptors and type
families are provided in [7], and the approach has been im-
plemented using a Taxonomy Tool for the Object-Oriented
Language Java, TaxTOOLJ [1]. The significant saving in
terms of the analysis overhead for Java classes has been
demonstrated in a study of 22 Java applications, which showed
that of all the possible groups representing the combinations
of class characteristics only a small percentage were used [7].
For example, 19,720 classes in Eclipse 3.1.1 were cataloged
and of the 20,992 possible groups for Java 1.4 classes, only
401 groups were used. Similarly, 17,343 classes in the Java
Development Kit 1.5.0.5 were cataloged and only 498 of the

Table 2: Summary of fault counts per Eclipse
version for the JDT subsystem (package root
org.eclipse.jdt).

Eclipse # of # of # of Classes # of
Version Packages Classes with Faults Faults

2.0 126 2,218 719 2,307
2.1 133 2,679 767 1,964
3.0 158 3,389 1,204 4,001
3.1 169 3,904 1,369 4,339
3.2 205 4,574 1,611 4,085
3.3 219 4,877 1,289 2,733

possible 3,497,840 groups were used.

3. EMPIRICAL STUDY
This section describes the conducted empirical study that

explores the correlation between our CAT metric suite and
fault-proneness. Within the scope of this paper, we test two
research hypotheses:

• Hypothesis 1. The proposed CAT metric suite can
identify fault-prone classes in multiple, sequential re-
leases of OO software systems written in Java.

• Hypothesis 2. The proposed CAT metric suite can
produce a fault prediction model that is comparable to
the prediction model derived from CK metrics.

Target Applications
We conduct our experiment into the relationship between
CAT metrics and fault-proneness by considering six versions
of Java-based open-source Eclipse IDE [17]. We chose the
Eclipse project to examine in this study since it is an exam-
ple of a large-scale commerical software project that provides
fault data for a significant series of releases. In this paper we
investigate Eclipse’s Java Development Tools (JDT) subsys-
tem for the six official releases of Eclipse, versions 2.0, 2.1,
3.0, 3.1, 3.2, and 3.3, as shown in Table 2.

We chose the JDT subsystem as the candidate for this
investigation mainly because there seems to be a significant
amount of change in terms of new and changed classes in
successive Eclipse versions. Class changes within the JDT
subsystems play a considerable role in the development of
the Eclipse platform from one version of Eclipse to the next.
During the process of changing classes or introducing new
classes we encounter greater likelihood of introducing faults
than when software is neither being changed nor enhanced.

3.1 Metrics and Data Collection
The process of collecting data uses three sources. First

we obtain CK metrics by using Understand software tool
produced by Scientific Toolworks [14], and then we generate
the CAT metrics using TaxTOOLJ [1]. Finally we generate
fault statistics by accessing Bugzilla database.

Chidamber and Kemerer’s (CK) Metrics
The Understand tool includes a set of static analysis tools
that perform various metrics calculation. The following CK
metrics were used in this study:

• Weighted Methods per Class (WMC): Sum of complex-
ities of local methods of a class.



• Depth of Inheritance Tree (DIT): Maximum number
of edges between a given class and a root class in an
inheritance graph.

• Number of Children (NOC): A count of the number of
direct children of a given class.

• Coupling between Objects (CBO): Counts other classes
whose attributes or methods are used by the given class
plus those that use the attributes or methods of the
given class.

• Response for a Class (RFC): A count of all local meth-
ods of a class plus all of the methods in other classes
directly called by any of the methods in the class.

• Lack of Cohesion of Methods (LCOM): Number of dis-
joint sets of local methods, any two methods in the
same set share at least one local variable.

CAT Metrics
We consider diversity of methods, different types of object
coupling, and exception handling when measuring the ro-
bustness of software systems. We therefore define the fol-
lowing initial set of CAT metrics:

• Number of Distinct Non-Recursive Routine Component
Entries (RCE): A count of the number of distinct com-
ponent entries per class that are not inherited from
parent classes. Only local methods of a class are con-
sidered. Component entries with descriptors Recursive
are excluded from this metric.

• Variability (VAR): A ratio of the number of distinct
Non-Recursive Routine Component Entries (RCE) and
total number of local methods for a given class. The
metric has a range from 0 (no local methods present) to
1 (every local method within class belongs to a differ-
ent routine component entry). Lower value of the met-
ric indicates less variability in different routine compo-
nent entries for a single class.

• Number of Methods that Handle Exceptions (NEH): A
count of the methods that explicitly handle exceptions;
thus, they contain try and catch blocks within their
respective bodies.

• Coupling between User Defined Objects (CUS): Count
of all attribute references to objects of other user-
defined data types and all local methods that reference
objects of other user-defined data types.

• Coupling between Library Objects (CLS): Count of all
attribute references to objects of library data types
and all local methods that reference objects of other
library data types.

Fault Data
We collected the fault data for the six official releases of the
Eclipse project from the Bugzilla database. Initially, we ac-
cessed class modification reports obtained through Concur-
rent Versions System (CVS) Change Log plugin for Eclipse
which provides a summary of CVS log entries [11]. Each
entry consisted of reported fault identification number (ID)
followed by the list of .java file names that were changed
due to that specific fault.

We conducted a manual inspection of these change logs
to identify the keywords that indicate fix revisions, and
mapped these to the corresponding classes. Since any spe-
cific fault (identified by its ID) was possibly distributed over

several .java files, the total count of all faults we consider
in this study exceeds the actual number of individual fault
IDs, as discussed in Section 4.4.

Every fault id reference number obtained was addition-
ally checked for its severity classification within the Bugzilla
database. Severities classified as Trivial (cosmetic problems
like misspelled words or misaligned text) or Enhancement
(request for enhancement) were excluded from the study.
Only severities classified as Blocker (blocks development
and/or testing work), Critical (crashes, loss of data, severe
memory leak), Major (major loss of function), Normal (reg-
ular issue, some loss of functionality under specific circum-
stances), and Minor (minor loss of function, or other prob-
lem where easy workaround is present) were counted. Due
to a lack of fault distribution within these severity classifi-
cation levels, we do not consider exploring the link between
individual metrics and fault severity levels.

4. PREDICTION MODELS
In this study we develop models using CK metrics and

CAT metrics to predict faults. Because of the lack of vari-
ability in the response variable we chose to use logistic re-
gression instead of the traditional linear regression tech-
nique. We develop binary logistic regression models with
the SPSS statistical analysis software tool using the forward
stepwise regression method. Logistic regression does not as-
sume linearity of relationship between the independent and
dependent variable nor does it require normally distributed
variables. Binary logistic regression has been shown to pro-
vide good models for fault-proneness prediction in previous
studies [8].

4.1 Collinearity (VIF) Analysis
In order to identify which metrics to use in our multivari-

ate binary logistic regression (MBLR) models, we perform a
collinearity analysis to determine if there are any potential
collinearity problems in the bivariate correlations between
the metrics within their respective metric suite. When there
is a perfect linear relationship among the predictors, the
estimates for a regression model cannot be uniquely com-
puted. The term collinearity implies that two variables are
near perfect linear combinations of one another. The pri-
mary concern is that as the degree of multicollinearity in-
creases, the regression model estimates of the coefficients
become unstable and the standard errors for the coefficients
can get wildly inflated. We compute the variance inflation
factor (VIF) values for each predictor as a check for mul-
ticollinearity, which is the reciprocal of the tolerance. The
tolerance is an indication of the percent of variance in the
predictor that cannot be accounted for by the other predic-
tors. The VIF values, as a rule of thumb, if greater than
3.0 may merit further investigation of potential regressors
for multicollinearity problems.

We present the VIF analysis for the CK metrics suite in
Table 3. The table shows VIF analysis with all potential
regressors. The values indicate that there are no multi-
collinearity problems, since all values are within VIF thresh-
old and objective values.

Our VIF analysis for the CAT metrics suite is presented in
Table 4. Again, the first section shows the VIF analysis with
all potential regressors. Collinearity problems are suspected
with RCE and CUS since they exceed our VIF threshold
value. After removing RCE from the model, a subsequent



Table 3: Collinearity Analysis for CK Metrics

VIF Values (Using all CK metrics)
Eclipse 2.0 2.1 3.0 3.1 3.2 3.3
WMC 2.12 2.249 2.262 2.254 2.286 2.283
DIT 1.525 1.462 1.328 1.382 1.385 1.359
NOC 1.028 1.027 1.034 1.034 1.031 1.031
CBO 1.674 1.785 1.865 1.857 1.851 1.845
RFC 2.164 2.044 1.853 1.916 1.945 1.917
LCOM 1.159 1.184 1.185 1.163 1.162 1.156

Table 4: Collinearity Analysis for CAT Metrics

VIF Values (Using all CAT metrics)
Eclipse 2.0 2.1 3.0 3.1 3.2 3.3
RCE 4.827 5.487 5.557 5.065 5.269 5.204
VAR 1.201 1.213 1.208 1.206 1.208 1.211
NEH 1.864 1.93 1.817 1.799 1.833 1.839
CUS 4.12 4.645 4.799 4.733 4.949 4.933
CLS 2.578 2.838 2.951 2.973 2.925 2.969

VIF Values (Removing RCE)
Eclipse 2.0 2.1 3.0 3.1 3.2 3.3
VAR 1.144 1.161 1.145 1.164 1.171 1.176
NEH 1.837 1.903 1.812 1.787 1.816 1.825
CUS 2.305 2.513 2.553 2.695 2.794 2.792
CLS 2.067 2.268 2.408 2.483 2.553 2.505

VIF Values (Removing CUS)
Eclipse 2.0 2.1 3.0 3.1 3.2 3.3
RCE 2.7 2.969 2.957 2.884 2.974 2.946
VAR 1.087 1.099 1.087 1.091 1.099 1.1
NEH 1.777 1.851 1.739 1.731 1.767 1.763
CLS 2.578 2.837 2.948 2.929 2.973 2.92

VIF analysis shows that the remaining variables are within
VIF threshold and objective values. The removal of CUS
also shows similar results, and thus can be successfully used
as another model configuration.

Based on these results, we developed and explored the
performance of one model for CK metrics and two models
for our CAT metrics:

• CK model: WMC, DIT, NOC, CBO, RFC, LCOM

• CAT metrics model 1: VAR, NEH, CUS, CLS

• CAT metrics model 2: RCE, VAR, NEH, CLS

4.2 The MBLR Model
The Eclipse version 2.0 MBLR results of the CK model

are presented in Table 5. All investigated CK metrics are
significant regressors in the model (p-value<0.05) for Eclipse
version 2.0. However, that was not the case for every Eclipse
version, since the level of significance of some of the re-
gressors varies from version to version. For example, even
though NOC metric was not a significant regressor for Eclipse
versions 2.1, 3.0, and 3.3, it was significant for versions 2.0,
3.1, and 3.2, and showed a good fit of data for versions
3.1 and 3.2 as observed during univariate binary logistic re-
gression (UBLR). Thus we intend to use multivariate model
throughout all the versions of the Eclipse software with all
six CK metrics included. Because of the space constraints,
we do not show the CK metrics suite model MBLR results
for Eclipse versions 2.1 through 3.3.

Table 5: Eclipse Version 2.0 Multivariate Logistic
Regression for CK Metrics

MBLR Results for CK Metrics Suite Model
Const. WMC DIT NOC CBO RFC LCOM

Coeff. -2.178 0.019 0.183 -0.062 0.081 -0.007 0.011
SE Coeff. 0.130 0.005 0.046 0.030 0.008 0.002 0.002

odds ratio - 1.020 1.201 0.940 1.084 0.993 1.011
p-value 0.000 0.000 0.000 0.039 0.000 0.000 0.000

Table 6: Eclipse Version 2.0 Multivariate Logistic
Regression for CAT Metrics

MBLR Results for CAT Metrics Suite Model #1
Constant VAR NEH CUS CLS

Coeff. -1.931 - 0.437 0.103 0.062
SE Coeff. 0.084 - 0.054 0.011 0.015

odds ratio - - 0.084 1.109 1.064
p-value 0.000 0.174 0.000 0.000 0.000

MBLR Results for CAT Metrics Suite Model #2
Constant RCE VAR NEH CLS

Coeff. -2.161 0.171 - 0.420 0.044
SE Coeff. 0.103 0.021 - 0.054 0.016

odds ratio - 1.186 - 1.522 1.045
p-value 0.000 0.000 0.228 0.000 0.005

The Eclipse version 2.0 MBLR results of the CAT models
are presented in Table 6. All investigated CAT metrics are
significant regressors in the model (p-value<0.05) except for
the VAR metric. Unlike CK NOC regressor within the CK
model, MBLR results for the VAR metric within both CAT
metrics suite models for all versions of Eclipse showed it not
to be a significant (p-value>0.05) regressor. Additionally,
VAR metrics did not produced a good fit of data for a single
version of Eclipse software during UBLR. We have therefore
decided to remove the VAR metric from both our models.
Again, because of the space constraints, we do not show the
CAT metrics suite model MBLR results for Eclipse versions
2.1 through 3.3.

4.3 Evaluation of Models
To validate our CK and CAT metric suite models, we

develop MBLR models with Eclipse version n data, and val-
idate them with Eclipse version n+1 data. We choose our
CAT metric suite model #1 for Eclipse version 2.0 as an ex-
ample. Given the MBLR data from CAT metric suite model
#1 for Eclipse version 2.0 in Table 6, we develop the general
MBLR model applicable for Eclipse version 2.1 as:

ln(
p

1 − p
) = −1.931 + 0.437NEH + 0.103CUS + 0.062CLS

Therefore, we calculate the probability p that the fault in
a class from Eclipse version 2.1 is present as follows:

p =
e(−1.931+0.437NEH+0.103CUS+0.062CLS)

1 + e(−1.931+0.437NEH+0.103CUS+0.062CLS)

We evaluate the performance of the model expressed in
percentage of classes whose fault probability values correctly
classified them as fault-free (p<0.5) or fault-prone (p≥0.5).

Table 7 shows in detail the overall performance of all three
models across all versions of Eclipse. Each of the five sub-
tables of data in Table 7 measures the ability of the pre-



Table 7: Detailed results of prediction capability for five versions of Eclipse. In each case the model developed
from the first Eclipse version is used to predict faults in the second.

Eclipse Version:
Metrics Suite:

Sensitivity (True Positive Rate):
False Positive Rate:

Accuracy:
Specificity (True Negative Rate):

Positive Predictive Value:
Negative Predictive Value:

False Discovery Rate:

2.0 to 2.1
CAT1 CAT2 CK

49% 48% 44%
7% 8% 10%
80% 79% 76%
93% 92% 90%
76% 73% 66%
81% 80% 79%
24% 27% 35%

2.1 to 3.0
CAT1 CAT2 CK

36% 35% 29%
5% 4% 5%
72% 72% 69%
95% 96% 95%
83% 84% 79%
69% 69% 67%
17% 16% 21%

3.0 to 3.1
CAT1 CAT2 CK

46% 46% 47%
11% 13% 13%
72% 71% 71%
89% 87% 87%
74% 71% 71%
71% 71% 71%
26% 29% 29%

3.1 to 3.2
CAT1 CAT2 CK

44% 43% 43%
10% 9% 14%
71% 71% 69%
91% 91% 86%
76% 76% 69%
70% 70% 69%
24% 24% 32%

3.2 to 3.3
CAT1 CAT2 CK

52% 51% 53%
13% 14% 14%
76% 75% 76%
87% 86% 86%
64% 61% 62%
80% 80% 80%
37% 39% 38%

diction model derived from one version of Eclipse to predict
faults in the next version, for each of the three metrics suites.

Based on the results obtained for the validation of Eclipse
models, we accept our Hypothesis 1, that our CAT met-
rics can identify fault-prone classes in multiple, sequential
releases of OO software systems written in Java. The pre-
dictive value of all the CAT metrics suite models was be-
tween 71% and 84% accuracy. We also accept Hypothesis
2, that the proposed CAT metric suite can produce a fault
prediction model that is comparable to the prediction model
derived from CK metrics. In fact, the CAT metrics models
have actually outperformed their CK counterpart by clas-
sifying between 1% (Eclipse versions 3.1 and 3.3) and 4%
(Eclipse version 2.1) additional classes correctly.

4.4 Threats to Validity
In Section 3 we discuss why we believe we chose the right

application for this study. However, it is possible that quite
different results might be achieved for a different application,
or with applications written using a different programming
language. Since there are no other empirical studies done
on the proposed taxonomy metrics, it is difficult to validate
our results.

In Section 3.1, we noted that the total count of all faults
we consider in this study exceeds the actual number of in-
dividual fault IDs, because we count the number of faults
as the number of individual accesses to .java files recorded
in the analyzed change log. It is possible that access to the
.java file was to fix either an inner class or a non-public
class contained within it, but the fault was attributed to the
actual public class having the same name as the .java file.

Emam et al. found that class size has a strong confounding
effect on the validity of OO metrics [8], since the association
between the investigated metrics and fault-proneness disap-
pear after class size has been taken into account. We did
not consider class size as an additional independent variable
in this study.

5. RELATED WORK
Previous studies have empirically validated the associa-

tion between OO metrics and fault-proneness, categorizing
software modules into different groups based on the number
of faults in a module. Typically they divide modules into
two distinct categories: the modules that were faulty (con-
tained one or more faults) and non-faulty modules (fault
free) [3, 9, 10]. Basili et al. conducted experiments on stu-
dent projects for which they collected fault data during ac-
ceptance testing [3]. Their results showed that CK metrics
were statistically independent and all six CK metrics that

were also used in our study were significantly associated
with class fault-proneness. Gyimothy et al. also validated
the CK metrics as significantly associated with class fault-
proneness [10]. They investigated Mozilla version 1.6, an
open source software, by collecting and investigating faults
from the Bugzilla database. All metrics except NOC were
significant predictors of class fault-proneness in their study.

Olague et al. empirically validated three sets of metric
suites to predict fault-proneness of OO classes using highly
iterative or agile software development process [13]. They
studied the CK metrics, Abreu’s Metrics for OO Design
(MOOD) [5], and Bansiya and Davis’ quality metrics for OO
design (QMOOD) [2]. They used defect data for six versions
of Rhino, an open source implementation of JavaScript writ-
ten in Java, and concluded that the CK and QMOOD metric
suites both produce statistical models that are effective in
detecting fault-prone classes. In their study, MOOD metric
suite was not effective in detecting fault-prone classes.

Subramanyam and Krishnan validated the association be-
tween WMC, CBO, and DIT metrics and the fault counts,
rather than fault-proneness [15]. They analyzed around 400
C++ and 300 Java classes, concluding that CK metrics
were significantly associated with faults counts, but they
found that effectiveness of these metrics vary in the two
programming languages investigated. While C++ classes
found WMC, DIT, and interaction term (CBO*DIT) all sig-
nificantly associated with faults counts, Java classes were
significantly associated with faults through interaction term
(CBO*DIT) only.

Szabo and Khoshgoftaar have also validated the associa-
tion between traditional and OO metrics and fault-proneness
of classes [16]. Unlike us, they classify software modules into
three, rather than two (fault/no fault), distinct categories
based on the number of faults: high (number of faults >
19), medium (2 < number of faults ≤ 19), and low (number
of faults ≤ 2) risk groups. The results of the study showed
that addition of OO measures enhanced the model signifi-
cantly by reducing the overall misclassification rate.

Li and Shatnawi explored the link between the bad smells
(a structure in the code that suggests opportunities for refac-
toring) and class fault probability in the evolution of OO
systems [12]. They presented the empirical study that in-
vestigated the relationship between the bed smells and class
fault probability in three fault-severity levels using three ver-
sions of an industrial-strength open source system Eclipse.
They showed that some bad smells, identified by set of met-
rics and their threshold values, were positively associated
with the class fault probability.

Zimmermann et al. conducted a study that maps fault



locations to the number of faults reported in the first six
months before and after the release of the Eclipse, versions
2.0, 2.1, and 3.0 [19]. Unlike our study, they used both
pre-release and post-release fault data at both the package-
level and file-level, and suggested that while fewer of the
fault prone files were correctly identified as fault-prone, there
were hardly any false positives (i.e. when a file is classified
as fault prone, its classification is most likely to be correct).
Furthermore, they pose several follow-up questions concern-
ing the origin of faults as well as the applicability of models
for systems as they evolve over time. In our study we fur-
ther investigate the applicability of models as they evolve
over time by considering 6 successive versions of the Eclipse
platform.

Zhang investigated the relationship between lines of code
(LOC) and faults using two fault data sets, the Eclipse
dataset and the NASA dataset [18]. Identically to Zim-
mermann et al. [19], Zhang used both pre-release and post-
release fault data at both the package-level and file-level.
The result of the study showed that larger modules tend to
have more faults and a small number of the largest mod-
ules account for a large proportion of the faults. Zhang also
showed that by using Weibull functions, a small percentage
of the largest modules can predict total number of faults at
both the package and file levels.

6. CONCLUDING REMARKS
We proposed an innovative metrics suite based on a class

abstraction technique that uses a taxonomy for OO classes
(CAT) to measures quantitative properties of OO classes
within software system using combinations of class char-
acteristics. The CAT metrics include refined object cou-
pling and exception handling measurements. We conducted
a statistical analysis of the widely used CK class metrics
and CAT metrics using six versions of an industrial-strength
open source system Eclipse.

The results of this case study indicate that both CK and
CAT metrics are effective in developing quality statistical
models to predict faults in multiple, sequential releases of
OO software systems written in Java. Additionally, the
results indicate that despite their higher level of abstrac-
tion, CAT metrics have the ability to produce a comparable
fault prediction models when compared to the models de-
rived from CK metrics.

In future work we propose to expand our models to include
fault data from other applications used in some of the studies
described in Section 5.

7. REFERENCES
[1] D. Babich, K. Chiu, and P. J. Clarke. TaxTOOLJ: A

tool to catalog Java classes. In 18th International
Conference on Software Engineering and Knowledge
Engineering, pages 375 – 380, July 2006.

[2] J. Bansiya and C. G. Davis. A hierarchical model for
object-oriented design quality assessment. IEEE
Trans. on Softw. Eng., 28(1):4–17, 2002.

[3] V. R. Basili, L. C. Briand, and W. L. Melo. A
validation of object-oriented design metrics as quality
indicators. IEEE Trans. on Softw. Eng.,
22(10):751–761, 1996.

[4] F. Brito e Abreu and W. Melo. Evaluating the impact
of object-oriented design on software quality. In

International Symposium on Software Metrics, pages
90–99, Berlin, Germany, 1996.

[5] F. Brito e Abreu, G. Pereira, and P. Sousa. A
coupling-guided cluster analysis approach to
reengineer the modularity of object-oriented systems.
In Conference on Software Maintenance and
Reengineering, pages 13–22, Zurich, Switzerland, 2000.

[6] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. IEEE Trans. on Softw.
Eng., 20(6):476–493, 1994.

[7] P. J. Clarke, D. Babich, T. M. King, and B. M.
Golam Kibria. Analyzing clusters of class
characteristics in oo applications. J. Syst. Softw.,
81(12):2269–2286, 2008.

[8] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai. The
confounding effect of class size on the validity of
object-oriented metrics. IEEE Trans. on Softw. Eng.,
27(7):630–650, 2001.

[9] K. E. Emam, W. Melo, and J. C. Machado. The
prediction of faulty classes using object-oriented
design metrics. J. Syst. Softw., 56(1):63–75, 2001.

[10] T. Gyimothy, R. Ferenc, and I. Siket. Empirical
validation of object-oriented metrics on open source
software for fault prediction. IEEE Trans. on Softw.
Eng., 31(10):897–910, 2005.

[11] J. C. Landers and M. Spiegel. CVS change log for
Eclipse.
http://sourceforge.net/projects/cvschangelog/,
2004.

[12] W. Li and R. Shatnawi. An empirical study of the bad
smells and class error probability in the post-release
object-oriented system evolution. J. Syst. Softw.,
80(7):1120–1128, 2007.

[13] H. M. Olague, L. H. Etzkorn, S. Gholston, and
S. Quattlebaum. Empirical validation of three
software metrics suites to predict fault-proneness of
object-oriented classes developed using highly iterative
or agile software development processes. IEEE Trans.
on Softw. Eng., 33(6):402–419, 2007.

[14] Scientific Toolworks Inc. Understand.
http://www.scitools.com/products/understand/,
2004.

[15] R. Subramanyam and M. S. Krishnan. Empirical
analysis of CK metrics for object-oriented design
complexity: Implications for software defects. IEEE
Trans. on Softw. Eng., 29(4):297–310, 2003.

[16] R. M. Szabo and T. M. Khoshgoftaar. An assessment
of software quality in a C++ environment. In
International Symposium on Software Reliability
Engineering, pages 240–249, Toulouse, France, 1995.

[17] The Eclipse Foundation. Eclipse.
http://www.eclipse.org/, 2010.

[18] H. Zhang. An investigation of the relationships
between lines of code and defects. In International
Conference on Software Maintenance, pages 274–283,
Edmonton, Canada, 2009.

[19] T. Zimmermann, R. Premraj, and A. Zeller.
Predicting defects for Eclipse. In International
Workshop on Predictor Models in Software
Engineering, page 9, Minneapolis, MN, 2007.


