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0BABSTRACT 
 
Automated feature extraction and object recognition are large research areas in the 
field of image processing and computer vision. Recognition is largely based on the 
matching of descriptions of shapes. Numerous shapes description techniques have 
been developed, such as scalar features (dimension, area, number of corners etc.), 
Fourier descriptors and moment invariants. These techniques numerically describe 
shapes independent of translation, scale and rotation and can be easily applied to 
topographical data. The applicability of the moment invariants technique to classify 
objects on large-scale maps is described. From the test data used, moments are fairly 
reliable at distinguishing certain classes of topographic object. However, their 
effectiveness will increase when fused with the results of other techniques.  
 
1. INTRODUCTION 
 
Automatic structuring (feature coding and object recognition) of topographic data, 
such as that derived from air survey or raster scanning large-scale paper maps, 
requires the classification of objects such as buildings, roads, rivers, fields and 
railways. Shape and context are the main attributes used by humans. Our project 
combines shape recognition techniques developed for computer vision and contextual 
models derived from statistical language theory to recognise objects. This paper 
describes a measurement of shape to characterise features that will then be used as 
input into a graphical language model.  
 
The technology to capture paper-based cartographic data through scanning is well 
founded and the production of raster data relatively easy. The vectorisation of raster 
data, although not perfect, also is widespread in mapping organisations although it 
usually requires user intervention to ensure the quality of data. Vectorisation produces 
vector graphical data but most applications require the data to be structured so it 
models not only the geometry and topology but also logical contents often stored as a 
set of attributes attached to the geometry. These are usually captured manually by a 
human operator but this process of classifying and entering attributes can be a severe 
bottle-neck in the production flow. This can result in both a scarcity of suitable 
searchable data and/or a sparseness in its accuracy and detail. Automation of the 
recognition of objects is the obvious solution but this is a complex problem.  
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Increasing the speed and efficiency of the capture and structuring of data for various 
kinds of geographical information systems, reduces costs and increases the 
availability and quality of data. This bottleneck in data structuring has restricted the 
usefulness and commercial viability of installing and using graphical information 
systems for specialised applications in small and medium-sized companies. 
Techniques to overcome these problems will help expand the market for such 
systems. 
 
 Feature extraction and object recognition are large research areas in the field of 
image processing and computer vision. Recognition is largely based on the matching 
of descriptions of shapes. Numerous shape description techniques have been 
developed, such as analysis of scalar features (dimensions, area, number of corners 
etc.), Fourier descriptors, moment invariants and boundary chain coding. These 
techniques are well understood when applied to images and have been developed to 
describe shapes irrespective of position, orientation and scale. They can be easily 
applied to vector graphical shapes. This paper describes experiments, which apply 
moment invariants to the problem. 
 
Experiments carried out to date include the application of Fourier descriptors as 
features of shape description and recognition. It is envisaged that the Fourier 
descriptor method can be combined with moment invariants and other techniques of 
object recognition to produce an optimal result for the problem of shape description of 
general cartographic shapes on maps. 
 
 
2. MOMENT INVARIANTS 
 
2.1 Background  
Moment invariants have been frequently used as features for image processing, 
remote sensing, shape recognition and classification. Moments can provide 
characteristics of an object that uniquely represent its shape. Invariant shape 
recognition is performed by classification in the multidimensional moment invariant 
feature space. Several techniques have been developed that derive invariant features 
from moments for object recognition and representation. These techniques are 
distinguished by their moment definition, such as the type of data exploited and the 
method for deriving invariant values from the image moments. It was Hu ( Hu, 1962), 
that first set out the mathematical foundation for two-dimensional moment invariants 
and demonstrated their applications to shape recognition. They were first applied to 
aircraft shapes and were shown to be quick and reliable (Dudani, Breeding and 
McGhee, 1977). These moment invariant values are invariant with respect to 
translation, scale and rotation of the shape.  
 
Hu defines seven of these shape descriptor values computed from central moments 
through order three that are independent to object translation, scale and orientation. 
Translation invariance is achieved by computing moments that are normalised with 
respect to the centre of gravity so that the centre of mass of the distribution is at the 
origin (central moments). Size invariant moments are derived from algebraic 
invariants but these can be shown to be the result of a simple size normalisation. From 
the second and third order values of the normalised central moments a set of seven 
invariant moments can be computed which are independent of rotation. 
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2.2 Theory 
Traditionally, moment invariants are computed based on the information provided by 
both the shape boundary and its interior region (Hu, 1962, Prokop and Reeves, 1992). 
The moments used to construct the moment invariants are defined in the continuous 
but for practical implementation they are computed in the discrete form. Given a 
function f(x,y), these regular moments are defined by:  

 
 

 (1) 
 

Mpq is the two-dimensional moment of the function f(x,y). The order of the moment is 
(p + q) where p and q are both natural numbers. For implementation in digital from 
this becomes:          

             (2) 
 
To normalise for translation in the image plane, the image centroids are used to define 
the central moments. The co-ordinates of the centre of gravity of the image are 
calculated using equation (2) and are given by: 

                                  (3) 
 
The central moments can then be defined in their discrete representation as: 
                      

             (4) 
 
The moments are further normalised for the effects of change of scale using the 
following formula:  

                                                   (5) 
 
Where the normalisation factor:  = (p + q / 2) +1. From the normalised central 
moments a set of seven values can be calculated and are defined by: 
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These seven invariant moments, I, 1  I  7, set out by Hu, were additionally shown 
to be independent of rotation. However they are computed over the shape boundary 
and its interior region. 
 
2.3 New moments 
When dealing with shape recognition of objects on maps we are dealing with objects 
in isolation, where we only know information about the outline of the shape. For this 
purpose the moment invariants used in this paper are computed using the shape 
boundary only and are proven to be invariant under object translation, scale and 
rotation (Chaur-Chin Chen, 1993). Then, using the same notation for convenience, the 
moment definition in equation (1) can be expressed as: 

             (7)  
 

For p, q = 0,1,2,3, where c is the line integral along the curve C and ds = ((dx)2 + 
(dy)2). The central moments can be similarly defined as: 
 

            (8) 
 
Given that the centroids are as in the regular method: 
              

 (9)  
 
For a digital image, then equation (8) becomes  
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Thus the central moments are invariant to translation. These new central moments can 
also be normalised such that they are scaling invariant. 
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                     (11) 
 

Where the normalisation factor is:  = p + q + 1. The seven moment invariant values 
can then be calculated as before using the results obtained from the computation of 
equation’s (7) to (11) above.  
 
3. MOMENT INVARIANTS APPLIED TO TOPOGRAPHIC DATA 
 
The recognition and description of objects plays a central role in automatic shape 
analysis for computer vision and it is one of the most familiar and fundamental 
problems in pattern recognition. Common examples are the reading of alphabetic 
characters in text (Dehghan and Faez, 1997) and the automatic identification of 
aircraft (Dudani, Breeding and McGhee, 1997). Most applications using moment 
invariant for shape recognition deal with the classification of such definite shapes. To 
identify topographic objects each of the techniques need to be extended to deal with 
general categories of shapes, for example houses, parcels and roads.  
 
 

 
 

Figure 1: Section of a digital map plan 
 
The data used for the experiments described in the following sections was extracted 
from vector data sets (NTF level 2) representing large-scale (1:1250) plans of the Isle 
of Man (Kelly and Hilder 1998), an example of which can be seen in figure1. A pre-
processing operation was required to transform the vector data from its original form 
to a new form suitable for further processing. In this case the data was pre-processed 
to extract closed polygons from lines with the same feature codes. After extracting the 
required polygonal data from the maps, an interpolation method was applied to 
sample the shape boundary at a finite number (N) of equi-distant points. . These 
points represent the x and y co-ordinates of the polygonal shape. The points are stored 
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and then processed by a moment transformation on the outline of the shape, which 
produces seven moment invariant values that are normalised with respect to change of 
size (scale), change of position (translation) and change of orientation (rotation) and 
can be used to discriminate between shapes. 
 
Given two sets of moment invariant values, how do we measure their degree of 
similarity? An appropriate classification procedure is necessary if unknown shapes are 
to be compared to a library of known shapes. The moment invariant implementation 
produced sets of real values. If two shapes, A and B produce a set of values 
represented by a(i) and b(i) then the distance between them can be given as c(i) = a(i) 
– b(i). If a(i) and b(i) are identical then c(i) will be zero. If they are different then the 
magnitudes of the coefficients in c(i) will give a reasonable measure of difference 
enabling discrimination between shapes. It proves more convenient to have one value 
to represent this rather than a set of values that make up c(i). The easiest way is to 
treat c(i) as a vector in a multi-dimensional space, in which case it’s length, which 
represents the distance between the planes, is given by the square root of the sum of 
the squares of the elements of c(i). 
 
4. RESULTS 
 
In this section a sample of the results produced by the application of the moment 
invariants technique is presented to evaluate their usefulness in shape discrimination 
of general cartographic features. Figure 2 plots the average values obtained for five 
categories of objects from the sample maps. This shows that in order to classify 
shapes with any degree of certainty, the variation within classes must be less than that 
between classes. 
 

 
  

Figure 2. Average moment invariants (IM) of five sample shapes 
 

To evaluate moments as a shape recognition technique, several shapes from the map 
(buildings, parcels and roads) were used as test images. As an example Figures 3 and 
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4 show respectively building and parcels on a portion of one map. The moment 
invariants are computed from the equally spaced (x, y) points (512 sample points) 
along the boundary of each test shape using the formulae derived earlier. The 
following table is an example of a set of seven invariant moments (IM) obtained for a 
house and parcel shape (starting at index IM(0)). 
 

 Buildings Roads Parcels 
IM(0) 0.00021913563 0.0191903068 0.19419031 
IM(1) 1.4175713e-08 0.0028776518 0.0093515524 
IM(2) 3.3163274e-12 0.0000022101 0.00055687797 
IM(3) 7.332081e-14 0.0000002565 1.0685037e-05 
IM(4) 2.4223892e-14 0.0000001930 5.696268e-05 
IM(5) -7.51903311e-18 -3.7718e-08 -6.2343667e-07 
IM(6) 2.12921403e-26 -1.5393e-14 3.212549e-11 

 
Table 1: moment invariant values calculated for a house and a parcel shape. 
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Figure 3: Sample data representing house shapes. 
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Figure 4: Sample parcel shapes. 
 
 

In this paper the moment invariants were calculated for three types of features namely 
buildings, parcels and roads in six different categories. These categories are buildings, 
defined natural land cover, multiple surface land, general unmade-land, made-road 
and roadside. Figure 5 shows a plot of the mean values for each of the above named 
categories in three-dimensional space. The results obtained for each data set were 
plotted in three-dimensional space using the features (IM(0),IM(1),IM(2)) to observe 
how well they separated or to see if they did separate using the moment invariants 
shape recognition method. Figure 6 shows the degree to which three of these data sets 
(unmade-land, surface land and buildings) cluster in (IM(0),IM(1),IM(2)) space. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Average moment invariants (IM) of six shape categories 
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Figure 6: Clustering of the polygon shapes in three-dimensional space of the 
features IM(0), IM(1) and IM(2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7(a). Clustering of the polygons, buildings and defined land cover, 7(b). 
Clustering of the polygons, defined land cover and unmade-land in three 

dimensional space of the features IM(0), IM(1) and IM(2). 
 

 
Figure 7(a) above shows the degree to which the data sets, building and defined land 
cover cluster and also in Figure 7(b), a cluster plot of the data sets, defined land cover 
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and unmade-land.  In Figure 8 it can be seen how the features buildings and roads 
separate when plotted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8. Clustering of the polygon shapes, buildings and maderoads, in three-
dimensional space of the features IM(0),IM(1) and IM(2). 

 
 
 
 
 
To show mathematically the results obtained the repeatability function and mean 
value measurements were computed for each set or the sample shapes. The results can 
be seen in table 2. Only the first moment invariants measure, MI(0) is used here to 
make it easier to read the table as it is the most significant moment result. 
 
 

 Buildings Definedland Surfaceland Unmade-land MadeRoad Roadside 
No. polygons 7976 6332 2889 2701 487 431 
Buildings 5.2005e-005 8.8572e-004 1.5488e-005 0.0034 0.0014 4.8116e-004 
Definedland 8.8572e-004 0.0138 8.7023e-004 0.0025 5.5596e-004 4.0456e-004 
Surfaceland 1.5488e-005 8.7023e-004 3.9330e-004 0.0033 0.0014 4.6567e-004 
Unmade-land 0.0034 0.0025 0.0033 0.0231 0.0019 0.0029 
MadeRoad 0.0014 5.5596e-004 0.0014 0.0019 0.0188 9.6051e-004 
Roadside 4.8116e-004 4.0456e-004 4.6567e-004 0.0029 9.6051e-004 0.0048 

 
Table 2: Comparison of repeatability within feature classes and distance between 

classes 
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Each output for the moment invariants method in the shape recognition of general 
shapes on maps, show that there is a significant separation occurring between most of 
the classes. Although overlap does exist (also seen by the human eye) good 
classification occurs. In table 2 the repeatability function for each class is represented 
by three times the standard deviation and can be seen in the shaded diagonal column 
of the table. All other vlues in the table represent the mean measurement between 
classes.  On examining table 2 more closely it can be seen that the repeatability for the 
buildings is smaller than the distance between the mean values for all categories 
except for the surfaceland data set though these values are close. This is also true for 
the repeatability measure for the surfaceland class where the distance between the 
means values is larger except for buildings. Comparing the figures obtained for the 
other data sets we see that for a lot the repeatability measure is larger but still close to 
the mean distance for most cases. 
 
In previous work, part of the above experiment was conducted using the Fourier 
descriptor  (Keyes and Winstanley, 1999), and the scalar descriptor methods for shape 
description. Table 3 shows the mathematical measurements obtained for a sample of 
buildings and land parcels using the Fourier descriptor technique. Here the 
repeatability of the measurements of the class is sizeably larger then the distance 
between the mean values for the two classes. This evidence indicates that Fourier 
descriptors are not very good for use in shape description where the data sets are of a 
very general shape. In table 4 the repeatability function is calculated for the data sets 
using the scalar descriptor technique. These results show that the distance between the 
means for the buildings is considerably larger than the repeatability of that class but 
smaller for the parcel class. This technique also shows considerable improvement 
over the Fourier descriptor method but follows closely to the results obtained for the 
moment method.     
 

 Buildings Land Parcels 
Repeatability (3) FD(2) =  0.2562 

FD(3) = 0.2457 
FD(4) = 0.2100 

FD(2) = 0.2814 
FD(3) = 0.1644 
FD(4) = 0.1200 

Distance between means for buildings 
and parcels 

FD(2) = 0.0067 
FD(3) = 0.0123 
FD(4) = 0.0137 

 

 
Table 3: Comparison of repeatability within feature classes and distance between 

classes for Fourier descriptors 
 
 

 Buildings Land parcels 
Repeatability (3) Area = 906.8734 

Perim =121.2972 
Points =11.7001 

Area =159780.0  
Perim =1915.6 
Points =95.7411 

Distance between means for buildings 
and parcels 

Area = 38231.0 
Perim =587.4117 
Points =37.8071 

 

 
Table 4: Comparison of repeatability within feature classes and distance between 

classes for scalar descriptors 
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5. CONCLUSION 
 
As a shape descriptor technique, the evidence to date is that moment invariants are 
very good features to use when dealing with particular types of shapes such as aircraft 
or alphanumeric characters (Hu, 1962). The aim of this paper was to investigate the 
usefulness of moment invariants for the identification of general shapes on maps, for 
example houses, roads, parcels etc. When tested for the more generalised cartographic 
shapes, moment invariants seem to work. There is good distinction between classes 
although overlap occurs but within classes the discrimination is not as strong.  This 
indicates that moment invariants alone will not be sufficient. 
 
To find an optimal result the moment invariants technique will be compared with 
other techniques currently being investigated. These include Fourier descriptors, 
scalar descriptors and boundary chain coding. Moreover, all the techniques are 
looking at the object shapes in isolation.  Context is therefore an obvious next step to 
consider. The context of an object can be modelled by: 
 

(1) direct association between shapes; 
(2) statistical graphical language models built from a large corpus; and 
(3) analogical reasoning about context. 

 
Future work will be to combine some or all the methods mentioned using data fusion 
techniques to produce a more reliable object recognition system. 
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