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Abstract

An infrastructure is a set of interconnected structural el-
ements, such as tools and schemas, that provide a frame-
work for supporting an entire structure. The reverse en-
gineering community has recognized the importance of in-
teroperability, the cooporation of two or more systems to
enable the exchange and utilization of data, and has noted
that the current lack of interoperability is a contributing fac-
tor to the lack of adoption of available infrastructures. To
address the problems of interoperability and reproducing
previous results, we present an infrastructure that supports
interoperability among reverse engineering tools and ap-
plications. We present the design of our infrastructure, in-
cluding the hierarchy of schemas that captures the interac-
tions among graph structures. We also develop and utilize
our implementation, which is designed using a GXL-based
pipe-filter architecture, to perform a case study that demon-
strates the feasibility of our infrastructure.

1 Introduction

In reverse engineering, interoperability is the coopora-
tion of two or more systems to enable the exchange and uti-
lization of data [46]. The reverse engineering community
has recognized the importance of interoperability among
tools [51], as well as the difficulty in facilitating interoper-
ability among these tools [2, 3, 6, 9, 16, 30, 39]. In their
roadmap for reverse engineering, Müeller et al. identify
the lack of adoption of infrastructures as one of the biggest
challenges to increasing the interoperability of data so that
the effectiveness of reverse engineering approaches hinges
on addressing this challenge [40]. An infrastructure is a
set of interconnected structural elements, such as tools and
schemas, that provide a framework for supporting an en-
tire structure. The lack of interoperability among reverse

engineering tools and other software utilities has been high-
lighted as a contributory factor to the lack of adoption of
available infrastructures [40].

The issues involved in promoting interoperability among
reverse engineering tools and applications have been dis-
cussed at the Dagstuhl Seminar onInteroperability of
Reengineering Tools[7]. At the seminar, the participants
identified three levels at which interoperability should be
applied: low-level syntax, middle-level graph structures and
high-level architectures. The importance of facilitating in-
teroperability is becoming increasingly recognized for its
importance in permitting reuse of reverse engineering arti-
facts as well as enabling the reproduction of results from
previous scientific research.

Two important activities involved in most research en-
deavors entail the development of an approach that is an
improvement on existing approaches and then conducting
experiments to show that the new approach is an improve-
ment over existing approaches. To evaluate the new ap-
proach, the researcher is typically required to implement
at least one previously developed technique as an unbiased
basis for comparison with the newly developed technique.
However, even after the previously developed technique is
implemented, the researcher is frequently unsure of the cor-
rectness of the implementation or the correctness of the gen-
erated results. Thus, comparison of competing approaches
is difficult and all too frequently impossible. For example,
researchers in language design and implementation have re-
ported considerable difficulty in replicating results in gen-
erating call graphs and points-to analysis, even for C pro-
grams [5, 42].

To address the problems of interoperability and repro-
ducing previous results, we presented an infrastructure that
supports interoperability among reverse engineering tools
and applications [31]. In this paper, we expand on the in-
frastructure in several important directions. We develop and
extend a schema hierarchy that is central to our approach,
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detail the interactions among instances of the schemas, and
illustrate several of the schemas. In addition, we present our
implementation of the essential components of the infras-
tructure, including a linking process for unifying instances
of an API for all translation units in a C++ program. In ad-
dition, we present the results of a case study for our infras-
tructure that includes ten popular open source applications
and libraries as a test suite. As part of our study, we apply
XSLT style sheets to GXL instance graphs. Our implemen-
tation of the infrastructure, as well as GXL versions of the
schemas in the hierarchy and our XSLT style sheets, are
available in our web repository [43].

The contribution of our work is the design and imple-
mentation of our infrastructure to support interoperability,
as well as a case study that demonstrates the feasibility of
our infrastructure. The design of our infrastructure entails a
schema hierarchy and details of the interactions among the
schemas. The implementation of our infrastructure includes
a collection of tools that communicate via a GXL-based
pipe-filter architecture. In addition, we provide an appli-
cation programmers interface (API) and a set of tools that
leverage the API to perform reverse engineering tasks in-
cluding: construction of graphical program representations
[31, 29], computation of metrics [24], and static analysis
[18]. Thus, our infrastructure operates at levels one and two
as specified by Sim [51].

In Section 2 we describe previous research that relates
to our infrastructure. In Section 3 we provide details
about the infrastructure, including our hierarchy of canoni-
cal schemas. In Section 4 we present g4re, our implementa-
tion of the infrastructure, and describe the instantiation and
linking processes forg4api. In Section 5 we list results of
a case study that investigates the feasibility of our infras-
tructure using ten open source applications and libraries as
a test suite. Finally, in Section 6 we draw conclusions and
describe future work.

2 Related Work

In this section we describe the work that relates to the
design and implementation of our infrastructure. In partic-
ular, we describe research on infrastructures for reverse en-
gineering, evaluating reverse engineering tools, and linking
in reverse engineering tools.

2.1 Infrastructures for reverse engineering

One of the earliest approaches to providing a general
framework for interoperability is the ECMA Reference
Model, the “Toaster Model”, which outlines the function-
ality required to support a tool integration process [45].
The dimensions of functionality addressed by the model in-
clude: data integration, provided by the repository manager;

control integration, provided by the subsystem interaction
manager; presentation integration, provided by the user in-
teraction manager; and process integration, provided by the
development manager.

Another early approach to a reverse engineering infras-
tructure is the LSME system by Murphy and Notkin [41].
This system is based on lexical analysis and specifically
identifies the ability to add additional source languages and
extractors as central to the approach. This flexibility is
demonstrated by applying the approach to extracting source
models for ANSI C, CLOS, Eiffel, Modula 3 and TCL.

Kullbach et al. present the EER/GRAL approach to
graph-based conceptual modeling of multi-lingual systems
[32]. In this approach, models to represent information
from a single language are built and then integrated into a
unified model. A graph query language is available to per-
form queries on the unified model.

Dali is a collection of various tools in the form of a work-
bench for collecting and manipulating architectural infor-
mation [27]. The Dali workbench was designed to beopen,
so that new tools could be easily integrated, andlightweight,
so that such integration would not unnecessarily impact un-
related parts of the workbench. Kazman et al. identify
an extraction phase, encompassing both parsing and pro-
filing, accumulating information in a repository, which then
feeds visualization and analysis phases. They use an SQL
database for primary model storage, but then use applica-
tion specific file formats to facilitate interchange between
tools.

The Dali architecture is echoed by Salah and Mancori-
dids in theirsoftware comprehension environment, which
has a three-layer architecture composed of a data gather-
ing subsystem, a repository subsystem, and an analysis and
visualization subsystem [48]. Their environment supports
both static and dynamic analysis of Java and C++ programs,
and information can be accessed using either SQL or a spe-
cialized higher-level query language.

Finnigan et al. describe aSoftware Bookshelf, that was
originally designed to support converting PL/I source code
to C++ [10]. Their information repository, describing the
content of the bookshelf, is accessed through a web server
using object-oriented database technology. An implementa-
tion of these ideas as thePortable Bookshelf(PBS) is based
around a toolkit that includes a fact extractor, manipula-
tor and layout tools. This “pipeline philosophy” has since
evolved into the SWAG Kit and the LDX/BFX pipeline,
each emphasizing collections of stand-alone tools commu-
nicating only via well-defined inputs and outputs [19].

Jin and Cordy advocatenon-prescriptiveintegration that
focuses on sharingservicesrather than simply data with the
OASIS service-sharing methodology [25]. In the OASIS
architecture, each tool in the integration is known as apar-
ticipant. Each participant offers a set of shared services to
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the other participants, but not all services offered by a par-
ticipant must be shared. Two sets of components must be
created in the OASIS methodology: adomain ontologyand
conceptual service adapters.

Moose is a language-independent reverse- and re-
engineering environment that was first developed in the con-
text of FAMOOS [44]. Language independence is acheived
by the use of a common metamodel as the core of Moose.
Services provided around this core include meta-metamodel
tailoring of the Moose metamodel, a GUI for browsing,
querying, and grouping, and metrics evaluation and visu-
alization. Moose uses both the CDIF and XMI exchange
formats to interact with external tools.

Al-Ekram and Kontogiannis present an XML-based
framework that attempts to represent higher level artifacts
in a language-neutral way [1]. The framework includes an
XML DTD for each of several artifacts, including control
flow graphs, program dependence graphs, and call graphs.
The basic elements that are common between the artifacts
are represented asFactsand are encoded by another XML
DTD, FactML. The framework is multi-layered and follows
a “pipe and filter” architectural style.

2.2 Evaluating reverse engineering tools

An important attribute of any reverse engineering in-
frastructure is that it provide for repeatability of results,
and allow comparison of results from different approaches.
One way this can be achieved is by agreement on stan-
dard schemas for representing information, which would
allow output from different tools or tool sets to be directly
compared. Attempts in this direction include the Dagstuhl
Middle Metamodel (DMM) [33, 34], Graph Exchange Lan-
guage (GXL) [22, 20] and WoSEF [53]. Recent work by
Eichberg et al. seeks to exploit the more generic standards
XML and XQuery to provide a uniform approach to extract-
ing information from reverse engineering tasks [8].

Even with an agreed output schema (or conversion to
such a schema) there can still be considerable difficulties in-
volved in comparing results. Murphy et al. describe a com-
parison of nine tools for extracting C call graphs from three
software systems, and finds a considerable variance in the
outputs [42]. In a paper describing a novel points-to analy-
sis algorithm, Das notes that it took his team several months
to synchronize the output from tools implementing compet-
ing approaches, so that the results could be compared [5]. In
both cases, the problem was with different definitions and
interpretations of the information that was required, rather
than with the output format.

The importance of benchmarks in software engineering
in general, and in evaluating fact extractors in particular,
has been noted by Sim et al. [52]. They describe the con-
struction of a benchmark suite designed to test the accuracy

and robustness of fact extractors, and apply it to compara-
tively evaluate four tools. In a similar vein, Lin et al. de-
scribe a four-level hierarchy of completeness, and use this
to validate the CPPX fact extractor [6, 36]. They use a test
suite consisting of programs used to demonstrate the Datrix
model, as well as test cases from the gcc test suite. Vin-
ciguerra et al. describe a framework for evaluating C++ and
Java disassembly and decompilation tools based around an
experimentation framework that includes a layered test suite
of programs as well as a focused set of reverse engineering
tasks [59].

2.3 Linking in reverse engineering tools

There has been relatively little work on combining in-
formation extracted from different translation units, a pro-
cess analogous to compile-time linking, where external ref-
erences in one unit are resolved to definitions in another.
Wu et al. describe a study of linking information extracted
from a PostgresSQL implementation, and note that a naive
approach to linking can give rise to linkage anomalies [60].
They describe approaches involving heuristics and build
simulation to alleviate these anomalies. Guo et al. describe
a method for assigning globally unique identifiers (UIDs) to
the declarations and references in a Java program [14]. Each
UID is based on scope and file information, and is attached
to entity references in the source code using XML markup.
While the goal of this work is not linking, the technique for
assigning UIDs is directly applicable to linking translation
units at the ASG level.

2.4 Discussion

Previous research on infrastructures has leveraged stan-
dard exchange formats (SEF) such as GXL, but has not
adequately exploited the semantic specification capabili-
ties of these SEFs. In addition, previous research has not
addressed the problem of delineating interactions among
schemas at the semantic level. Our infrastructure utilizes
the semantic specification capabilities of GXL.

The benchmark approach to evaluating reverse engineer-
ing tools has been used in previous research for evaluation
and comparison, but requires manual comparison of the re-
sults. The approach that we support with our schema hier-
archy imposes an additional requirement that the tool out-
put must conform to a common schema, or be translated to
conform to a common schema. This additional requirement
permits comparision of results to be fully automated.

Linking translation units from a program into a unified
representation has been addressed for several languages, in-
cluding PostgresSQL, Java, and C++, in previous research.
We have adopted certain elements of these approaches, such
as a variation of UIDs. In addition, to address the current
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lack of a publically accessible repository containing repre-
sentations of linked translation units for C++ programs, we
provide GXL instances of unified representations that con-
form to our CppInfo API schema on our SourceForge.net
repository [43].

3 Overview of the Infrastructure

Our goal is to provide an infrastructure that supports in-
teroperability among various reverse engineering tools and
applications. The issues involved in the construction of such
an infrastructure have been discussed in the literature and
at the Dagstuhl Seminar onInteroperability of Reengineer-
ing Tools, where GXL was ratified as the standard format
for the exchange of graphs among reverse engineering and
reengineering tools and applications [7]. At the seminar, the
participants identified three levels at which interoperability
should be applied:

• Low-level graph structures: Abstract Syntax Trees
(AST) and adorned ASTs (ASG);

• Middle-level graph structures: such as call graphs and
program dependence graphs;

• High-level graph structures: Architecture descriptions.

Our goal is the practical realization of interoperability
through the design of schemas and the construction of tools
and instance graphs at each of these three levels. Moreover,
we wish to complement the plethora of schemas [3, 9, 39]
and tools [2, 6, 9, 16, 30] for low-level graph structures
by addressing the dearth of schemas and publicly available
tools for middle-level graph structures.

In particular, the goals of our work are:

1. The practical realization of tools and applications to
support interoperability among reverse engineering
and reengineering tools and applications;

2. Support for repeatability of results:

(a) to obviate the need for researchers to repeat the
development already achieved by previous re-
searchers, and

(b) To facilitate comparison of results among tools
and applications constructed by different re-
searchers.

3. Provision for a complete infrastructure including all
tools required for each of the three levels, together with
other infrastructure artifacts such as test cases, results,
and support for the comparison of results.

Figure 1 provides an overview of the hierarchy of
schemas in our infrastructure that facilitate interoperabil-
ity and reuse for reverse engineering tools and applications.

There are two major partitions in our hierarchy: low-level
and middle-level; there are five minor partitions in our hier-
archy: Levels 0 through 4. The dashed ellipses in the fig-
ure represent schemas for graphical representations of code
that differ for disparate languages, such as an abstract syn-
tax graph (ASG) and an application programmer’s interface
(API). The solid ellipses in the low-level partition of the fig-
ure represent the schemas used in our implementation, and
are discussed further in Section 3.2. The solid ellipses in
the middle-level partition of the figure represent schemas
for graphical representations of code that are language in-
dependent, such as a call graph and a control flow graph.
The middle-level partition of Figure 1 is discussed in Sec-
tion 3.3.

3.1 Graph eXchange Language

Graph eXchange Language (GXL) is a standard ex-
change format (SEF) that is an XML language defined by
a DTD (Document Type Definition) and conceptualized as
a typed, attributed, directed graph. GXL is used to describe
both instance data and its schema; schemas in GXL can be
represented by UML class diagrams [22]. GXL provides
a common base, from which any schema for representing
software can be derived, through the use of explicit-external
schemas and a metaschema for E-R graphs [26].

GXL was ratified asthe standard format for the ex-
change of graphs among reverse engineering and reengi-
neering tools at the Dagstuhl Seminar onInteroperability
of Reengineering Tools. To this point, some tools have
made instance graphs available in GXL, but those same
tools have not made GXL schemas available. In addition,
tools have previously not been designed around a GXL-
based pipe-filter architecture. However, our infrastructure is
designed around a GXL-based pipe-filter architecture, and
the constituent components of our infrastructure, including
GXL schemas and instance graphs, are available in our web
repository [21].

3.2 Low-level graph schemas

Levels 0 and I in Figure 1 comprise the low-level par-
tition of the hierarchy of schemas. Level 0 contains the
schema for an abstract semantic graph (ASG), which con-
tains information about a parsed and analyzed translation
unit. In our implementation of the infrastructure, we use the
GENERIC ASG schema, the internal ASG schema used by
gcc. The GENERIC ASG schema consists of 200 concrete
node classes and 75 concrete edge classes.

Level I of figure 1 contains a schema for an application
programmer’s interface (API). In our infrastructure, an API
schema is similar to a middle model such as the Dagstuhl
Middle Metamodel (DMM) [33] in that it abstracts the in-
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Figure 1. Overview of the Schemas in the Infrastructure. This figure illustrates the levels in our infrastructure.
The dashed edges represent realization. The solid edges represent the progression of information from a graphical
representation at one level to a graphical representation at a subsequent level.

formation found in an ASG, but differs in that it retains
more detail about declarations, statements, and some ex-
pressions (such as function calls). Despite retaining sig-
nificant low-level information, the API schema lessens the
cognitive burden on a user who requires access to this low-
level information. TheCppInfo API schema, partially il-
lustrated in Figure 2, consists of 63 total node classes, in-
cluding only 38 concrete node classes, and 38 concrete edge
classes Note that while theCppInfo API schema currently
does not include representations for expressions, our pre-
liminary work suggests that the addition of expressions will
introduce no more than 20 total node classes and 10 con-
crete edge classes. This is in stark contrast to theGENERIC

ASG schema, which uses 139 concrete node classes to rep-
resent expressions.

3.3 Middle-level graph schemas

The solid edges in Figure 1 represent the progression of
information from a graphical representation at one level to
a graphical representation at a subsequent level [4, 15, 54,
55]. The edge fromCppInfo to Class Diagram shows that
the information needed to build a class diagram can be gath-
ered from the information about classes found in an instance
of the CppInfo API schema. Similarly, an instance of the
CppInfo API schema provides: the statement level informa-
tion needed to build a control flow graph (CFG), the func-
tion declaration and call site information needed to build a
call graph, and the statement and transfer of control infor-
mation needed to build a control dependence graph (CDG).
Thus, all of the schemas at Level II of Figure 1 can be built
from information gathered by accessing the information in

aCppInfo API instance.
To build instances of the schemas shown in Level III

of Figure 1, the information found in instances of Level
II schemas can be reused. For example, there is an edge
from Class Diagram in Level II to ORD in Level III. This
indicates that the information found in aClass Diagram
instance can be reused to build an object relation diagram
(ORD) 1 [37]; the only edges not readily available in a
Class Diagram are polymorphic edges, and the informa-
tion needed to generate polymorphic edges can be extracted
from the information in theClass Diagram instance. Thus,
construction of anORD can be accomplished by reusing the
information in aClass Diagram instance.

Also at Level III of Figure 1 are schemas for an Interpro-
cedural Control Flow Graph (ICFG) and a Program Depen-
dence Graph (PDG). The edges fromCFG andCall Graph
in Level II to ICFG in Level III indicate that the informa-
tion contained in aCFG instance and aCall Graph instance
can be reused to build anICFG instance; however, in this
case, such reuse requires that theCall Graph instance con-
tain information about each individual call site, as shown in
Figure 4. In fact, all solid edges in Figure 1 require that in-
stances of the source and sink schemas conform to their re-
spective schemas. Moreover, the edge fromCDG in Level
II to PDG in Level III indicates that the information con-
tained in aCDG instance can be reused to build aPDG
instance [15].

Level IV of Figure 1 contains ellipses representing
schemas for a Class Firewall, a Class Control Flow Graph

1The use of the term ORD is a bit of a misnomer, since the nodes are
classes, not objects; however, since the term is used in previous research,
we continue its use in this paper.
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Figure 2. Partial CppInfo API schema. This figure illustrates some of the main node classes in the CppInfo API
schema. Details, such as attributes and operations, are elided here, but are available in the full version of the schema.
The full version of the schema is available in our web repository as both a GXL schema and a UML class diagram.

Figure 3. Schema for an ORD. This figure il-
lustrates a schema for an Object Relation Diagram
(ORD). An ORD is a graph consisting of nodes repre-
senting classes, and edges representing relationships
between the classes.

(CCFG), and a System Dependence Graph (SDG). In-
stances of the schemas in Level IV can be built from infor-
mation found in instances of schemas at Levels II and III.
The edge fromORD at Level II toClass Firewall at Level
III indicates that the information in an instance of theORD
schema can be reused to build an instance of theClass Fire-
wall schema [55], while the edges fromClass Diagram at
Level II andICFG at Level III to CCFG at Level IV indi-
cate that the information contained in aClass Diagram in-
stance and aICFG instance can be reused to build aCCFG
instance [4], and the edges fromCFG at Level II andPDG
at Level III toSDG at Level IV indicate that the information
contained in multipleCFG instances and multiplePDG in-
stances can be reused to build anSDG instance [54].

Figures 3, 4 and 5 illustrate schemas for an ORD, Call

Figure 4. Schema for a Call Graph. This figure
illustrates a schema for a call graph, a graph whose
nodes represent either functions or function call sites
and whose edges represent function invocations.

Graph and CFG, respectively. In our schemas, we useasso-
ciation classes[12] to model edges that represent associa-
tions. The use of association classes allows for subclassing
and the addition of attributes and operations. For exam-
ple, the ORD schema in Figure 3 consists of eight classes,
two classes for nodes,Class, and edges,Edge, and six
classes derived fromEdge representing the six kinds of re-
lationships between classes. These relationships consist of
Association, Composition, Dependency, Inheritance,
OwnedElement and Polymorphic edges [37]. The call
graph schema in Figure 4 consists of three classes represent-
ing a function,Function, a function invocation,Function-
Call and the relationshipisCaller, which specifies the line
number where the function invocation occurred. Finally,
the control flow graph (CFG) schema in Figure 5 consists
of six classes representing the flow of control between ba-
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Figure 5. Schema for a Control Flow Graph.
This figure illustrates a schema for a control flow
graph, whose nodes represent blocks of straight-line
code and whose edges represent flow of control be-
tween the blocks.

sic blocks in a program.

3.4 Comparing graph instances

Each of the schemas in Figure 1 can be expressed as a
GXL [21] schema and used to facilitate comparison of re-
sults for a given graph structure. The schemas are designed
to be minimal yet complete, and hence to represent only
the information required to construct a given graph struc-
ture. To perform a comparison, the tools under study are
not required to produce instances of the same schema; how-
ever, comparison of the instances generated for each tool
can only be undertaken for those parts of the schema that
are common to both tools. Alternatively, comparison of in-
stances can be undertaken if the instances are transformed
to instances of the appropriate schema provided by our in-
frastructure.

One technique for comparison of GXL instance graphs
is the use of XSLT style sheets. These style sheets represent
transformations that are specified at the schema level, that
is, the transformations can be applied to any conforming
instance of the given schema. All of the results in Section
5.4 were obtained in this manner.

4 Implementation of the Infrastructure: g4re

Our g4re tool chainexploits GENERIC, the ASG repre-
sentation incorporated into thegccC++ compiler, to facili-
tate analysis of real C++ programs. We use a command line
flag, -fdump-translation-unit-all , to obtain a
plain text representation of theGENERIC instance for each
translation unit in a program fromgcc. These representa-
tions are known astu files. The use oftu files provides
flexibility over hard-coding our solution into thegccsource
code, and additionally, fits the theme of exchange among
reverse engineering tools.

We describe g4re as atool chain, because the applica-
tions and libraries that constitute g4re can be used individ-
ually or in concert. Each application or library in the chain
takes, as input, the output of the preceding application or li-
brary in the chain. As a result, our implementation is mod-
ular; the modules in our system include: theASG module,
theschema module, thetransformation and linking module,
and theAPI module.

The ASG module, generic, is shown as a package near
the bottom left of Figure 6. Thegeneric package provides
parsing oftu files using a scanner generated byflex (not
shown). In addition, the package provides parsing of GXL
and gzipped GXL encodings oftu files using the popular
librariesexpat[56] andzlib [62]. The applicationtu2gxl,
shown on the far left of the bottom row of Figure 6, uses the
generic package to transform plain texttu files to equiva-
lent GXL files that conform to theGENERICGXL schema.

Theschema module, cppinfo, is shown as a package in
the upper left of Figure 6. Thecppinfo package provides a
class hierarchy, written in ISO C++, that implements theCp-
pInfo API schema. The package also provides utility classes
to read and write GXL instances and an abstract base class
that defines the interface for an API that provides access to
the information found in an instance of theCppInfo API
schema.

The transformation and linking module, g4xformer,
is shown as a package in the center of Figure 6. The
g4xformer package provides an implementation of the
transformation from the ASG representation provided by
thegeneric package to an intermediate API representation
that consists of instances of the classes provided by thecp-
pinfo package. In addition, the package implements the
linking of the intermediate API instances into a single inter-
mediate API instance that contains a unified representation
of a program.

TheAPI module, g4api, is shown as a package with the
stereotype<<API>> to the right of center in the middle
of Figure 6. Theg4api package provides a concrete im-
plementation of the API interface provided by the schema
module, and is discussed in the following section.

4.1 g4api

The g4re tool chain providesg4api, an Application Pro-
grammer’s Interface (API) for accessing information in the
unified representation of a C++ program. TheCppInfo API
schema, described in Section 3.2, is used to model the im-
plementation ofg4api. Our implementation of the API
provides the capability to serialize the unified representa-
tion of a program to a GXL instance that conforms to the
CppInfo API schema. Additionally, the implementation is
capable of deserializing the GXL instance into an API in-
stance, thereby eliminating the need to repeatedly link all
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Figure 6. System Overview. This figure illustrates a system diagram for g4re. The dashed lines represent “use”
dependencies. The solid lines represent input and output.

translation units for a C++ program.

g4api provides a clear and flexible interface for access-
ing the language elements in a C++ program. The first point
of access provided byg4api is in the form of a pointer to the
global namespace. Using this pointer, a user may traverse
the underlying graph structure. We provide severalItera-
tor classes, as well as an abstract baseVisitor class [13], for
users to leverage when accessing the API in this fashion.
Alternatively, a user may access several lists containing in-
stances of particularCppInfo schema classes present in the
API. Currently, these lists are provided forNamespace,
Class, Enumeration, Enumeration, Function, Variable,
andTypedef, and we do intend to extend this point of ac-
cess to include lists of instances for additionalCppInfo
schema classes. These lists are available in two forms. The
first form provides all instances of the particular schema
class; the second form providesfilteredinstances of the par-
ticular schema class.Filtered instances are determined by
user-providedfilter lists, shown near the top of the center
column in Figure 6.Filter lists contain the names of source
files from which instances should be ignored.

We usedg4api to conduct the case study of Section 5.
Specifically, we used the API to construct ORDs for several
real C++ programs. The repository for our infrastructure
[43] contains the full source code for several example pro-
grams that useg4api; these example programs include the
ORD builder, a metrics computation system, a Class Dia-

gram builder, and a graphical source code browser.

4.2 Creating API instances

g4api is instantiated by a user program, as shown in the
upper right of Figure 6. To instantiate the API, the user pro-
gram provides a list containing the names of the input files,
which are shown at the top of Figure 6. The input files con-
tain GENERIC ASG instances and may include any combi-
nation of: tu files, GXL files, and gzipped GXL files. The
process of obtaining a list of input files is illustrated in the
UML Activity Diagram shown in Figure 7. We discuss the
advantages and disadvantages of each input format in the
case study of Section 5.g4api may also be instantiated by
a single GXL file that encodes an instance of theCppInfo
API schema, as discussed in Section 4.1.

4.3 Linking API instances

Typical C++ programs are spread among tens, hundreds,
or even thousands of files, both header and source. AC++

translation unitconsists of a source file and all of the header
files it includes, either directly or transitively. A C++ com-
piler, such asgcc, performs parsing, analysis, and code gen-
eration at the translation unit level; linking is performed on
the generated object code by the system linker, e.g.ld on
Unix systems. The system linker must check for multiple
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Figure 7. UML Activity Diagram for g4api Input. This figure illustrates the process of creating input files for use
with the g4api API in any of three different formats.

definitions and inconsistencies, e.g. incompatible function
declaration and definition, between translation units.

A reverse engineering tool for C++ must also perform
parsing and analysis at the translation unit level, but rather
than generating code, a reverse engineering tool gener-
ates an ASG (or another program representation). Because
reverse engineers are principally interested in analyzing
whole programs, not individual translation units, a reverse
engineering tool for C++ must provide a facility for link-
ing the representations of the individual translation units.
A reverse engineering linker may generally assume that the
program being analyzed is both compilable and linkable at
the object code level; therefore, linking at the ASG (or other
program representation) level does not require error check-
ing.

In our infrastructure, described in Section 3, facilities for
linking are provided by a Level I schema. Level I schemas
must provide some form ofunique name, which is not spe-
cific to a particular translation unit, for each schema entity
that can appear in multiple translation units. Unique names,
such as a mangled names or fully-qualified names, enable a
module, such as a stand-alone linker or an API builder, to
link individual translation units into a unified representation
of the program. Requiring linking facilities to be present in
a Level I schema obviates the need to provide such facilities
in schemas at subsequent levels of the infrastructure.

In an instance of theCppInfo API schema, each class
instance,C, is related to at least oneDeclaration instance,
D, by one of the following relationships: identity (C is D),
composition (C is an attribute ofD), or containment (C is
contained byD). Because of the existance of one of these
relationship for each class instance, we provide linking fa-
cilities in theCppInfo API schema by requiring that each
Declaration be assigned a unique name. In addition, be-
causeFunctionBody is a subclass ofDeclaration, we also
use this process to resolve function declarations to their cor-
responding definitions.

The implementation of our reverse engineering front
end, g4re, links all translation units from a given C++ pro-

gram. In g4re, linking is performed byg4xformer, the
transformation and linking module, on an intermediate form
of the API. When instantiating the API, a user provides all
translation units from a C++ program;g4xformer serially
transforms each ASG to an intermediate API instance, con-
sisting of dictionaries mapping unique names to theirCp-
pInfo API schema node class instances, and performs link-
ing of the intermediate API instances each time a pair be-
comes available. Therefore, linking in g4re is performed
n − 1 times, wheren is the number of translation units.
Intuitively, we achieve linking of schema elements by per-
forming a traversal of the most recently constructed inter-
mediate API instance, adding or appending elements in the
existing intermediate API instance if they are not found or
are incomplete. For example, the elementFunction is in-
complete if one of its instances does not contain a body,
while the elementsNamespace andClass are incomplete
if they contain incompleteFunction or Class elements.

5 Case Study

In this section we describe the results of a feasibility
study of our infrastructure. All experiments were executed
on a workstation with anAMD Athlon64 3000+proces-
sor, 1024 MB of PC3200 DDR RAM, and a 7200 RPM
SATA hard drive formatted with version 3.6 of theReiserFS
filesystem, running the Slackware 10.1 operating system.
The programs were compiled usinggccversion 3.3.6.

In Section 5.1 we describe ten applications and libraries
that serve as the test suite in our study. In Section 5.2 we
describe results for exchanging instances of low-level graph
schemas. In Section 5.3 we describe results for exchanging
instances of middle-level graph schemas. Finally, in Sec-
tion 5.4 we extract results from GXL instances of the ORD
schema by applying XSLT style sheets.
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Test Case Doxygen FOX FluxBox HippoDraw Jikes Keystone Licq Pixie Scintilla Scribus

Version 1.4.4 1.4.17 0.9.14 1.15.8 1.22 0.2.3 1.3.0 1.5.2 1.66 1.2.3
C++ Translation Units 69 245 107 249 38 52 28 78 78 110
NCLOC (≈ K) 170 110 32 55 70 16 36 80 35 80

Table 1. Testsuite. This table lists the ten test cases that we use in our study. For each test case, we list the version,
the number of translation units, and the approximate number of lines of non-commented, non-preprocessed lines of
code (NCLOC).

5.1 The test suite of applications and libraries

Table 1 lists the ten open source applications and li-
braries, or test cases, that form the test suite that we use
in our study, together with important statistics about each
test case2. The header of the table lists the names that
we use to refer to each of the test cases:Doxygen, FOX,
FluxBox, HippoDraw, Jikes, Keystone, Licq, Pixie, Scin-
tilla , andScribus. Doxygenis a documentation system for
C++, C, and Java [58].FOX is a toolkit to facilitate develop-
ment of graphical user interfaces [57].FluxBox is a light-
weight X11 window manager built for speed and flexibility
[11]. HippoDrawprovides a highly interactive data analy-
sis environment [17].Jikesis a Java compiler system from
IBM [23]. Keystoneis a parser and front end for ISO C++

[28, 38]. Licq is a multi-threaded ICQ clone [35].Pixie is
a RenderMan like photorealistic renderer [47].Scintilla is
a source code editing component that includes support for
syntax styling, error indicators, code completion, and call
tips [49]. The final test case isScribus, a desktop publish-
ing system for Unix-like platforms [50].

The remaining three rows of data in Table 1 list relevant
details of the test cases. The first row of the table lists the
version number and the second row lists the number of C++

translation units. Finally, the third row lists the approxi-
mate number of thousands of lines of non-commented, non-
preprocessed lines of code.

5.2 Exchanging low-level graph instances

In this section we investigate the costs associated with
exchanging instances of low-level graphs; in particular, we
investigate the costs of exchanging instances of both the
GENERICASG schema and theCppInfo API schema. First,
we illustrate and discuss the different exchange formats
used in g4re. Next, we measure and discuss the storage
costs of exchanging low-level graphs. Finally, we mea-
sure and discuss the run-time costs of exchanging low-level
graphs, and summarize the results of this section.

Recall that our g4re tool chain accepts multiple input for-
mats, as shown in Figures 6 and 7. The definition of a C++

2Additional information about each test case is available in our online
repository.

class,Parser , in the GENERIC tu file format is shown
in Figure 8, the corresponding definition as a partial GXL
instance of theGENERICschema is shown in Figure 9, and
the corresponding definition as a partial GXL instance of the
CppInfo API schema is shown in Figure 10. Immediately,
we see that GXL (and hence XML) is more verbose than
the gcc tu format; the respective character counts for the
text in the three figures are 497, 1503, and 1307. Also, note
that the text in Figure 8 contains information not present in
Figures 9 and 10, including addresses and string lengths.

It is well known that XML imposes significant storage
costs; however, this fact has not hindered the wide spread
adoption of XML. Due to the prevalence of XML, there are
several tools, available in several popular languages such
as C, C++, and Java, that were designed with these costs in
mind. In particular, several XML parsers, includingexpat,
allow for easy integration with libraries that read and write
compressed files, includingzlib.

Table 2 presents a summary of the storage costs for the
low-level graphs representing each of the test cases. A com-
parison of rows 1 and 2 of the table shows the significant
storage cost introduced by the use of an XML dialect (in this
case GXL). For each test case, encoding thetu files in GXL
more than doubled the storage costs; for example, the total
storage cost of thetu files for Jikes is 872 megabytes, but
the total storage cost of the GXL encodings of thetu files
is 2 289 megabytes. A comparison of rows 2 and 4 of Table
2 shows the savings in storage cost achieved through the
elimination of duplicated information by the linking pro-
cess. The savings vary by test case; higher savings suggest
that the size of the set of header files included in multiple
translation units is large, while lower savings suggest that
the size of the set is small. A comparison of rows 1 and 4 of
the table again shows the significant storage cost introduced
by GXL; even with the elimination of duplicated informa-
tion, the storage costs shown in row 4 are larger than those
in row 1 for all test cases. Rows 3 and 5 show the sig-
nificant savings in storage cost that compression introduces
when compared to rows 2 and 4, respectively. Next, we in-
vestigate the run-time costs introduced by the use of GXL
and compressed GXL files.

Table 3 presents a summary of the run-time costs for
parsing and building an in-memory representation for the
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@48049 type_decl name: @50737 type: @50738 scpe: @13938
srcp: parser.h:76 artificial
chan: @50739 addr: b66969a0

@50737 identifier_node strg: Parser lngt: 6 addr: b66b3ac0

@50738 record_type name: @48049 size: @53498 algn: 32
base: @23733 public struct
flds: @53499 fncs: @53500 binf: @53501
addr: b6696850

Figure 8. Instance of a tu file. This figure illustrates the definition of class Parser as represented in a tu file. A
node definition in a tu file consists of: a unique integer prepended with “@”, a string representing the node type, edges
of the form “edge: dest”, fields of the form “field: value”, and a set of single word attributes.

<node id="n48049">
<type xlink:href="GENERIC.gxl#type_decl"/>
<attr name="attr"><set><string>artificial</string></set></attr>
<attr name="srcp"><string>parser.h:76</string></attr>

</node>
<edge from="n48049" to="n50739"><type xlink:href="GENERIC.gxl#type_decl_chan"/></edge>
<edge from="n48049" to="n50738"><type xlink:href="GENERIC.gxl#type_decl_type"/></edge>
<edge from="n48049" to="n50737"><type xlink:href="GENERIC.gxl#type_decl_name"/></edge>

<node id="n50737">
<type xlink:href="GENERIC.gxl#identifier_node"/>
<attr name="attr"><set></set></attr>
<attr name="strg"><string>Parser</string></attr>

</node>

<node id="n50738">
<type xlink:href="GENERIC.gxl#record_type"/>
<attr name="attr"><set><string>struct</string></set></attr>
<attr name="qual"><string></string></attr>

</node>
<edge from="n50738" to="n23733">

<type xlink:href="GENERIC.gxl#record_type_base"/>
<attr name="base"><tup><bool>false</bool><string>public</string></tup></attr>

</edge>
<edge from="n50738" to="n53500"><type xlink:href="GENERIC.gxl#record_type_fncs"/></edge>
<edge from="n50738" to="n53501"><type xlink:href="GENERIC.gxl#record_type_binf"/></edge>
<edge from="n50738" to="n53499"><type xlink:href="GENERIC.gxl#record_type_flds"/></edge>
<edge from="n50738" to="n48049"><type xlink:href="GENERIC.gxl#record_type_name"/></edge>

Figure 9. GXL instance of the GENERIC schema. This figure illustrates the definition of class Parser as
represented in a GXL instance of the GENERIC schema. The GENERIC GXL schema is a direct encoding of the tu file
format, but with internal gcc information, such as addresses and string lengths, omitted. The “@” symbol is translated
to “n” to conform to XML standards.
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<node id="n31873">
<type xlink:href="CppInfo.gxl#Identifier"/>
<attr name="string"><string>parser.h</string></attr>

</node>

<node id="n53656">
<type xlink:href="CppInfo.gxl#ClassNonTemplate"/>

</node>
<edge from="n53656" to="n41484">

<type xlink:href="CppInfo.gxl#Base"/>
<attr name="inheritanceSpec"><tup><bool>false</bool><string>public</string></tup></attr>

</edge>
<edge from="n53656" to="n4"><type xlink:href="CppInfo.gxl#DefinedIn"/></edge>
<edge from="n53656" to="n31873"><type xlink:href="CppInfo.gxl#SourceFile"/></edge>
<edge from="n53656" to="n53657"><type xlink:href="CppInfo.gxl#Name"/></edge>
<edge from="n53656" to="n53658"><type xlink:href="CppInfo.gxl#Enumerations"/></edge>
<edge from="n53656" to="n53661"><type xlink:href="CppInfo.gxl#Enumerators"/></edge>
<edge from="n53656" to="n53664"><type xlink:href="CppInfo.gxl#Functions"/></edge>
<edge from="n53656" to="n54657"><type xlink:href="CppInfo.gxl#Functions"/></edge>
<edge from="n53656" to="n54742"><type xlink:href="CppInfo.gxl#Variables"/></edge>

<node id="n53657">
<type xlink:href="CppInfo.gxl#Identifier"/>
<attr name="string"><string>Parser</string></attr>

</node>

Figure 10. GXL instance of the CppInfo schema. This figure illustrates the definition of class Parser as
represented in a GXL instance of the CppInfo schema.

Test Case Doxygen FOX FluxBox HippoDraw Jikes Keystone Licq Pixie Scintilla Scribus

.cpp.tu 863 1 643 1 540 2 283 872 773 341 414 177 2 222

.cpp.tu.gxl 2 274 4 510 3 737 6 679 2 289 1 895 990 1 059 509 5 198

.cpp.tu.gxl.gz 191 323 323 486 205 201 71 70 36 450

.api.gxl 1 289 4 081 2 989 4 269 1 289 1 290 545 692 378 4 277

.api.gxl.gz 59 192 135 192 60 59 25 31 17 194

Table 2. Size on disk (MB). This table lists the size on disk, in megabytes, for low-level graphs. Row 1 lists the total
size of the tu files for each test case, rows 2 and 3 list the total sizes of the uncompressed and compressed GXL encoded
tu files, respectively, and rows 4 and 5 list the total sizes of the uncompressed and compressed GXL instances of the
CppInfo schema, respectively.

Test Case Doxygen FOX FluxBox HippoDraw Jikes Keystone Licq Pixie Scintilla Scribus

.cpp.tu 206.07 347.15 341.50 514.72 208.93 171.89 76.06 86.74 38.63 508.73

.cpp.tu.gxl 230.73 379.16 354.50 589.41 228.14 178.55 88.01 99.34 45.47 510.96

.cpp.tu.gxl.gz 238.18 393.72 364.37 618.10 236.06 185.64 91.07 103.92 48.24 527.74

.api.gxl 82.86 288.16 192.32 274.87 83.17 84.10 35.43 44.19 24.08 275.13

.api.gxl.gz 91.97 303.35 213.50 306.31 92.06 91.66 38.93 46.36 27.03 306.13

Table 3. Time (s). This table lists the running time, in seconds, to parse and build in-memory representations of
low-level graphs for each test case. Row 1 lists the total time for the tu files for each test case, rows 2 and 3 list the
total times for the uncompressed and compressed GXL encoded tu files, respectively, and rows 4 and 5 list the times for
the uncompressed and compressed GXL instances of the CppInfo schema, respectively.
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low-level graphs representing each of the test cases. As
stated in Section 4, we parsetu files using aflexgenerated
scanner, GXL files usingexpat, and compressed GXL files
using the combination ofexpatandzlib. We use the same
node, edge, and graph data structures to store each graph
instance in memory. A comparison of rows 1 and 2 of Table
3 shows the run-time cost introduced by the use of GXL.
The running times for GXL input are consistently higher
than those fortu input, but the run-time cost introduced by
GXL is much lower than the corresponding storage cost. A
comparison of rows 1 and 4 shows a significant savings in
run-time cost when dealing with a linked representation of
a program. In addition, a comparison of rows 2 and 4 with
rows 3 and 5, respectively, shows that while a run-time cost
is introduced when dealing with compressed files, the cost
is minimal when the corresponding savings in storage cost
is considered.

The results for exchanging low-level graphs show that
the storage costs for uncompressed files are prohibitive, as
are the run-time costs for unlinked graphical program rep-
resentations. Despite the savings achieved through the ex-
change of compressed and linked low-level graphs, both the
storage and run-time costs are comparatively high, as the
results in the next section show.

5.3 Exchanging middle-level graph instances

In this section we investigate the costs associated with
exchanging instances of middle-level graphs; in particular,
we investigate the costs of exchanging GXL instances of the
ORD schema presented in Section 3.3. First, we measure
and discuss the storage costs of exchanging middle-level
graphs. Next, we measure and discuss the run-time costs
of exchanging middle-level graphs, and summarize the re-
sults of this section.

Figure 11 illustrates a prototypical GXL instance of the
ORD schema. Table 4 presents a summary of the storage
costs for the ORD instances representing each of the test
cases. Immediately, we see that the storage costs for the
uncompressed ORD instances are an order of magnitude
smaller than those of the compressed and linked low-level
graphs from the previous section. In addition, the storage
costs for the compressed ORD instances are at most 0.532
megabytes for FOX and as little as 0.011 megabytes for
Keystone.

Table 5 presents a summary of the run-time costs for
parsing and building an in-memory representation for the
ORD instances representing each of the test cases. We
use the same tools and data structures for parsing and in-
memory representation that we described in Section 5.2. As
with storage costs, the run-time costs for ORD instances
are at least one order of magnitude smaller than those for
the compressed and linked low-level graphs from Section

5.2. In addition, the run-time costs introduced when deal-
ing with compressed files are insignificant.

The results for exchanging middle-level graphs show, for
both storage and run-time costs, savings of at least one order
of magnitude when compared to the results for exchanging
low-level graphs. Thus, the results indicate significant sav-
ings in the costs of exchange for applications that do not
require full low-level information about a program. For ex-
ample, an application that builds a class firewall can take
advantage of these savings by using ORD instances, rather
than ASG or API instances, as input. Other applications of
these savings are described in Section 3.

5.4 Transforming graph instances using XSLT

In this section we apply transformations to the GXL in-
stances of the ORD schema that is discussed in the previous
section. First, we illustrate an XSLT style sheet for summa-
rizing GXL instances of the ORD schema. Next, we apply
the XSLT style sheet to the ORD instances discussed in Sec-
tion 5.3.

Figure 12 illustrates an XSLT style sheet for summariz-
ing the information in an ORD GXL instance. As men-
tioned in Section 3.4, the style sheet is specified at the
schema level. The style sheet defines nine variables that
contain the sets of classes, edges, association edges, compo-
sition edges, dependency edges, inheritance edges, owned
element edges, and polymorphic edges, respectively. The
style sheet contains nine statements that output the sizes of
the sets.

Table 6 summarizes the results of applying the XSLT
style sheet to the ORD GXL instances described in Section
5.3. We applied the style sheet to the ORD GXL instance
for each test case usingxsltproc[61], which is freely avail-
able and runs on many platforms. Row 1 of Table 6 lists the
running time in seconds forxsltprocto apply the style sheet
to each test case. The running times are all small, ranging
from 0.07 seconds for Keystone to 8.00 seconds for FOX.
Row 2 of the table lists the number of classes found in the
ORD for each test case. Rows 3 through 8 of the table list
the number of the respective edge types found in the ORD
for each test case. The bottom row of Table 6 lists the total
number of edges found in the ORD for each test case.

5.5 Threats to validity

There are several threats to the validity of our studies.
An external threat to our studies ensues from our use of the
gcccompiler at Level 0 of the infrastructure: generation of
tu files that work with our system is dependent on versions
3.3.0 through 3.4.0 of the gcc compiler. However, the arti-
facts of the g4re system at Level I, including theCppInfo
API, can be compiled and used with any version of the gcc
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<?xml version="1.0"?>
<!DOCTYPE gxl SYSTEM "gxl-1.0.dtd">
<gxl xmlns:xlink="http://www.w3.org/1999/xlink">

<graph id="OrdInstance" edgemode="directed">
<type xlink:href="ORD.gxl#ORD"/>
<node id="c0">

<type xlink:href="ORD.gxl#Class"/>
<attr name="name">

<string>::A</string>
</attr>

</node>
<node id="c1">

<type xlink:href="ORD.gxl#Class"/>
<attr name="name">

<string>::B</string>
</attr>

</node>
<node id="e0"><type xlink:href="ORD.gxl#Inheritance"/></node>
<edge from="c1" to="e0"><type xlink:href="ORD.gxl#isSrc"/></edge>
<edge from="c0" to="e0"><type xlink:href="ORD.gxl#isDest"/></edge>

</graph>
</gxl>

Figure 11. ORD GXL instance. This figure illustrates a GXL instance of the ORD schema containing two classes
and one edge.

Test Case Doxygen FOX FluxBox HippoDraw Jikes Keystone Licq Pixie Scintilla Scribus

.ord.gxl 10 12 2 4 9 0.175 3 3 0.614 2

.ord.gxl.gz 0.441 0.532 0.082 0.171 0.378 0.011 0.125 0.125 0.031 0.058

Table 4. Size on disk (MB). This table lists the size on disk, in megabytes, for ORD GXL instances. Row 1 lists the
size of the ORD GXL instances for each test case, and row 2 lists the size of the compressed ORD GXL instances for
each test case.

Test Case Doxygen FOX FluxBox HippoDraw Jikes Keystone Licq Pixie Scintilla Scribus

.ord.gxl 0.58 0.69 0.10 0.22 0.51 0.01 0.16 0.16 0.04 0.08

.ord.gxl.gz 0.63 0.74 0.10 0.24 0.58 0.01 0.17 0.18 0.04 0.08

Table 5. Time (s). This table lists the running time, in seconds, to parse and build in-memory representations of ORD
GXL instances for each test case. Row 1 lists the time for the ORD GXL instances for each test case, and row 2 lists
the time for the compressed ORD GXL instances for each test case.
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<xsl:transform version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xlink="http://www.w3.org/1999/xlink">

<xsl:output method="text" indent="no" encoding="ISO-8859-1"/>
<xsl:strip-space elements="*"/>

<xsl:template match="/gxl/graph">
<xsl:variable name="nodes"

select="node[type/@xlink:href = ’ORD.gxl#Class’]"/>
<xsl:variable name="edges"

select="node[type/@xlink:href != ’ORD.gxl#Class’]"/>

<xsl:variable name="association"
select="node[type/@xlink:href = ’ORD.gxl#Association’]"/>

<xsl:variable name="composition"
select="node[type/@xlink:href = ’ORD.gxl#Composition’]"/>

<xsl:variable name="dependency"
select="node[type/@xlink:href = ’ORD.gxl#Dependency’]"/>

<xsl:variable name="inheritance"
select="node[type/@xlink:href = ’ORD.gxl#Inheritance’]"/>

<xsl:variable name="ownedElement"
select="node[type/@xlink:href = ’ORD.gxl#OwnedElement’]"/>

<xsl:variable name="polymorphic"
select="node[type/@xlink:href = ’ORD.gxl#Polymorphic’]"/>

<xsl:text>Nodes: </xsl:text>
<xsl:value-of select="count($nodes)"/>

<xsl:text>&nl;</xsl:text>
<xsl:text>Edges: </xsl:text>

<xsl:value-of select="count($edges)"/>
<xsl:text>&nl;</xsl:text>
<xsl:text>&nl;</xsl:text>
<xsl:text>Association: </xsl:text>

<xsl:value-of select="count($association)"/>
<xsl:text>&nl;</xsl:text>
<xsl:text>Composition: </xsl:text>

<xsl:value-of select="count($composition)"/>
<xsl:text>&nl;</xsl:text>
<xsl:text>Dependency: </xsl:text>

<xsl:value-of select="count($dependency)"/>
<xsl:text>&nl;</xsl:text>
<xsl:text>Inheritance: </xsl:text>

<xsl:value-of select="count($inheritance)"/>
<xsl:text>&nl;</xsl:text>
<xsl:text>OwnedElement: </xsl:text>

<xsl:value-of select="count($ownedElement)"/>
<xsl:text>&nl;</xsl:text>
<xsl:text>Polymorphic: </xsl:text>

<xsl:value-of select="count($polymorphic)"/>
<xsl:text>&nl;</xsl:text>

</xsl:template>
</xsl:transform>

Figure 12. XSLT style sheet for summarizing ORD instances. This figure illustrates the XSLT style sheet
used to generate the results listed in Table 6
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Test Case Doxygen FOX FluxBox HippoDraw Jikes Keystone Licq Pixie Scintilla Scribus

Time (s) 6.15 8.00 0.86 1.92 5.28 0.07 1.40 1.35 0.30 0.59
Classes 562 465 243 253 322 62 225 263 89 208
Association 397 385 158 173 647 49 32 323 52 247
Composition 585 353 226 29 78 8 24 78 79 33
Dependency 14 141 18 460 5 499 8 631 7 292 554 3 793 4 588 2 198 5 078
Inheritance 335 220 198 180 164 25 161 139 14 6
OwnedElement 10 173 21 0 18 3 1 29 1 22
Polymorphic 26 618 31 116 1 311 7 143 28 762 137 7 760 6 383 469 168
Total 42 086 50 707 7 413 16 156 36 961 776 11 771 11 540 2 813 5 554

Table 6. ORD sizes for the testsuite. This table lists the number of classes and edges in the 10 ORD schema
instances constructed for the applications and libraries in our testsuite.

C++ compiler, and the schemas and artifacts at levels higher
than Level 1 are independent of any compiler.

A second external threat to our study derives from the
fact that, to our knowledge, no researchers other than the
authors of this paper and their students have exploited our
infrastructure, including use of the g4re system, the GXL
encodings oftu files, and the schemas stored in the source-
forge repository [18, 31]. However, our results have been
available for less than a year and we believe that our pub-
lication and use of the infrastructure will promote its use
among other researchers.

Threats to the internal validity consist of possible errors
in our implementation and measurement tools that might
affect outcomes. To control these threats, we continually
validated both the implementation and the timings using in-
ternal validity checks. For example, our g4re tool chain ac-
cepts multiple input formats, and the size of atu file is al-
ways smaller than its GXL formatted counterpart, the time
to parse and build an in-memory representation of a low
level graph stored intu format is always less than the time
for its GXL counterpart, and we have validated that pars-
ing and building an in-memory representation from each of
correspondingtu and GXL files yields the same graph.

5.6 Discussion

The results of our studies demonstrate the feasibility of
our GXL-based infrastructure. In particular, we report re-
sults for ten medium sized, popular, open-source programs.
These programs cover a range of applications including
graphical interface APIs, language and text processing tools
and desktop publishing. Our ongoing work includes forti-
fying our repository with additional programs and artifacts
to facilitate comparison and reproduction of results among
the community of researchers.

A comparison of rows 1 and 2 of Table 2 illustrates the
storage cost introduced by the use of GXL. In particular,
the GXL representations oftu files are at least 2.34 times
larger than the correspondingtu files in all cases, and as

much as 2.93 times larger for the HippoDraw test case.
However, a comparison of rows 1 and 3 of the same table
shows that when we compress the GXL, the storage cost for
these compressed files is less than the storage cost of the
original tu files. Thetu files are at least 3.84 times larger
than the corresponding compressed GXL representations of
tu files in all cases, and as much as 5.91 times larger for
the Pixie test case.

A comparison of rows 1 and 3 of Table 3 illustrates the
run-time cost introduced by the use of compressed GXL. In
particular, parsing and building in-memory representations
for tu files is at least 1.03 times faster than for the cor-
responding compressed GXL representations in all cases,
and as much as 1.24 times faster for the Scintilla test case.
Clearly, the run-time cost introduced by compressed GXL is
much lower than the corresponding introduced storage cost.
This result is important for working with graphs at all lev-
els, and is particularly important for working with low-level
graphs such as ASGs or APIs.

Finally, Tables 4 and 5 illustrate that the run-time and
storage costs for instances of the ORD, a middle-level
graph, are at least one order of magnitude smaller than those
for the compressed and linked low-level graphs. This is not
particularly surprising, but it does underscore the savings
that can be acheived by interoperating at the middle, rather
than low, level. In addition, in Table 6 we observe that pro-
cessing middle-level graph instances, such as ORDs, with
widely available tools, such asxsltproc, is efficient. For ex-
ample, we extracted information from an ORD with over
450 classes and thousands of edges in less than ten seconds.
Furthermore, our XSLT ORD transformations can be ap-
plied to any conformant instance of our ORD schema, not
just those instances created by our g4re system.

6 Conclusions and Future Work

In this paper, we have expanded on an infrastructure, first
introduced in [31], that supports interoperability among re-
verse engineering tools and applications. We have described
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the schema hierarchy that is central to our approach, de-
tailed the interactions among instances of the schemas, and
illustrated several of the schemas. We have implemented
the infrastructure, described our implementation, and pre-
sented the results of a case study for our infrastructure.

For this feasibility study, we use ten popular open source
applications and libraries as a test suite. As part of our
study, we applied XSLT style sheets to GXL instance
graphs. The results of the study for exchanging middle-
level graphs show, for both storage and run-time costs, sav-
ings of at least one order of magnitude when compared to
the results for exchanging low-level graphs. Our implemen-
tation of the infrastructure, as well as GXL versions of the
schemas in the hierarchy and our XSLT style sheets, are
available in our web repository. Our web repository is avail-
able athttp://g4re.sourceforge.net/ .

To evaluate the usability of our tool and the techniques
presented in the infrastructure, we introduced some of the
concepts found in this paper into a graduate course in pro-
gram analysis techniques. The Clemson University grad-
uate students were given two assignments that made use of
the infrastructure. In the first assignment, the students wrote
C++ programs that accessed theg4api to build conforming
instances of the GXL class diagram schema. In the second
assignment, the students parsed and built in-memory repre-
sentations of GXL instances of the ORD schema, and com-
puted class firewalls using only the information obtained
from the GXL instance. The students then output conform-
ing GXL instances of the class firewall schema. For the
second assignment, the students submitted solutions in an
array of languages, including C, C++, Java, and Lisp.

Our future work includes further investigation into the
hierarchy of canonical schemas described in Section 3. The
hierarchy in Figure 1 illustrates the use of instances of
schemas at Level I to build instances of schemas at Level
II, the reuse of instances of schemas at Levels II to build
instances of schemas at Level III, and the reuse of instances
of schemas at Levels II and III to build instances of schemas
at Level IV. Our ongoing work includes a formalization of
these schemas and relationships as well as an investigation
into schemas for other graph structures required for reverse
engineering of code, such as the points-to escape graph.
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