
Some observations on
the application of software metrics to UML models

- Position Paper -

Jacqueline A. McQuillan
Department of Computer Science

National University of Ireland, Maynooth

jmcq@cs.nuim.ie

James F. Power
Department of Computer Science

National University of Ireland, Maynooth

jpower@cs.nuim.ie

ABSTRACT
In this position paper we discuss some of the existing work
on applying metrics to UML models, present some of our
own work in this area, and specify some topics for future
research that we regard as important.

1. INTRODUCTION
Many object-oriented metrics have been proposed specif-

ically for the purpose of assessing the design of a software
system. However, most of the existing approaches to mea-
suring these design metrics involve the analysis of source
code. As a result, it is not always clear how to apply exist-
ing metrics at the early stages of the software development
process. With the increasing use of the Unified Modelling
Language (UML) to model object-oriented systems at the
early stages of the software development process, research
is required to investigate how the metrics can be measured
purely from UML models and prior to the implementation
of the system.

Being able to measure the metrics accurately from both
UML models and source code is important for several rea-
sons:

• The quality of the software system can be assessed in
the early stages of the software life-cycle when it is still
cost effective to make changes to the system.

• The software implementation can be assessed to de-
termine where it deviates from its design. This can
be achieved by applying the same metrics to both the
UML and source code and comparing the results. Vari-
ations in the metric values may help to identify parts of
the implementation that do not conform to its design.

• Evaluation of the correctness of round trip engineer-
ing tools can be performed. Again, applying the same
metrics to both the UML and source code may help in

Submitted to theWorkshop on Model Size Metrics at MoD-
ELS/UML 2006.

Please address correspondence to Jacqueline A. McQuillan at
<jmcq@cs.nuim.ie>

This version prepared on August 2, 2006 at 16:26 GMT.

identifying parts of the system that have been incor-
rectly forward or reverse engineered.

In this position paper we review some of the existing work
on applying metrics to UML models, present some of our
own work in this area, and outline some topics for future
research that we regard as important. However, in order to
serve as a basis for discussion, we have chosen to present
this position paper as a series of nine observations.

2. GENERAL OBSERVATIONS
In this section we present three basic observations regard-

ing the nature of metric definitions and calculation at the
model level. The observations themselves are hardly con-
tentious, but they serve as a framework for discussing re-
lated work in the area.

Observation 1. Defining model metrics is a metamod-
elling activity.

Many metrics for object-oriented software have been pro-
posed in the literature [6, 8]. However, one of the difficulties
with comparing and evaluating these metrics is in interpret-
ing and understanding their exact definition. For exam-
ple, when counting methods in a class, should constructors,
finalisers/destructors and accessor methods count as ordi-
nary methods? Should methods that are inherited but not
defined in a class be included? Should abstract methods
count as empty methods, or not at all? In order to answer
these questions, it is necessary to model the entities being
measured, and to then define the metrics in terms of this
model. In standard terminology, metrics are defined on the
metamodel of the entities being measured.

Several attempts have been made to address the prob-
lem of ambiguous metric definitions. Briand et al. propose
an integrated measurement framework, based on a model of
object-oriented systems, for the definition, evaluation and
comparison of object oriented cohesion and coupling met-
rics [5]. Harmer and Wilkie have developed an extensi-
ble metrics analyser tool for object-oriented programming
languages based on a general object-oriented programming
language metamodel in the form of a relational database
schema [30]. Reißing defines metrics over a formal model
called ODEM (Object-oriented DEsign Model) which con-
sists of an abstraction layer built upon the UML metamodel
[24].

1



Our own work uses a middle level model to define metrics
over Java programs [22]. By defining metrics on this meta-
model i.e. at the meta-level, we were able to quickly specify
and implement a number of different versions of cohesion
within a class, and evaluate the metrics over a number of
large software systems.

Observation 2. Implementing metrics that are defined
at the meta-level is (almost) free.

Using a clearly defined metamodel is important for fa-
cilitating unambiguous definitions of metrics, but it also
has clear advantages in terms of implementation. Many
metamodelling frameworks facilitate the implementation of
corresponding APIs that allow for the representation and
traversal of model instances. The canonical example is the
XML Metadata Interchange (XMI) for OMG’s MetaObject
Facility (MOF) [28], but closely related frameworks include
the Eclipse Modelling Framework (EMF)1 and the NetBeans
Metadata Repository project (MDR)2.

Previous research has exploited the implementation as-
pect of metamodels by defining metrics as queries. El-Wakil
et al. propose the use of XQuery as a metric definition lan-
guage to extract metric data from XMI design documents,
specifically UML designs [7]. Harmer and Wilkie, working
from a relational schema, express metric definitions as SQL
queries over this schema [30]. Baroni et al. have built a li-
brary called FLAME (Formal Library for Aiding Metrics Ex-
traction) that uses the Object Constraint Language (OCL)
and the UML metamodel as a mechanism for defining UML-
based metrics [2]. Goulão et al. have utilised this approach
for defining component based metrics and used the UML 2.0
metamodel as a basis for their definitions [12].

In our own work, we have specified outline metrics on
UML class diagrams, using OCL queries over the UML 2.0
metamodel [20]. The scope of such metrics is somewhat
limited, since many of the features they measure relate to
method internals, which are not available in class diagrams.
Nonetheless, a prototype tool, dMML, was developed as an
Eclipse plug-in to implement and measure these metrics [21].

However, some issues still exist. Assumptions have to be
made when specifying how to instantiate the metamodel,
such assumptions will have an effect on the metric defini-
tions. In addition, the process of creating instances of the
metamodel must be verified. Errors or omissions in this pro-
cess would have a fundamental impact on the correctness of
the calculated metrics.

Observation 3. Defining new metrics is (almost regret-
tably) easy.

One of the problems with software metrics is that they can
be easy to define, but difficult to justify or correlate with
external quality attributes. For example, Halstead’s met-
rics [14] are often cited, but almost equally often criticised.
Working at the model level provides a whole new layer of el-
ements and relationships that can be grouped and counted.
However, it is important to avoid the trap of proposing met-
rics that count these elements without offering evidence that
such counts are really useful in evaluating the model. Much
of the literature on the proposal of metrics for UML mod-
els has concentrated on only one or a small number of the

1http://www.eclipse.org/emf/
2http://mdr.netbeans.org/

different diagrams and views available in an overall UML
specification of a software system. Furthermore, the ma-
jority of the UML metrics proposed are primarily simple
counting metrics (e.g. number of use-cases in a model).

One of the earliest sets of metrics proposed for UML mod-
els are those described by Marchesi who propose metrics that
can be applied to class and use case diagrams [19]. Genero
et al. have proposed a set of metrics for assessing the struc-
tural complexity of class diagrams and have performed sev-
eral experiments to empirically validate these metrics [11,
9]. Various other metrics have been proposed for class di-
agrams and a comparison of these metrics can be found in
[31]. Genero et al. have also developed a set of metrics for
measuring the size and structural complexity of state-chart
diagrams [10]. Kim and Boldyreff have defined a set of 27
metrics to measure various characteristics of a UML model
[16]. However, the metrics are described informally and for
some of these measures it is unclear which UML diagrams
should be used to calculate the measures.

There has been relatively little work on measuring existing
design metrics from all of the available views and diagrams
of a UML model and there is as yet no convergence of opinion
on the usefulness, or indeed the use, of these model level
metrics.

3. RELATIONSHIP WITH CODE
The area of software metrics is reasonably well developed,

and a discussion of model level metrics would be incomplete
without considering what we can learn from existing lower
level metrics. In particular, the relationship between models
of a software system and the corresponding code can be
explored through evaluation of similar metrics at each level
of abstraction.

Observation 4. We can “lift” code metrics to the model
level

One of the most well known suite of object-oriented met-
rics is the one proposed by Chidamber and Kemerer (CK)
[6]. These metrics were proposed to capture different aspects
of an object-oriented design including complexity, coupling
and cohesion. Several studies have been conducted to val-
idate these metrics and have shown that they are useful
quality indicators [4]. Baroni et al. have formalised the CK
metrics using the OCL and the UML 1.3 metamodel [3].
We have also formalised the CK metrics using the OCL but
have based our definitions on the UML 2.0 metamodel [21,
20]. These definitions specify how to obtain the CK metrics
from class diagrams but do not take any of the other UML
diagrams into consideration. Tang and Chen have also at-
tempted to specify how the CK metrics can be measured
from UML diagrams [27]. They have developed an algo-
rithm for computing the metrics from UML class, activity
and communication diagrams.

The CK metrics suite consists of six metrics: Weighted
Methods Per Class (WMC), Depth of Inheritance Tree (DIT),
Number of Children (NOC), Coupling between Object Classes
(CBO), Response For a Class (RFC), and Lack of Cohesion
in Methods (LCOM). Each of the metrics refer to the in-
dividual class in the software system and not to the whole
system. Figure 1 reviews each of these metrics and briefly
discusses which UML diagrams need to be examined in order
to gain accurate measures of the metrics.

2



Weighted methods per class (WMC):
This metric is concerned with the complexity of the methods
within a given class. It is equal to the sum of the complex-
ities of each method defined in a class. If we consider the
complexity of each method to be unity then the WMC metric
for a class is equal to the number of methods defined within
that class, we refer to this as WMC1. The WMC1 metric for a
class can be obtained from the class diagrams of a UML model
by identifying the class and counting the number of methods
in that class. Alternatively, we can consider the complexity
of each method to be McCabe’s Cyclomatic complexity [8],
which we refer to as WMCcc. The activity, sequence and
communication diagrams clearly contain information relevant
to WMCcc, but it is equally plausible that the state machine
diagram could be used to compute this value for the class as
a whole.

Depth of inheritance tree (DIT):
This is a measure of the depth of a class in the inheritance
tree. It is equal to the maximum length from the class to the
root of the inheritance tree. This metric can be computed for
a class by taking the union of all the class diagrams in a UML
model and traversing the inheritance hierarchy of the class.

Number of children (NOC):
This is the number of immediate descendants of a given class,
that is the number of classes which directly inherit from the
class. Again, this metric can be measured for a class by tak-
ing the union of all the class diagrams in a UML model and
examining the inheritance relationships of the class.

Coupling between object classes (CBO):
Two classes are coupled to each other if a method of one class
uses an instance variable or method of the other class. An es-
timate for this metric can be obtained from the class diagrams
by counting all the classes to which the class has a relation-
ship with and counting all the reference types of the attributes
and parameters of the methods of the class. To obtain a more
precise value, information from the behavioural diagrams can
be taken into account in order to get information about the
usage of instance variable and invocation of methods. For ex-
ample, a sequence diagram gives direct information about the
interactions between methods in different classes.
Response for a class (RFC):
This is a measure of the number of methods that can poten-
tially be invoked by an object of a given class. The number of
methods for a class can be obtained from a class diagram, but
the number of methods of other classes that are invoked by
each of the methods in the class requires information about
the behaviour of the class. This information can be derived by
inspecting the various behavioural diagrams, such as sequence
and collaboration in order to identify method invocations.
Lack of cohesion in methods (LCOM):
Calcuating the LCOM for a given class involves working out,
for each possible pair of methods, whether the sets of instance
variables accessed by each method have a non-empty intersec-
tion. In order to compute a value for this metric, information
on the usage of instance variables by the methods of a class
is required. This information cannot be obtained from a class
diagram. However, an upper bound for this metric can be
computed using the number of methods in the class. Dia-
grams that contain information about variable usages, e.g.
sequence diagrams can be used to compute this metric.

Figure 1: An overview of applying the CK metrics suite to UML diagrams. In this figure we review the
diagrams in a UML model that can contribute to calculating the six Chidamber and Kemerer metrics.

In addition, it may be possible to obtain further infor-
mation for the calculation of these metrics, e.g. method
invocations and variable usages of methods and classes, by
inspecting OCL constraints of the system. Interpreting such
information requires further research.

Observation 5. Models can represent partial and/or over-
lapping information.

In the latest version of UML (2.0), there are 13 different
basic diagrams that can be used to specify a software sys-
tem. Existing object-oriented metric suites, such as the CK
suite, are mainly relevant to class diagrams, since they mea-
sure structural elements of the design. Source code provides
this information in the same format at the same level of
abstraction but UML models can represent many different
kinds of information.

For example

• A single class may appear in a number of different
class diagrams, with different degrees of elaboration of
its attributes, methods and associations in each. This
information needs to be merged in a consistent way
before metric calculation.

• Some UML diagrams represent a view of a system,
rather than a single overview. For examples, sequence
diagrams are typically used to provide details of a us-
age scenario. It is not obvious how we should calcu-
late metrics across such diagrams, and how we should
merge the information from different diagrams with
the same elements.

Defining how to integrate these different sources of infor-
mation is a significant issue in model level metrics.

Observation 6. Differences between metric values are them-
selves metrics.

Ideally, following a Model Driven Architecture (MDA) ap-
proach, the design models and the implementation are syn-
chronised, so that changes in one are reflected in the other
[29]. In practice, UML models can represent a design stage
of a project, used perhaps once to develop a prototype im-
plementation, and then not updated as the software devel-
ops. In this context, differences between the values of similar
metrics measured at the model and source code level will re-
flect properties of the evolution of the system, rather than
its design.

Even when models and implementation are synchronised,
there will be a difference between metric values. For exam-
ple, internal complexity measures for method bodies may
not be available in the model, but can be calculated from
the code. In this context, the model could be used to spec-
ify boundary values for the implementation, or the differ-
ence between metric values at the model and implemen-
tation level can capture the level of additional complexity
added by the implementation process. For example, one
might expect a prototype implementation to preserve many
of the model level metric values, whereas the ultimate “real”
implementation might introduce significant changes in the
metric values.

Differences between the values of the same metric applied
to the same system could also have uses in reverse engineer-
ing. It has already been noted that a significant level of

3



variation exists between tools that reverse engineer class di-
agrams [13]. Software metrics, measured at the model level
and then compared, can be used to evaluate the correctness
of reverse engineering tools, or to quantify their perspective
on abstraction of high-level concepts, such as aggregation
and composition, from the source code.

4. SOME FUTURE DIRECTIONS
In this section we outline some directions for future re-

search in the area of model level metrics that we regard as
important.

Observation 7. Metric definitions should be re-usable.

Standard concepts measured by metrics, such as DIT or
NOC, apply equally to models and code. Ideally, it should
be possible to define these concepts once, and then adapt
them to each relevant metamodel in turn. This provides not
only for economy of expression, but also assurance that the
same concepts are being measured at each level. However,
this is not as easy as it may appear. Even a relatively simple
metric, such as DIT, involves traversing relationships that
may be represented quite differently in different models.

The simplest approach might be to define a single model
over which the metrics are defined, and then apply trans-
formations to map other models into this canonical model.
However, given the range of UML diagrams, and possible
contributions from language metamodels, a single canonical
model may not be realistic. Instead, we may need to exam-
ine the possibility of mapping the metric definitions across
different models.

Observation 8. The relationship between behavioural mod-
els and coverage needs to be explored.

A number of the UML diagrams represent behavioural as-
pects of a system, for example, use case, sequence and com-
munication diagrams. Calculating metrics for such diagrams
involves measuring a particular usage of the system, rather
than its design as a whole. We have previously mentioned
the difficulty of merging such partial information, but there
are also unexplored issues regarding how such information
should be interpreted.

Previous work, including our own, has explored some of
the issues relating to defining and evaluating metrics at run-
time [1, 23]. Such metrics can be shown to capture addi-
tional information about the program but are, of course,
dependent on the context in which the program is run. In-
deed it is arguable that metrics at this level represent cover-
age data, rather than metrics in the usual sense. The use of
such information, or its integration into testing strategies,
is still relatively undeveloped.

Observation 9. Standardisation is multi-faceted; inter-
operability is the key.

One of the benefits of metamodelling is that interoper-
ability between models is facilitated; metamodel Zoos 3 rep-
resent an important contribution here. However, there are
other aspects that can contribute to comparing and evalu-
ating metric results; some of these include:

3For example, http://www.eclipse.org/gmt/am3/zoos/

• Benchmark suites:
The importance of benchmarks in software engineering
in general, and in evaluating fact extractors in partic-
ular, has been noted by Sim et al. [26]. They note the
importance of benchmark suites, such as the SPEC
suite, in other areas of computer science, and argue
for a similar approach to software engineering research.
Similarly, a call for benchmarks for software visualisa-
tion was issued in 2003 [18], but it is not clear what
level of acceptance this has gained.

The selection of a number of common programs and
models for use in metric studies would greatly facil-
itate comparison between metrics and evaluation of
new metrics.

• Data sets:
An interesting recent development towards standardi-
sation and repeatability of results is the Promise Soft-
ware Engineering Repository [25]. This is a collection
of publicly available datasets “created to encourage re-
peatable, verifiable, refutable, and/or improvable pre-
dictive models of software engineering”. At the mo-
ment the repository is still in the early stages of devel-
opment and contains relatively specialised data sets,
but it represents a promising trend in software engi-
neering research.

• Non-code artifacts:
One of the difficulties in evaluating metrics at the UML
level is the relatively small supply of UML and other
design level artifacts. Open source software provides
a rich source of information at the code level; it would
be highly desirable if design level documents could be
made available in a similar fashion.

As an approximation, UML diagrams can be reverse
engineered from code, and the reverse engineering com-
munity has already provided for interoperability through
formalisms such as GXL [15] and our own g4re artifact
repository [17]. However, reverse engineering artifacts
are fundamentally different from design artifacts, and
can at best only serve as an approximation for the real
thing.

5. SUMMARY
In this position paper we have discussed a number of issues

relating to model size metrics, with particular emphasis on
metrics for UML models. We have structured our discussion
around nine observations, which we can also partition into
three levels of challenges for model size metrics:

• The technical challenge of defining, comparing and
reusing metrics over different descriptions of the same
software system (Observations 1, 6, 7)

• The conceptual challenge of defining how to measure
metrics from partial descriptions of models, and of the
change in metrics between different representations of
the software (Observations 3, 5, 8)

• The practical challenge of gathering, comparing and
interpreting new and existing metrics (Observations 2,
4, 9)

Our own work in this area, as cited above, is concentrated
on addressing the technical challenges of defining reusable
metrics at the meta-level.

4



6. REFERENCES
[1] E. Arisholm, L.C. Briand, and A. Foyen. Dynamic

coupling measures for object-oriented software. IEEE
Transactions on Software Engineering, 30(8):491–506,
2004.

[2] A.L. Baroni and F. Brito e Abreu. A formal library
for aiding metrics extraction. In ECOOP Workshop
on Object-Oriented Re-Engineering, Darmstadt,
Germany, July 2003.

[3] A.L. Baroni and F. Brito e Abreu. An OCL-based
formalization of the MOOSE metric suite. In
Proceedings of ECOOP Workshop on Quantative
Approaches in Object-Oriented Software Engineering,
Darmstadt, Germany, July 2003.

[4] V. Basili, L. Briand, and W. L. Melo. A validation of
object-oriented design metrics as quality indicators.
IEEE Transactions on Software Engineering,
22(10):751–761, 1996.

[5] L. C. Briand, J. W. Daly, and J. K Wuest. A unified
framework for coupling measurement in
object-oriented systems. IEEE Transactions on
Software Engineering, 25(1):91–121, 1999.

[6] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. IEEE Transactions on
Software Engineering, 20(6):476–493, 1994.

[7] M.M. El-Wakil, A. El-Bastawisi, M.B. Riad, and A.A.
Fahmy. A novel approach to formalize object-oriented
design metrics. In Evaluation and Assessment in
Software Engineering, Keele, UK, April 2005.

[8] N. Fenton and S. Lawrence Pfleeger. Software Metrics:
A Rigorous and Practical Approach. International
Thompson Computer Press, 1996.

[9] M. Genero, L. Jimnez, and M. Piattini. A controlled
experiment for validating class diagram structural
complexity metrics. In Int. Conf. on Object-Oriented
Information Systems, Montpellier, France, Sept. 2002.

[10] M. Genero, D. Miranda, and M. Piattini. Defining and
validating metrics for UML statechart diagrams. In
6th ECOOP Workshop on Quantitative Approaches in
Object-oriented engineering, Malaga, Spain, June 2002.

[11] M. Genero, M. Piattini, and C. Calero. Early measures
for UML class diagrams. L Object, 6(4):489–515, 2000.

[12] M. Goulão and F. Brito e Abreu. Formalizing metrics
for COTS. In ICSE Workshop on Models and
Processes for the Evaluation of COTS Components,
Edinburgh, Scotland, May 2004.

[13] Y. Guéhéneuc and H. Albin-Amiot. Recovering binary
class relationships: putting icing on the UML cake. In
Object Oriented Programming Systems Languages and
Applications, pages 301–314, Vancouver, BC, Canada,
October 24-28 2004.

[14] M. Halstead. Elements of Software Science. Elsevier,
North Holland, first edition, 1977.

[15] R.C. Holt, A. Schrr, S. E. Sim, and Andreas Winter.
GXL: A graph-based standard exchange format for
reengineering. Science of Computer Programming,
60(2):149–170, 2006.

[16] H. Kim and C. Boldyreff. Developing software metrics
applicaple to UML models. In 6th ECOOP Workshop
on Quantitative Approaches in Object-oriented
engineering, Malaga, Spain, June 2002.

[17] N.A. Kraft, B.A. Malloy, and J.F. Power. Toward an

infrastructure to support interoperability in reverse
engineering. In Working Conference on Reverse
Engineering, pages 196–205, Pittsburgh, PA, Nov 8-11
2005.

[18] J. Maletic and A. Marcus. CFB: A call for
benchmarks - for software visualization. In 2nd IEEE
Workshop of Visualizing Software for Understanding
and Analysis, pages 108–113, Amsterdam, The
Netherlands, September 22 2003.

[19] M. Marchesi. OOA metrics for the Unified Modeling
Language. In Second Euromicro Conference on
Software Maintenance and Reengineering, Florence,
Italy, 8 - 11 March 1998.

[20] J. A. McQuillan and J. F. Power. A definition of the
Chidamber and Kemerer metrics suite for the Unified
Modeling Language. Technical Report
NUIM-CS-TR-2006-04, Dept. of Computer Science,
NUI Maynooth, Co. Kildare, Ireland, 2006.

[21] J. A. McQuillan and J. F. Power. Towards re-usable
metric definitions at the meta-level. In PhD Workshop
of the 20th European Conference on Object-Oriented
Programming, Nantes, France, July 2006.

[22] J.A. McQuillan and J.F. Power. Experiences of using
the Dagstuhl Middle Metamodel for defining software
metrics. In Proceedings of International Conference on
Principles and practices of Programming in Java,
Manheim, Germany, September 2006.

[23] Áine Mitchell and James F. Power. A study of the
influence of coverage on the relationship between
static and dynamic coupling metrics. Science of
Computer Programming, 59(1-2):4–25, January 2006.

[24] R. Reißing. Towards a model for object-oriented
design measurement. In ECOOP Workshop on
Quantative Approaches in Object-Oriented Software
Engineering, Budapest, Hungary, June 2001.

[25] J. Sayyad Shirabad and T. J. Menzies. The PROMISE
Repository of Software Engineering Databases. School
of Information Technology and Engineering,
University of Ottawa, Canada, 2005.

[26] S. E. Sim, S. M. Easterbrook, and R. C. Holt. Using
benchmarking to advance research: A challenge to
software engineering. In International Conference on
Software Engineering, pages 74–83, Portland, Oregon,
USA, May 3-10 2003.

[27] M.-H. Tang and M.-H. Chen. Measuring OO design
metrics from UML. In International Conference on
The Unified Modeling Language, Dresden, Germany,
September 30 - October 4 2002.

[28] The Object Management Group. UML 2.0 draft
superstructure specification, 2003.

[29] J. Warmer and A. Kleppe. The Object Constraint
Language. Addison-Wesley, 2003.

[30] F.G. Wilkie and T.J. Harmer. Tool support for
measuring complexity in heterogeneous
object-oriented software. In IEEE International
Conference on Software Maintenance, Montréal,
Canada, October 2002.

[31] T. Yi, F. Wu, and C. Gan. A comparison of metrics
for UML class diagrams. ACM SIGSOFT Software
Engineering Notes, 29(5):1–6, 2005.

5


