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Abstract

In this paper we present an infrastructure that supports
interoperability among various reverse engineering tools
and applications. We include an Application Program-
mer’s Interface that permits extraction of information about
declarations, including classes, functions and variables, as
well as information about scopes, types and control state-
ments in C++ applications. We also present a hierarchy of
canonical schemas that capture minimal functionality for
middle-level graph structures. This hierarchy facilitates an
unbiased comparison of results for different tools that im-
plement the same or a similar schema. We have a reposi-
tory, hosted by SourceForge.net, where we have placed the
artifacts of our infrastructure.

1 Introduction

In their effort to develop new techniques and to improve
on previous efforts, most researchers must implement at
least one previously developed technique as an unbiased
basis for comparison with their technique. However, even
after the previously developed technique is implemented
the researcher is frequently unsure of the correctness of
the implementation or the correctness of the generated re-
sults. Thus, comparison of competing approaches is diffi-
cult and sometimes impossible. For example, researchers
in language design and implementation have reported con-
siderable difficulty in replicating results in generating call
graphs and points-to analysis, even for C programs [1, 19].

The issues involved in permitting interoperability among
reverse engineering tools and applications have been dis-
cussed in the literature and, in particular, at the Dagstuhl
Seminar onInteroperability of Reengineering Tools[3]. At
the seminar, three levels of interoperability were agreed
upon: low-level syntax, middle-level graph structures and

high-level architectures. Such interoperability is important
not only to permit reuse of reverse engineering artifacts but
also to facilitate reproduction of prior scientific results.

In this paper, our goal is the practical realization of in-
teroperability through the construction of tools and graphs
at each of these levels. Moreover, we wish to address the
problem of the plethora of schemas and tools for low-level
syntax and the dearth of schemas and tools for middle-level
graph structures. Finally, we wish to develop a technique
to facilitate unbiased comparison of results from compet-
ing tools and technologies. We describe an infrastructure
that supports interoperability among various reverse engi-
neering tools and applications. In previous research we pre-
sentedg4re, a tool chain that exploitsGENERIC, an inter-
mediate format incorporated into thegcc C++ compiler, to
facilitate analysis of real C++ applications [12]. In this pa-
per we extendg4re to include an Application Programmer’s
Interface (API) that permits extraction of information about
declarations, including classes, functions and variables, as
well as information about scopes, types and control state-
ments in C++ applications. In addition, we describe a hierar-
chy of canonical schemas that capture minimal functionality
for middle-level graph structures. The purpose of this hier-
archy is to facilitate an unbiased comparison of results for
different tools that implement the same or a similar schema.

Our approach for comparing results from different tools
utilizes XSLT style sheets that express transformations on
the GXL schema for the graph structure under study. To
demonstrate this approach we provide results for the con-
struction of Object Relation Diagrams (ORDs) [15] using
GXL representations generated using our API.

We have constructed a repository, hosted by Source-
Forge.net, and placed the artifacts of our infrastructure in
this repository [20]. These artifacts include ourg4re and
API tools, a test suite of applications and libraries along
with GXL instance graphs for their translation units and
ORDs, and XSLT style sheets for comparison of ORDs. In
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addition, we provide many GXL schemas for artifacts such
as call graphs, control flow graphs, and interprocedural con-
trol flow graphs. Finally, we include GXL schemas for the
GENERICASG and ourCppInfo API.

In Section 2 we provide detail about the infrastructure,
including our hierarchy of canonical GXL schemas. In Sec-
tion 3 we reviewg4re and then describe our API and a pro-
cedure for linking GXL representations of each translation
unit into a single representation. In Section 4 we list re-
sults that describe the efficiency of our linking process and
some results for the construction of ORDs for five applica-
tions and some test cases from thegcc 3.3.4distribution. In
Section 5 we describe previous research that relates to our
infrastructure. Finally, in Section 6 we draw conclusions.

2 An Overview of the infrastructure

Our goal is to provide an infrastructure that supports in-
teroperability among various reverse engineering tools and
applications. The issues involved in the construction of such
an infrastructure have been discussed in the literature and
at the Dagstuhl Seminar onInteroperability of Reengineer-
ing Tools, where GXL was ratified as the standard format
for the exchange of graphs among reverse engineering and
reengineering tools and applications [3]. Moreover, the par-
ticipants agreed upon three levels at which interoperability
should be applied:

• Low-level graph structures: Abstract Syntax Trees
(AST) and adorned AST’s (ASG);

• Middle-level graph structures: such as call graphs and
program dependence graphs;

• High-level graph structures: Architecture descriptions.

However, our goal is the practical realization of inter-
operability through the construction of tools and graphs at
each of these three levels. Moreover, we wish to address the
problem of the plethora of schemas and tools for low-level
syntax and the dearth of schemas and tools for middle-level
graph structures. In particular, the goals of our work are:

1. The practical realization of tools and applications to
support interoperability among reverse engineering
and reengineering tools and applications;

2. Support for repeatability of results:

(a) to obviate the need for researchers to repeat the
development already achieved by previous re-
searchers, and

(b) To facilitate comparison of results among tools
and applications constructed by different re-
searchers.

3. Provision for a complete infrastructure including all
tools required for each of the three levels, together with
other infrastructure artifacts such as test cases, results,
and support for the comparison of results.

2.1 Front-end and API

Figure 1 illustrates the levels in the infrastructure that
we propose, including some of the artifacts in the infras-
tructure. The lowest level, Level 0, consists of a parser and
front-end that builds an Abstract Semantic Graph (ASG),
an Abstract Syntax Tree (AST) decorated with seman-
tic information for a C++ application under study. The
ASG contains information about declarations, including
classes, functions, and variables, as well as information
about scopes, types, and control statements. The front-end
that we present in this paper is an extension of theg4re sys-
tem, described in reference [12]. We have extendedg4re
in two important directions: (1) we have linked the ASGs
for each translation unit, and (2) we provide an Application
Programmer Interface (API) to facilitate access to ASG in-
formation. These extensions tog4re are described further
in Section 3.

Our experience in utilizing the ASG motivated the con-
struction of an API to facilitate access to ASG information.
Navigating the ASG links and extracting relevant informa-
tion has proven to be time-consuming and error-prone. The
relative sizes of the schemas for the ASG and the API high-
light the cognitive burden involved in using each of these
structures: theGENERIC ASG schema contains 166 node
classes whereas theCppInfo API schema currently contains
only 53 classes (both node and edge classes) as illustrated
on the lower left side of Figure 1 in the ellipses for the two
schemas1. Our experience with these two data structures
has shown that access to ASG information is greatly facili-
tated through the use of a corresponding API, illustrated at
Level I in Figure 1.

2.2 Graphs as Schemas

In Figure 1, all ellipses represent schemas and the fig-
ure illustrates a hierarchy of canonical schemas for vari-
ous graph structures and analysis information. Levels to the
right of Level I in the figure contain schemas that describe
graph structures required for analysis and transformation of
source code. Level II contains a schema for a Class Di-
agram, Control Flow Graph (CFG) and Call Graph, illus-
trated in the middle of Figure 1; these basic graph struc-
tures are required, either implicitly or explicitly, for more
complex graph and analysis structures whose schemas are
placed at higher levels of the infrastructure.

1The API schema currently lacks representation for expressions.
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Figure 1. Overview of the Infrastructure and some artifacts. This figure illustrates the levels in our infrastruc-
ture where Level 0 consists of a parser and front-end for syntax analysis and Level 1 consists of theCppInfo API. All
ellipses in this figure represent schemas and all of the schemas together illustrate our canonical hierarchy of minimal
schemas for graph structures and analysis tools.

Figure 2. Schema for an ORD. This figure il-
lustrates a schema for an Object Relation Diagram
(ORD). An ORD is a graph consisting of nodes repre-
senting classes, and edges representing relationships
between the classes.

Level III contains schemas for an Object Relation Di-
agram (ORD) and an Interprocedural Control Flow Graph
(ICFG). An ORD is an extension of a Class Diagram and
an ICFG is an abstraction of a CFG and a Call graph; the
edges from the ORD schema to the Class Diagram schema
and from the ICFG schema to the CFG and Call Graph
schemas capture this hierarchy of abstraction. Level IV
contains schemas for a Class Firewall, a Class Control Flow
Graph (CCFG), and schemas to describe graphs for Abstract
Execution, Data Flow Analysis and a System Dependence
Graph (SDG). Level V contains schemas for Impact Analy-
sis, Points-to Analysis and Slicing.

Figures 2, 3 and 4 illustrate schemas for an ORD, Call
Graph and CFG, respectively. For example, an ORD is a

Figure 3. Schema for a Call Graph. This figure
illustrates a schema for a call graph, a graph whose
nodes represent either functions or function call sites
and whose edges represent function invocations.

graph whose nodes represent classes and whose edges rep-
resent relationship between the classes. The ORD schema
in Figure 2 consists of eight classes, two classes for nodes,
Class, and edges,Edge, and six classes derived fromEdge
representing the six kinds of relationships between classes.
These relationships consist ofAssociation, Composition,
Dependency, Inheritance, OwnedElement and Poly-
morphic edges [15]. The call graph schema in Figure 3
consists of three classes representing a function,Function,
a function invocation,FunctionCall and the relationshipis-
Caller, which specifies the line number where the function
invocation occurred. Finally, the control flow graph (CFG)
schema in Figure 4 consists of six classes representing the
flow of control between basic blocks in a program.
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Figure 4. Schema for a Control Flow Graph.
This figure illustrates a schema for a control flow
graph, whose nodes represent blocks of straight-line
code and whose edges represent flow of control be-
tween the blocks.

2.3 Generating Data and Comparing ORDs

Each of the schemas in Figure 1 can be used to facili-
tate comparison of results for a given graph structure. The
tools under study are not required to use the same schema;
however, comparison of the results generated for each tool
can only be undertaken for those parts of the schema that
are common to both tools. To generate results for a graph
structure, an XSLT style sheet is used with a GXL instance
of the graph. All of the results in Section 4.3 were obtained
in this manner.

3 Realizing the infrastructure: g4re

Our g4re tool chain exploitsGENERIC, the ASG repre-
sentation incorporated into thegcc C++ compiler, to facil-
itate analysis of real C++ programs. In [12], we describe
our approach to encoding this representation of a translation
unit as a GXL instance graph conformant to theGENERIC

schema. Recently, we have added several extensions to the
g4re tool chain, including:

• a SAX2 parserfor creating an in-memory representa-
tion of a translation unit encoded as aGENERIC con-
formant GXL instance graph,

• a transformation modulefor creating aCppInfo API
instance from the parsed representation of a translation
unit,

• a linking modulethat combines API instances for all
translation units in a program into a unified represen-
tation of the whole program,

• aC++ API for accessing information in the unified rep-
resentation.

In this section, we describe the two most recent additions
to the g4re tool chain, the linking module and the C++ API.

3.1 Linking API instances

Typical C++ programs are spread among tens, hundreds,
or even thousands of files, both header and source. AC++

translation unitconsists of a source file and all of the header
files it includes, either directly or transitively. A C++ com-
piler, such asgcc, performs parsing, analysis, and code gen-
eration at the translation unit level; linking is performed on
the generated object code by the system linker, e.g.ld on
Unix systems. The system linker must check for multiple
definitions and inconsistencies, e.g. incompatible function
declaration and definition, between translation units.

A reverse engineering tool for C++ must also perform
parsing and analysis at the translation unit level, but rather
than generating code, a reverse engineering tool generates
an ASG (or another program representation). Since reverse
engineers are principally interested in analyzing whole pro-
grams, not individual translation units, a reverse engineer-
ing tool for C++ must provide some facility for linking the
representations of the individual translation units. A reverse
engineering linker may generally assume that the program
being analyzed is both compilable and linkable at the object
code level; therefore, linking at the ASG (or other program
representation) level does not require error checking.

In our infrastructure, described in section 2, facilities for
linking are provided by a Level I schema. Level I schemas
must provide some form ofunique name, which is not spe-
cific to a particular translation unit, for each schema entity
that has an associated name attribute. Unique names, such
as a mangled names or fully-qualified names, enable a mod-
ule, such as a standalone linker or an API builder, to link in-
dividual translation units into a unified representation of the
whole program. Requiring linking facilities to be present in
a Level I schema obviates the need to provide such facilities
in schemas at subsequent levels of the infrastructure.

We have recently extended our reverse engineering front-
end, g4re, to link all translation units from a given C++

program. In g4re, linking is performed pairwise by the
API builder on the internal representations of API instances.
When instantiating the API, a user provides all translation
units from a C++ program, each in the form of a GXL en-
coded ASG conformant to theGENERIC schema. The API
builder serially transforms each ASG to an internal API
representation instance, consisting of dictionaries mapping
mangled names to theirCppInfo API schema node class in-
stances, and performs pairwise linking of the API instances
each time a pair becomes available. Therefore, linking in
g4re is performedn − 1 times, wheren is the number of
translation units.

Figure 5 illustrates part of theCppInfo API schema.
Of central interest here is theTranslationUnit, which con-
tains a set of identifier definitions and declarations, along
with a set of relationships between these and the other lan-
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Figure 5. Partial schema for the CppInfo API. This figure illustrates some of the main node classes in the CppInfo
API, which is used to represent a translation unit as well as the result of linking two translation units.

1 contextTranslationUnit
2 inv:
3 −− A unique name is unique in that translation unit
4 self.contains→forAll( i:Identifier |
5 not self.contains→exists( j:Identifier|
6 i<>j and uniqueName(i) = uniqueName(j)))
7 −− Omitted: A unique name for static data is unique in all translation units

8 contextTranslationUnit::link(other : TranslationUnit)
9 post:

10 −− The new identifiers are the old ones, plus any from the other TU that weren’t in here
11 self.contains→forAll( id:Identifier | self.contains@pre→includes(id)
12 or
13 other.contains→exists( i2:Identifier| uniqueName(id) = uniqueName(i2)))
14 −− The new relationships are the old ones, plus any from the other TU that weren’t in here
15 self.relates→forAll( r:Relationship| self.relates@pre→includes(r)
16 or
17 other.relates→exists( r2:Relationship| uniqueName(r.src) = uniqueName(r2.src)
18 and uniqueName(r.dst) = uniqueName(r2.dst)))

Figure 6. An OCL Specification of the Linking Algorithm. Here we define the linking process as one of adding
in those nodes whose unique name is new, and of adding in new relationships, suitably translated.

guage elements it contains. Intuitively, we achieve linking
of schema elements by performing a traversal of the most
recently constructed API instance, adding or appending el-
ements in the existing API instance if they are not found
or are incomplete. For example, the elementFunction is
incomplete if one of its instances does not contain a body,
while the elementsNamespace andClass are incomplete
if they contain incompleteFunction or Class elements.

Figure 6 presents our linking algorithm as an OCL spec-
ification over theCppInfo API schema. Since all nodes
relevant to linking are subclasses ofIdentifier, we can de-
fine the linking process in terms of adding in new identifiers
from another schema instance, and adding in new relation-
ships to match. Since we generate canonical internal iden-
tifiers for function bodies, this process also has the effect
of resolving function declarations with their corresponding
definitions.

3.2 The CppInfo API

The g4re tool chain provides theCppInfo API, Appli-
cation Programmers Interface, for accessing information in
the unified representation of a whole C++ program. TheCp-
pInfo API schema, a Level I schema in our infrastructure, is
used to model the implementation of theCppInfo API. The
schema currently consists of 39 node classes that represent
declarations, scopes, types, and control structures, and 14
edge classes that represents the relationships between the
node classes. The addition of node and edge classes to rep-
resent expressions remains as future work.

TheCppInfo API attempts to provide a clear and flexible
interface for access to the language elements in a C++ pro-
gram. The major point of access provided by theCppInfo
API is in the form of a pointer to the global namespace.
An API user may access the pointer in order to traverse
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Testsuite Doxygen FluxBox FOX Jikes Keystone

Version 1.3.9.1 0.9.12 1.4.6 1.22 0.2.3
Source Files 260 229 474 74 113
tu/GXL files 65 104 245 38 52
tu size (MB) 7.76 1.93 6.06 3.33 1.38
LOC (≈) 200 K 30 K 125 K 70 K 30 K

Table 1. Testsuite. This table lists the five test
cases that we use in our study, together with statistics
about the test cases. Our statistics describe the num-
ber of source files, translation units, size, and lines of
code for each test case.

the underlying graph structure of theCppInfo API, or al-
ternatively, may access several lists containing all instances
of particularCppInfo classes present in the API. Currently,
these lists are provided forNamespace, Class, andFunc-
tion, but we do intend to extend this point of access to in-
clude lists of additionalCppInfo classes.

We used ourCppInfo API to conduct the case study of
Section 4. Specifically, we used the API to construct ORD’s
for several real C++ programs. The repository for our infras-
tructure [20] contains the full source code for two exam-
ple programs that use theCppInfo API; these two example
programs are the ORD builder and a graphical source code
browser.

4 Using the infrastructure: a case study

In this section we describe the results of a feasibility
study of our infrastructure. The results that we report in this
section capture information about the run-time efficiency
of our linking process, described in Section 3, and about
classes and edges in generated ORDs, described in Section
2. All experiments were executed on a workstation with
an AMD Athlon64 3000+processor, 1024 MB of PC3200
DDR RAM, and a 7200 RPM SATA hard drive, running
the Slackware 10.1 operating system. The programs were
compiled usinggccversion 3.3.4.

One issue involved in using thegccGENERICsystem for
construction of an ASG is the large size of the files required
to store each translation unit (tu ) and its corresponding
GXL file, and the large number of nodes in the generated
ASG. To reduce the size of the generated ASG, we exploit
two optimizations: removing extraneous library code and
pruning the ASG. These optimizations are described in ref-
erence [12].

In the next section we describe five applications that
serve as a testsuite in the study. In Section 4.2 we describe
some results for linking instances of theCppInfo API. In
Section 4.3 we summarize results for the ORDs that we gen-
erate for the five applications and finally in Section 4.4 we

Figure 7. Timing results for linking GXL files.
The bars in this graph represent the wall-clock tim-
ings for linking the five applications in our test suite.

apply the technique to some of the test cases included in the
gcc 3.3.4distribution.

4.1 The Testsuite of Applications and Libraries

Table 1 lists five applications, or test cases, that form the
first testsuite that we use in our study, together with im-
portant statistics about each test case. The top row of the
table lists the names that we use to refer to each of the test
cases:Doxygen, FluxBox, FOX, JikesandKeystone. Doxy-
genis a documentation system for C++, C, and Java [25] and
FluxBoxis a light-weight X11 window management system
built for speed and flexibility [6].FOX is a toolkit to facili-
tate development of graphical user interfaces [24] andJikes
is a Java compiler system [9]. The final test case isKey-
stone, a parser and front-end for ISO C++ [11, 16]. The
testsuite covers a range of applications including a system
for documentation, an X11 window manager, libraries for
creating a graphical user interface (GUI), and applications
for language implementation and analysis.

The remaining five rows of data in Table 1 describe im-
portant details of the test cases. The second row of the table
lists the version number and the third row lists the num-
ber of source files in each of the test cases. For example,
the FOX toolkit is version 1.4.6 and includes 474 source
files, the largest number of source files for any of the test
cases. The fourth row of the table lists the number of GXL
encoded translation units (tu) for each test case2 and the

2The number of files for translation units listed in Table 1 differs
slightly from the numbers listed in reference [12] because in this paper
we no longer count external libraries packaged with the test cases.
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Doxygen FluxBox FOX Jikes Keystone

Name- Total 189 595 991 152 219
spaces Unique 3 30 7 4 7

Classes Total 4 925 35 321 58 006 15 158 21 585
Unique 538 1 901 736 677 1 060

Functs. Total 42 684 57 357 63 463 78 892 22 321
Unique 10 657 5 115 8 220 6 344 3 609

Table 2. Reduction in language elements due
to linking. This table shows the difference between
the total number of namespaces, classes and func-
tions in each unlinked ASG and the eventual number
of unique elements in the linked ASG.

fifth row lists the size or number of mega-bytes in thetu
files that each test case occupies on disk. For example, the
FOX toolkit contains 245 translation units (or GXL files),
the largest number of translation units, and occupies 6.06
MB of disk space. Finally, the last row of Table 1 lists the
number of lines of code in each test case, expressed in thou-
sands of lines of code. For example, theDoxygendocu-
mentation system contains 200 K lines of code (LOC), the
largest number in the test suite.

4.2 Linking GXL Files for each Translation Unit

The graph in Figure 7 illustrates some timing results for
our linking of GXL files for each translation unit, described
in Section 3. The height of each bar in the graph repre-
sents wall-clock timings for the corresponding test case,
listed along the X-axis. Each bar consists of four partitions:
the lowest partition,Parse, measures the time to read and
parse the GXL files for the translation units; the second low-
est partition,Transform, measures the time to transform the
ASGs for each translation unit into aCppInfo API instance;
the second partition from the top of the bar,Link, measures
the time to link theCppInfo API instances; and the topmost
partition,Other, measures the time to perform other tasks
not associated with parsing, transforming or linking.

To interpret the data in Figure 7 consider the middle bar
representing timings for the FOX test case. The FOX test
case, consisting of 245 GXL files, took the longest time to
process with the parsing time dominating the entire process-
ing time. Moreover, the time toTransform andLink the in-
ternal representations of the GXL files for the FOX test case
is a minimal part of the entire processing time. This trend is
reflected in each of the five test cases. Since GXL represen-
tations are large, theParse phase of the processing, which
includes time to read the GXL files into memory, dominates
the total processing time, while the linking phase requires
minimal time.

Table 2 lists results for linkingNamespaces, Classes,

Doxygen FluxBox FOX Jikes Keystone

Classes 532 834 759 417 257

Association 153 100 123 486 122
Composition 104 188 45 79 40
Dependency 2 032 1 803 2 182 4 757 2 608
Inheritance 204 159 61 171 101
OwnedElement 17 82 174 47 8
Polymorphic 6 201 111 125 14 152 6 281
Total 8 711 2 444 2 718 19 693 9 160

Table 3. Application testsuite ORD Sizes. This
table shows the number of nodes (classes) and edges
in the 5 ORD schema instances constructed for the
applications in our test suite.

andFunctions for each of the five applications in our first
testsuite. There are six rows of data in the table, for each
of the three language elements there are two rows,Total
andUnique. The row labeledTotal lists the total number
of each respective language element found in all GXL files
for that test case andUnique lists the number of each re-
spective language element found in the linkedCppInfo API
instance.

For example, the GXL files for the FOX test case col-
lectively contained 991 namespaces, 58,006 classes and
63,463 functions; however, the linked API contained only
7 namespaces, 736 classes and 8,220 functions. This dra-
matic difference is due to the large amount of repetition
among the individual translation units for a C++ program;
this repetition is due to C++ inclusion model implemented
by the preprocessor.

4.3 Generating ORD Information

In this section we present some results for the ORDs gen-
erated for the five applications in the test suite. All of the re-
sults in this section were generated with XSLT style sheets
using the technique described in Section 2.3.

Table 3 lists results for the five application programs de-
scribed in Section 4.1. The five columns on the right of
the table list results for each test case, the first row lists the
number of classes,Classes, in each test case, rows 2–7 list
results for the kinds of edges in each ORD, and the final row
of the table lists the total number of edges in the ORD for
the respective test case. For example, the second column
from the left in Table 3 lists results for the Doxygen test
case, containing 532 classes (row 2) and 6 201 polymor-
phic edges (row 7). Polymorphic edges are generated by
data attributes of a class that are references to base classes,
since these data attributes can polymorphically refer to any
of the classes derived from the base class in the inheritance
hierarchy. The 6 201 polymorphic edges in the ORD for
Doxygen indicate that this test case makes extensive use of
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Positive Test Cases 18 16 103 12 149 18

min 0 0 0 0 0 0
Classes max 16 5 29 4 44 3

avg 2 2 2 2 3 1

min 0 0 0 0 0 0
Edges max 61 12 28 12 41 10

avg 8 4 3 6 4 2

Table 4. gcc Testsuite ORD Summary. This
table summarises the number of nodes (classes) and
edges in the 316 ORD schema instances constructed
for the programs in the gcc test suite.

inheritance and polymorphism. However, the ORD for the
FluxBox test case contained only 111 polymorphic edges
(second column of data, seventh row), indicating that the
FluxBox application does not make extensive use of inher-
itance and polymorphism. The table also includes results
for the number of OwnedElement edges for the test cases,
where an OwnedElement edge indicates a class nested in-
side another class. There are several causes of a high num-
ber of OwnedElement edges, the most common being the
frequent use of iterator classes, which are nested in the cor-
responding container class. Two other causes we observed
in our first test suite are the presence of a nested class inside
a base class, as seen in the FOX test case, and the presence
of a nested class inside a template class, as seen in several
of the test cases.

4.4 Robustness of the approach

To demonstrate the robustness of our approach, and
to produce further reproducible results based on freely-
available software, we generated ORDs for relevant pro-
grams from thegcc 3.3.4test suite. Table 4 lists summaries
for three directories of test cases from each of theg++.dg
andg++.old-deja directories, chosen because of the inclu-
sion of test cases for inheritance and template functionality
and for the predominance of positive test cases.3

The first row of data in Table 4 shows that theinherit,
lookup and template subdirectories of theg++.dg direc-
tory contained 18, 16 and 103 positive test cases respec-
tively. Similarly, theg++.gb, g++.law andg++.oliva sub-
directories of theg++.old-deja directory contained 12, 149
and 18 positive test cases respectively. The remaining six

3A positive test case passes if it executes successfully; a negative test
case passes if it fails to execute successfully

rows of data provide information about the minimum, max-
imum and average number of classes and edges in the pos-
itive test cases in the respective subdirectory. For example,
for the inherit subdirectory, some ORDS for positive test
cases contained no classes, one ORD had 16 classes and the
average number of classes in the ORDs in this subdirectory
was 2 classes. Similarly, the last three rows of the table
show that for theinherit subdirectory, some ORDs for pos-
itive test cases contained no edges, one ORD contained 61
edges and the average number was 8 edges.

5 Related Work

In their roadmap for reverse engineering, Müeller et al.
identify the lack of adoption as one of the biggest chal-
lenges to increasing the effectiveness of reverse engineer-
ing, and note the lack of integration between reverse engi-
neering tools and other software utilities as a contributory
factor [17]. They assert that completely integrated envi-
ronments ran against the trend for more modular toolsets,
and prohibit easy integration of reverse engineering tools
into these toolsets. They also note the significant progress
in developing reverse engineering infrastructures and tools
during the 1990s, particularly in relation to parsers, reposi-
tories, and visualization engines.

5.1 Infrastructures for reverse engineering

One of the earliest approaches to a reverse engineering
infrastructure is the LSME system by Murphy and Notkin
[18]. This system is based on lexical analysis and specif-
ically identifies the ability to add additional source lan-
guages and extractors as central to the approach. This flex-
ibility is demonstrated by applying the approach to extract-
ing source models for ANSI C, CLOS, Eiffel, Modula 3 and
TCL.

Dali is a collection of various tools in the form of a work-
bench for collecting and manipulating architectural infor-
mation [10]. The Dali workbench was designed to beopen,
so that new tools could be easily integrated, andlightweight,
so that such integration would not unnecessarily impact un-
related parts of the workbench. Kazman et al. identify
an extraction phase, encompassing both parsing and pro-
filing, accumulating information in a repository, which then
feeds visualization and analysis phases. They use an SQL
database for primary model storage, but then use applica-
tion specific file formats to facilitate interchange between
tools.

The Dali architecture is echoed by Salah and Mancori-
dids in theirsoftware comprehension environment, which
has a three-layer architecture composed of a data gather-
ing subsystem, a repository subsystem, and an analysis and
visualization subsystem [21]. Their environment supports
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both static and dynamic analysis of Java and C++ programs,
and information can be accessed using either SQL or a spe-
cialized higher-level query language.

Finnigan et al. describe aSoftware Bookshelf, that was
originally designed to support converting PL/I source code
to C++ [5]. Their information repository, describing the
content of the bookshelf, is accessed through a web server
using object-oriented database technology. An implementa-
tion of these ideas as thePortable Bookshelf(PBS) is based
around a toolkit that includes a fact extractor, manipula-
tor and layout tools. This “pipeline philosophy” has since
evolved into the SWAG Kit and the LDX/BFX pipeline,
each emphasizing collections of stand-alone tools commu-
nicating only via well-defined inputs and outputs [7].

5.2 Evaluating reverse engineering tools

An important attribute of any reverse engineering in-
frastructure is that it provide for repeatability of results,
and allow comparison of results from different approaches.
One way this can be achieved is by agreement on standard
schemas for representing information, which would allow
output from different tools or toolsets to be directly com-
pared. Attempts in this direction include the Dagstuhl mid-
dle model [13], GXL [8] and WoSEF [23]. Recent work
by Eichberg et al. seeks to exploit the more generic stan-
dards, XML and XQuery, to provide a uniform approach to
extracting information from reverse engineering tasks [4].

Even with an agreed output schema (or conversion to
such a schema) there can still be considerable difficulties in-
volved in comparing results. Murphy et al. describe a com-
parison of nine tools for extracting C call graphs from three
software systems, and finds a considerable variance in the
outputs [19]. In a paper describing a novel points-to analy-
sis algorithm, Das notes that it took his team several months
to synchronize the output from tools implementing compet-
ing approaches, so that the results could be compared [1]. In
both cases, the problem was with different definitions and
interpretations of the information that was required, rather
than with the output format.

The importance of benchmarks in software engineering
in general, and in evaluating fact extractors in particular,
has been noted by Sim et al. [22]. They describe the con-
struction of a benchmark suite designed to test the accuracy
and robustness of fact extractors, and apply it to compara-
tively evaluate four tools. In a similar vein, Lin et al. de-
scribe a four-level hierarchy of completeness, and use this
to validate the CPPX fact extractor [2, 14]. They use a test
suite consisting of programs used to demonstrate the Datrix
model, as well as test cases from the gcc test suite. Vin-
ciguerra et al. describe a framework for evaluating C++ and
Java disassembly and decompilation tools based around an
experimentation framework that includes a layered test suite

Figure 8. Main web page for the repository.
This screen capture shows the contents of the Source-
Forge repository where the artifacts described in this
paper can be accessed.

of programs as well as a focused set of reverse engineering
tasks [26].

5.3 Linking in reverse engineering tools

There has been relatively little work on combining in-
formation extracted from different translation units, a pro-
cess analogous to compile-time linking, where external ref-
erences in one unit are resolved to definitions in another.
Wu et al. describe a study of linking information extracted
from a PostgresSQL implementation, and note that a naive
approach to linking can give rise to linkage anomalies [27].
They describe approaches involving heuristics and build
simulation to alleviate these anomalies.

6 Concluding Remarks

In this paper, we have presented an infrastructure that
supports interoperability among reverse engineering tools
and applications. We have built an Application Program-
mer’s Interface that permits extraction of information about
declarations, including classes, functions and variables, as
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well as information about scopes, types and control state-
ments in C++ applications. We have described our link-
ing process for unifying API instances for each transla-
tion unit in a C++ application and provided results that de-
scribe the efficiency in linking five common C++ applica-
tions. We have also described a hierarchy of canonical
schemas that capture minimal functionality for middle-level
graph structures and presented an approach, using a GXL
instance of a graph together with an XSLT style sheet, to
permit generation of information about the graph. This ap-
proach permits an unbiased comparison of results for differ-
ent tools that implement the same or a similar schema. We
have constructed a repository, hosted by SourceForge.net at
http://g4re.sourceforge.net/ , and placed the
artifacts of our infrastructure in this repository [20]. Fig-
ure 8 illustrates a screen capture of our web page where the
repository can be accessed.
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