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Abstract

This paper presents a strategy for the visualization of dy-
namic object relationships in Java programs. The metaphor
of a chemical molecule is used to aid comprehension, and to
help in reducing the size of the object graph. Our strategy
has been implemented by dynamically instrumenting Java
bytecode to collect trace data, which is then analyzed and
visualized in 3D using VRML. Quantitative and graphical
results are presented, based on an analysis of programs in
the SPEC JVM98 and JOlden benchmark suites.

1. Introduction

The Unified Modeling Language (UML) is one of the
most successful visual languages used in software develop-
ment. It provides a wide range of visual representations of
software, describing aspects of its design, architecture and
behavior. One of the primary motivating factors behind the
current design of UML 2.0 has been model-driven engineer-
ing, emphasizing the seamless link between visual represen-
tations and source code, and providing for the integration of
UML diagrams into all stages of the software life-cycle.

The approach has already been successful with class di-
agrams, which describe static aspects of the software’s ar-
chitecture. Many design and development environments
already provide for round-trip engineering, where a pro-
grammer can develop class diagrams and code in tandem.
However, the integration of other types of UML diagrams,
particularly those concerning the dynamic behavior of soft-
ware, is not as well advanced.

The object diagram is an important UML diagram that
describes dynamic aspects of the software system, and can
be seen as a dynamic manifestation of the class diagram. An
object diagram is basically a graph, where the nodes are ob-
jects, and the edges represent object relationships and inter-
actions. It is usually used in design to demonstrate a typical
run-time configuration, but can also be reverse-engineered

from a running program as an aid to comprehension. One
of the principal difficulties of visualizing and understanding
object diagrams is their size. Whereas a class diagram may
contain hundreds of classes, a full object diagram could eas-
ily contain millions of objects.

In this paper we seek to establish reverse-engineered ob-
ject diagrams as a useful visual language for program com-
prehension. We focus on inter-object relationships based on
field assignments, and draw an analogy with the problem of
visualizing chemical structures at the molecular level. This
analogy is inspired by Bergstra, who saw it as a “program-
ming style” rather than a visualization tool [2]. The analogy
is direct: classes correspond to chemical elements, objects
correspond to atoms, and links between objects based on
field assignments correspond to chemical bonds between
atoms. We exploit this analogy by applying visualization
techniques for chemical compounds to UML object dia-
grams.

The rest of this paper is organized as follows. Section
2 briefly reviews related work in the area of 3D software
visualization. Section 3 describes the programs we analyze
in this paper, and Section 4 discusses the implementation
details of our approach. Section 5 demonstrates the appli-
cation of our approach to programs from the SPEC JVM98
and JOlden benchmark suites, and Section 6 concludes the
paper.

2. Background and related work

In this section we briefly review work relating to soft-
ware visualization. Due to space constraints we do not con-
sider 2D visualizations, and present only the most relevant
work in 3D visualization. We distinguish three main types
of research in this area: (1) graph-based visualizations of
static software architecture, (2) non graph-based visualiza-
tions of dynamic software behavior, and (3) pedagogical vi-
sualization and animation tools.

(1) Static, graph-based approaches. There has been a
considerable amount of work in the design and implemen-
tation of tools to visualize UML class diagrams. As well as
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straightforward representations of the relationships between
packages, classes and interfaces [1], some approaches in-
vestigate the use of navigation [7], focus and context [11],
or novel shapes in VRML [5]. An interesting approach uses
software metrics to calculate similarity measures between
classes, and uses this as a grouping criterion for positioning
the classes [13]. At least two of these approaches employ
the spring embedding algorithm, used in this paper, to lay-
out their diagrams [1, 13].

It should be noted that there is a significant difference
in scale between class diagrams, which rarely exceed hun-
dreds of classes, and object diagrams, which can involve
hundreds of thousands or millions of objects. One of the
issues addressed in this paper is dealing with large numbers
of objects by representative sampling of dynamic trace data.

(2) Dynamic, non graph-based approaches. A num-
ber of representations of dynamic aspects of programs have
been proposed, and these deal specifically with the prob-
lems of representing large amounts of data. The types of vi-
sualizations include box displays [18], tree-maps [12], ma-
trices, clusters and time charts [8] and 3D bar charts [15].
The GCspy tool, used for heap visualizations in Java, ex-
plicitly traces object behavior, producing charts showing
heap activity [17].

While our work exploits a non-standard molecule
metaphor to aid visualization, it is an important goal of our
research to adhere as closely as possible to standard soft-
ware engineering modeling structures, such as the UML.
Hence, our goal has not been to create a novel form of visu-
alization, but to explore the practical aspects of using exist-
ing standard modeling languages.

(3) Pedagogical approaches. A number of approaches
and tools exist for presenting aspects of software systems
for pedagogical purposes, ranging from algorithm anima-
tion [21], explaining design patterns [4], to depicting class
instantiations and collaborations [20].

It should be noted that most of these approaches use
custom-designed examples, and do not address the issue of
scale and complexity in dealing with software systems, as
opposed to pedagogical examples.

In our previous work, we have developed tools to profile
running C++ applications, and to display UML collabora-
tion and object diagrams as the program is running [14].
In this previous work, we dealt with the problem of scale
by allowing user interaction, so that the information avail-
able could be filtered both at compile time and at run-time.
We concluded that object diagrams were the less informa-
tive of the two types of diagram, and that further work was
required to investigate effective use of object diagrams in
program comprehension.

Program Description
201 compress Modified Lempel-Ziv compression method

202 jess Expert Shell based on CLIPS
205 raytrace A raytracer working on a scene depicting a dinosaur

209 db Multiple functions on a memory resident database
213 javac The Java compiler from SUN’s JDK 1.0.2.

222 mpegaudio Decompresses ISO MPEG Layer-3 audio files
228 jack A Java parser generator that is based on PCCTS

bh Hierarchical force-calculation algorithm
bisort Implementation of a bitonic sort
em3d Propagation of waves through 3D objects
health A simulation of the Columbian health-care system

mst Computes the minimum spanning tree of a graph
perimeter Computes the total perimeter of a region

power An optimal power pricing algorithm
treeadd Recursive depth first traversal of a binary tree

tsp Implementation of the traveling salesman problem
voronoi A Voronoi diagram for a random set of points

Table 1. The benchmark programs used in our
study. The seven programs in the top half of the table
are from the SPEC JVM98 benchmark suite, while the
ten programs in the bottom-half of the table are from
the JOlden benchmark suite.

3. The programs used in our study

The programs used in our study consist of the SPEC
JVM98 [19] and JOlden [3] benchmark suites. The SPEC
JVM98 suite consists of seven Java programs that are in-
tended to represent different classes of “real world” Java
applications. The JOlden benchmarks are Java versions of
pointer intensive C programs, designed to exhibit a large
volume of object creation. The programs in both suites are
summarized in Table 1. While the SPEC JVM98 bench-
mark programs are more directly comparable to other stud-
ies that use Java software, we include the more synthetic
JOlden programs in our study to ensure that our study scales
to significant levels of object populations.

Both benchmark suites include a test harness to ensure
that results from different executions are comparable. The
JOlden benchmarks were run with the supplied standard pa-
rameter settings, and the SPEC benchmarks were run at size
100. Each program was run using the client virtual machine
(build 1.5.0-b64) from Sun’s J2SE 5.0.

A summary of some static measures of the programs is
given in the first two data columns of Table 2. This data re-
flects the basic structure of the UML class diagram for each
program, where the nodes in the diagram represent classes,
and the edges represent class inheritance. As is the case for
the rest of this paper, we consider only user classes (i.e. not
those from the Java API), and fields that contain references
to objects (i.e. not to basic types such as int etc.). As can
be seen from the first column of data in Table 2, the SPEC
JVM98 suite contains substantial programs, ranging from
31 to 183 classes. The level of inheritance use is also sig-
nificant, peaking at 125 inheritance edges for the 213 javac
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Class Diagram Objects
Program Classes Inherit Created Alive at HWM

201 compress 31 3 335 63
202 jess 167 20 3883600 45270

205 raytrace 44 10 5039697 143335
209 db 22 1 15651 15461

213 javac 183 125 2008795 349812
222 mpegaudio 70 18 999 999

228 jack 74 31 154822 15532
bh 9 2 7397764 52552

bisort 2 0 131071 130785
em3d 4 0 4009 4004
health 8 0 1025342 129225

mst 6 0 1050624 1034471
perimeter 10 3 905838 449960

power 6 0 23605 22398
treeadd 2 0 1048575 1032533

tsp 2 0 16383 16381
voronoi 6 1 2241912 567398

Table 2. Measures of the benchmark pro-
grams. The first two data columns show the number
of classes and inheritance edges in the class diagram.
The last two data columns show the number of objects
created during the program’s run and the number of
objects alive at the program’s high water mark.

program. In contrast, the JOlden suite consists of relatively
small programs, with few classes and little use of inheri-
tance.

A summary of some dynamic measures of the programs
is given in the third and fourth data columns of Table 2, in
order to give an overview of the complexity of the task in-
volved in processing the object diagrams. The third data
column gives the total number of objects created during the
running of each program. The fourth data column gives the
number of objects alive at the program’s high water mark.
The high water mark for a program is that point during its
run at which the maximum number of objects are alive,
and is commonly used in garbage collection studies [10].
It should be noted that the fourth column is dependent on
the performance of the garbage collector, and thus will vary
across implementation platforms. As can be seen from Ta-
ble 2, the JOlden programs do indeed exhibit high rates of
object creation and, more importantly for our study, high
rates of object survival.

4. Implementation strategy

Figure 1 presents an overview of the system used to col-
lect the data, which consists of two main components. The
first component is a profiler written in Java, that analyses
and instruments the class files of the input program as they
are loaded by the Java Virtual Machine (JVM). The sec-
ond component is a suite of programs written in C++, that
builds the object diagram, selects a representative sample,
and generates the VRML representation.

The core technology used to track object creation

and deletion as well as field assignments, is the
java.lang.instrument framework, incorporated into version
1.5 of the JVM. This framework allows the user to inter-
cept classes as they are loaded by the JVM, and we use
it both to generate a class diagram and to instrument the
class file. The class diagrams are extracted by analyzing the
class files, and are generated as a graph in Dot format. The
instrumentation code, written with the aid of the Apache
Byte Code Engineering Library (BCEL) [6], is inserted in
constructor and finalizer methods as well as around field
assignment instructions, and has the effect of generating a
trace file tracking these events when the program is run.

The remaining analysis is done off-line, based on analyz-
ing the trace file generated during the program run. First,
the trace file is analyzed to select those objects and fields
alive at the program’s high water mark, and a summary trace
is produced. This reduced trace only contains information
about those objects and field assignments extant at the high
water mark, but preserves the order of object creation and
field assignment. The reduced trace is then used to build a
graph representing the object diagram, and to compute the
overall frequency of edge occurrences. From this, a repre-
sentative sample is selected, the 3D co-ordinates are com-
puted, and a VRML version of the diagram is generated.
These processes are discussed in the following subsections.

4.1. Sample selection

As can be seen from Table 2, the size of the full object
diagram at the high water mark varies from program to pro-
gram, but is quite large in many cases. Object diagrams
containing more than a few hundred nodes present prob-
lems for the layout algorithm, for the VRML browser and,
most importantly, for the comprehensibility of the gener-
ated diagram. Hence, rather than trying to view the whole
object diagram, we choose to select a smaller sample of the
diagram. From experimentation, a figure of 250 edges was
selected as yielding the largest object diagram that could be
viewed with ease.

Our approach for selecting a sample is based on two ob-
servations. First, programs tend to exhibit repetitive be-
havior, with the relationships between objects strictly con-
trolled by the type system. Hence, it is reasonable to assume
that selecting a sample might yield representative results.
Second, studies of the connectivity of heap objects and of
the performance of garbage collectors indicates that object
connectivity correlates strongly with object lifetimes [10].
This leads us to select a sample based on grouping events
that occur together, rather than the more complex, and more
computationally expensive approach of traversing the object
diagram looking for a cluster of representative objects.

Having decided on a sample size of 250, each consecu-
tive sequence of 250 field assignments is examined, and the
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Figure 1. System overview. The main input to the system is a set of Java .class files, which are run on an
instrumented JVM. A class diagram and trace file are generated by our profiler. The trace file is then used as input to
our graph layout code, which generates a VRML representation of a representative sample of the object diagram.

frequency of occurrence of each field is calculated for that
sample. The “goodness of fit” of this sample is calculated
by comparing it to the frequencies for the fields across the
whole program, using the following formula:

χ2 =
∑

i≤N

(

(Oi − Ei)
2

Ei

)

Here, N is the number of different fields in the program,
Ei, is frequency of field i in the whole object diagram, and
Oi is the frequency of field i in our chosen sample.

The χ2 value is calculated for all possible samples of
250 sequential edge assignments, and the sample with the
lowest value of χ2 is chosen as the representative sample.

4.2. Graph layout

In order to calculate the co-ordinates of the objects in the
3D visualization, we use a simple spring embedding algo-
rithm commonly used in chemical applications. The basic
algorithm is due to Eades [9], and our implementation is
adapted from one by Mutton [16].

The algorithm works by initially assigning random posi-
tions to the objects, and then iteratively assigning new posi-
tions based on calculating the attracting and repelling forces
on these objects. Two nodes a distance d apart attract each
other with a force of 2 log(d) for each edge between them,
and repel each other with a force of 1√

d
.

The algorithm is iterative with the force on each object
being calculated and applied on each iteration. For the dia-
grams in this paper, a value for M , the number of iterations,
of 1000 is used.

Once the positions have been calculated, the VRML ver-
sion of the object diagram is generated. Objects are rep-
resented as spheres, with the color indicating the class to
which they belong. Optionally, a number representing the

unique class identifier can also be displayed. Both the color,
and the class identifier, are the same as those used in the
class diagram. Fields between objects are represented as
cones, with the apex pointing from the owning object, to-
wards the field value. To ease comprehension, multiple
edges between two objects in the same direction are not dis-
tinguished, but the presence of edges in opposite directions
can be determined.

5. Results

In this section we present some of the results obtained
by generating class and object diagrams for the programs in
the benchmark suites. Due to space constraints we can only
present a sample of the diagrams here.

5.1. Simple “molecular” structures

As a simple example of the visualization of class dia-
grams and object diagrams, we present the results for the
smallest program, 201 compress, in Figure 2. The class
diagram is shown on top, in Figure 2 (a), and three views of
the object diagram are shown on the bottom of the Figure.
Figure 2 (b) is an overview of the object diagram, which is
relatively simple, with only 10 non-trivial clusters.

Figure 2 (c) and Figure 2 (d) show a close-up of two
commonly occurring structures. Figure 2 (c) is a cluster that
occurs three times, with an instance of class 11 at the center,
and containing instances of classes 9, 10, 12 and 13. Figure
2 (d) is a cluster that occurs five times, with an instance of
class 14 at the center, and containing instances of classes 9,
10, 13, 15 and 16. Referring to the class diagram, we can
see that these two structures represent two different behav-
iors of the program: Figure 2 (c) represents compression,
centering on class Compressor, and Figure 2 (d) represents
decompression, centering on class Decompressor.
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Comp_Base

Compressor (11) Input_Buffer (9) Output_Buffer (10) Decompressor (14)

Compressor$Hash_Table (12) Code_Table (13) Decompressor$Suffix_Table (15) Decompressor$De_Stack (16)

(a) Class diagram (classes representing scaffolding code are not shown)

(b) Object diagram - full view (c) Close up of compression objects (d) Close up of decompression objects

Figure 2. The class diagram and three views of the object diagram from the 201 compress program.
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Figure 3. The class diagram and two views of the object diagram from the health program.
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(b) The main cluster from the object diagram

Figure 4. Class diagram and object diagram from the 222 mpegaudio program.
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A slightly more complex example is shown in Figure 3,
which shows the class diagram and views of the object di-
agram for the health program. Most of the structures in
Figure 3 (b) are composed from, or are fragments of the
structure shown in Figure 3 (c). From the class diagram,
we can see that this represents a patient object, with an as-
sociated village object, and contained in the node of a list
object.

While the object diagrams in Figures 2 and 3 must, of
necessity, be consistent with their corresponding class di-
agrams, it is worth noting that each object diagram deliv-
ers significant extra information. In particular, the nature
of the relationships between clusters of objects are easily
discernible in the object diagram, but not from the class di-
agram.

5.2. A more complex example

Figure 4 presents a more complex example, representing
the class and object diagram of the 222 mpegaudio pro-
gram. Apart from having a relatively complex class di-
agram, as shown in Figure 4 (a), the class names in the
distributed version of the program have been obfuscated,
which poses a further barrier to comprehension. Because of
this, we represent the class names in Figure 4 using num-
bers, since the names themselves have little meaning.

The object diagram is shown in Figure 4 (b), and con-
sists of a single large cluster of objects, with an instance
of class 9 at the center. Around this are an instance each
of classes 15 through 20, colored light blue, and emanat-
ing from the center node are six sub clusters. Each of these
consists of five objects, instances of classes 31 through 35,
colored pink, with a total of 18 instances of class 11, colored
green, emanating from these.

It is interesting to note the contrast between the class di-
agram in Figure 4 (a) and the object diagram in Figure 4 (b).
Both of the classes 9 and 11 appear to be of central impor-
tance in the class diagram, but the object diagram makes the
differing role of these classes clearer. It is also interesting
to note that the similarity of the two groups of classes, 15
through 20, and 31 through 35, are mirrored in the object
diagram.

5.3. Visualizing data structures

Several of the programs in the JOlden benchmark suites
have relatively few classes, but implement basic data struc-
tures such as lists and trees. Figure 5 shows some of the
examples of these data structures as they occur in the object
diagrams of the programs. We refer to these as user-defined
data structures to distinguish them from the containers de-
fined in the Java API, which are not at present included in
our visualization.

(a) Singly Linked List from bh

(b) Binary Tree from bisort

(c) Quad-tree from perimeter

Figure 5. User-defined data structures from
three programs in the JOlden suite. In each
case, the program’s object diagram clearly exhibits
the influence of the underlying data structure.
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Figure 5 (a) shows the object diagram from the bh pro-
gram, which consists of a singly linked list. The “spine” of
the list is clearly visible as a chain of purple objects, with
the contents field shown as the green object connected to
each list node. This is a particularly simple example, since
no two nodes share their contents, thus giving a linear struc-
ture.

Figure 5 (b) is taken from the object diagram for the
bisort program, and exhibits the structure of a binary tree.
The 3D representation of the tree is perhaps less intuitive
than the usual 2D representation, but a clear pattern of one
or two children for each node is discernible.

Figure 5 (c), taken from the object diagram for perime-
ter, shows a slightly more complex example of a tree. This
diagram represents a quad-tree, where each node can have
up to four children. Further, the internal nodes in the tree,
colored navy, can be seen to be of different type from the
leaf nodes, colored purple.

6. Conclusions

In this paper we have described a technique for extract-
ing object diagrams from Java applications, and for visu-
alizing these diagrams in 3D using VRML. We have ap-
plied our technique to programs from the SPEC JVM98 and
JOlden benchmark suites, and have demonstrated how the
derived diagrams can aid program comprehension.

We identify three main contributions of this work. First,
we demonstrate the use of object diagrams in software vi-
sualization and comprehension, rather then in design, their
usual area of application. Second, we use a molecular
metaphor to guide our strategy for 3D visualization and lay-
out, allowing us to harness existing techniques from the do-
main of chemistry. Third, we present a sampling strategy
that reduces the size of the object diagram to ease the cog-
nitive burden on the user, and demonstrate that the results
add to our understanding of the software system.

Our work to date has specifically excluded Java API
classes, with the result that collections of data often appear
as fragmented molecules in our visualizations. An impor-
tant area of future research is to investigate suitable visual-
ization schemas for containers, such as (non user-defined)
vectors and hash tables, so that these can be represented
within our framework.
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