
A Formal Model of Forth Control Words

in the Pi-Calculus

James F. Power
(National University of Ireland, Maynooth, Ireland

jpower@cs.may.ie)

David Sinclair
(Dublin City University, Ireland

David.Sinclair@computing.dcu.ie)

Abstract: In this paper we develop a formal specification of aspects of the Forth pro-
gramming language. We describe the operation of the Forth compiler as it translates
Forth control words, dealing in particular with the interpretation of immediate words
during compilation. Our goal here is to provide a basis for the study of safety prop-
erties of embedded systems, many of which are constructed using Forth or Forth-like
languages. To this end we construct a model of the Forth compiler in the π-calculus,
and have simulated its execution by animating this model using the Pict programming
language.

Key Words: Forth, pi-calculus, operational semantics

Category: D.3.1, D.3.3, F.3.2

1 Introduction

In this paper we seek to contribute to the study of stack-based languages and ar-
chitectures by providing a model of the control structures used in the Forth pro-
gramming language. Stack-based machines have a long history in programming
language implementation [Koopman 1989], but lately have achieved increased
prominence due to the widespread use of virtual architectures such as the Java
Virtual Machine (JVM) and the .NET Common Language Runtime (CLR).

The remainder of this paper is structured as follows. Section 2 presents the
background to our work, and briefly surveys stack-based languages, formal se-
mantics and the π-calculus. Section 3 presents a high-level overview of the pro-
cesses in our model. This section provides a context for Sections 4 and 5, which
present the main aspects of the specification. Section 6 presents some examples
of the use of our specification to translate some common Forth idioms. Finally,
Section 7 concludes the paper.

2 Background and Related Work

The Forth programming language is relatively old in the context of high-level
programming languages, dating from around 1970 [Moore and Leach 1970]. Its

Journal of Universal Computer Science, vol. 10, no. 9 (2004), 1272-1293
submitted: 7/7/03, accepted: 5/4/04, appeared: 28/9/04 © J.UCS

emphasis on high performance coupled with a small memory footprint has helped
establish the language, particularly in relation to embedded microcontroller sys-
tems and similar industrial applications. Reflecting this, Forth has been stan-
dardised by both ANSI and the ISO [ISO 1997].

In this section we give an overview of stack-based machines and point to some
of the strengths and weaknesses of existing implementations of this approach. In
particular we highlight the importance of formal models in establishing safety
properties, particularly in relation to Forth’s control structures. We also present
an overview of the π-calculus, the formalism used later in the paper to model
the interaction between the processes in the Forth compiler.

2.1 Stack-Based Machines

In the extreme case a stack-based language will insist on all programming activi-
ties being performed directly on the stack, including expression evaluation, local
variable storage, parameter passing and the return of result values from func-
tions. More realistically, many such languages will mask these basic operations
with a friendlier syntax.

Much of the original motivation for the use of stack-based machines in pro-
gramming language translation was as an abstract “machine code”. Such lan-
guages were low-level enough to allow straightforward translation to a given
assembly language for a specific architecture, but yet sufficiently high-level to
allow the compiler-writer ignore many implementation details, most particularly
the number and nature of the target architecture’s registers.

The development and increasing popularity of the Java programming lan-
guage [Gosling et al. 1996] and the JVM [Lindholm and Yellin 1996] have spar-
ked renewed interest in the pragmatics surrounding stack-based language design.
The Java language technology typically involves a Java compiler that translates
Java programs into bytecode, along with an interpreter/compiler (the JVM)
that executes this code. However, such systems still have difficulty in com-
peting with Forth-based applications in terms of speed and memory efficiency
[Barr and Frank 1997], although the situation is improving.

One of the major features of the JVM is also one of its major overheads -
the use of stack-safe code that can be statically verified. Coupled with garbage
collection and other security features, the JVM is probably at the extreme end of
“safe” virtual machines. A more pragmatic approach, exemplified by the .NET
Common Language Runtime [ECMA-335 2001], is to explicitly identify “unveri-
fiable code” sections where pointer manipulation and manual memory allocation
can happen.

Forth combines a distinctive postfix stack-based programming approach with
a remarkably economical syntax. While fundamentally similar to the JVM and
CLR architectures, Forth differs from both the JVM and CLR in that it does

1273Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

not provide direct primitive support for classes and objects. However, Forth
does provide a flexible yet structured approach to the implementation of flow of
control that contrasts sharply with that of the JVM and CLR, and it is Forth’s
implementation of these structures that forms the focus of this paper.

Forth control structures are a unique combination of high-level structured
concepts with the flexibility of low-level test-and-branch operation. Further,
Forth is unusual in that it allows the programmer define new control words, pro-
viding for a variety of possible constructs. One disadvantage of this approach,
however, is that these control words can increase the complexity of the code,
and can cause unexpected side-effects if used incautiously.

Systems such as the JVM and CLR incur significant performance overheads
by dealing with safety properties at run time, using a bytecode verifier. Indeed,
one alternative to JVM bytecode, also designed to allow safe, mobile code, de-
liberately preserves high-level control structures for this reason [Franz 1998].
However, in industrial critical applications, and particularly with embedded sys-
tems, run-time failures are unacceptable, and considerable emphasis is placed on
testing and static verification of the software.

2.2 Formal Semantics and the π-Calculus

In the following sections we present a formal model of the Forth compiler, high-
lighting the compilation of Forth control words. Providing formal definitions of
programming languages is a well-established field, usually known as formal se-
mantics (see e.g. [Watt 1991] for a survey) and, in this context, our definition
would most likely be classed as an operational semantics of Forth.

However, the structure of the Forth compiler lends itself to a particular form
of specification. Specifically, the operation of Forth is most often described in
terms of the Forth engine’s concurrent interactions with the control, data and
return stacks, with the total effect being the parallel composition of these interac-
tions. Thus the words in a Forth program become events that trigger changes in
the processes representing the Forth stacks, along with other internal structures
such as the dictionary.

This contrasts with the compositional approach typically taken in denota-
tional descriptions, such as in [Schmidt 1986], and the structural approach taken
in modern operational semantics, as in [Hennessy 1990]. Our model differs from
these approaches since, for both compositional and structural approaches, the
definition is structured around the (abstract) syntax of the programming lan-
guage being defined. This makes sense for high-level languages which express
control using nested syntactic structures (such as if statements, while-loops etc.),
but is not so appropriate to Forth, where a program is simply a sequential list
of words, with no real nesting.

1274 Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

We take a different approach, making the processes of the Forth system cen-
tral to our model, and viewing the program text as a stream of events which affect
these processes. In this, our semantics bears a similarity to previous specifica-
tions of aspects of Forth, such as [Knaggs 1993] and particularly [Stoddart 1996].
However, these specifications concentrated on the execution of Forth programs,
whereas our specification also incorporates the actions of the Forth compiler. An
alternative approach [Pöial 1993] employs Hoare-style axioms to a fragment of
Forth, but appears to treat compile-time words as primitives in the language.
More recently [Pöial 2003] presents a type system for inferring stack safety for
similar fragments of Forth, but also does not deal with compile-time semantics.

The modelling formalism that we have chosen to use here is the π-calculus
[Milner 1999, Sangiorgi and Walker 2001]. The π-calculus provides a primitive
set of operations for describing the interactions between communicating pro-
cesses, as well as allowing for the movement of communication channels between
these processes. This formalism is not typically used to specify the formal se-
mantics of programming languages ([Röckl and Sangiorgo 1999] is an exception,
but even this concentrates on concurrency aspects of the language).

However, we believe that the π-calculus is particularly suited to providing
an operational model of the web of interactions between various components of
the Forth system. To model the Forth system it is necessary to allow for a num-
ber of interacting processes which may include either compile-time or run-time
behaviour, as the system switches from compiler to interpreter mode. In addi-
tion, the use of immediate and postponed words within word definitions further
enmeshes these processes, making their presentation using standard structural
approaches quite difficult. Also, the basic purpose of the Forth compiler, the
definition of new words, finds a natural model in the π-calculus primitives for
the creation and movement of names between processes, and the necessary re-
configuration of communications between these processes.

We will not give a full presentation of the π-calculus here; we seek only to
introduce the notation used in the rest of this paper. The two main events that
can occur are:

– c(n), denoting the receipt of some message, hereby named n, along a channel
c, and

– c〈n〉, denoting the sending of some existing name n out along the channel c

In the π-calculus channels are first-order objects; that is, channels can be sent
and received along other channels. The silent event, τ denotes an internal action,
hidden to other processes.

For our purposes, processes can then be described as:

– e.P , where e is an event and P is a process - the process P here is guarded
by the event e

1275Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

– P1 + P2 denoting nondeterministic choice between processes P1 and P2

– P1 | P2, which denotes the processes P1 and P2 being run in parallel

– new a (P) introducing (and binding) the new name a in process P

– P1; P2, which denotes the sequential composition of processes P1 and P2
1

Two processes running in parallel may use guards to synchronise; the basic
reaction rule formalises the synchronisation in a manner similar to β-reduction
in the lambda calculus:

(x(y).P + M) | (x〈z〉.Q + N) → {z/y}P | Q

2.3 Notation

To increase the readability of our specification, we use some notational conve-
niences not primitive to the π-calculus:

– We use macro-like definitions to give names to processes; thus P (n) def= Q

defines the macro P indexed by n, defined to be the same as process Q after
suitable substitution for parameter n.

– Tuples are represented using square brackets; for example: [x, y] is the pair
consisting of x and y.

– We use l1
∧l2 to represent the concatenation of lists l1 and l2, and overload

this notation to also apply to list elements. We use the constant Nil to
represent the empty list, and the functions hd and tl to represent the usual
list head and tail operations.

– If both s1 and s2 are strings we will use s1
∧s2 to represent their (string)

concatenation.

All of the specifications presented in the following sections have been type-
checked and tested using the Pict system [Pierce and Turner 1997], a program-
ming language based closely on the π-calculus. The specification was translated
almost directly into Pict, which helped to check the consistency of the model,
and, as an executable language, allowed us to simulate the actions of the com-
piler as it dealt with various configurations of Forth source code. The full Pict

source code is presented in [Power and Sinclair 2001].

3 Overview of the Model

The Forth programming language is characterised by the fact that it is not only
a stack-based language, but also a semi-compiled language. A Forth program
1 If we assume that every process performs the action done〈〉 as its last action we can

define sequential composition as a special case of parallel composition.

P ; Q
def
= new start ({start/done}P | start.Q)

1276 Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

ForthProgram =
{ WordDefinition }, Ident

;
WordDefinition = (* Define an Ident as a sequence of Commands *)

":", Ident, { Command }, ";" (* Ordinary word *)
| ":", Ident, { Command }, "; immediate" (* Immediate word *)
;
Command =

DataCommand
| CFSCommand
| ImmediateCommand
| "postpone", ImmediateCommand
| "postpone", Ident (* Ident must be an immediate word *)
| Ident (* Call/Execute the word Ident *)
| "recurse" (* Recursive call to the current word *)
| "exit" (* Return control to the calling word *)
;
DataCommand = (* Commands that manipulate the data stack *)

"drop" | "dup" | "swap" | "tuck" (* Stack manipulation instruction *)
| "+" | "-" | "*" | "/" (* Standard arithmetic operations *)
| "=" | "<" | ">" (* Standard comparison operations *)
| Number (* Push a number on to the stack *)
;
CFSCommand = (* Commands that manipulate the control flow stack *)

"cs-roll" (* Reorder the control stack *)
| "cs-pick" (* Copy an item on the control stack *)
;
ImmediateCommand = (* Commands that are executed during compilation *)

"if" (* Mark the origin of a forward conditional branch *)
| "ahead" (* Mark the origin of a forward unconditional branch. *)
| "begin" (* Mark a backward destination *)
| "then" (* Resolve a forward branch *)
| "again" (* Resolve a backward unconditional branch *)
| "until" (* Resolve a backward conditional branch *)
;

Figure 1: An EBNF definition of the abstracted Forth syntax used in this paper. Here
we assume Ident represents an identifier, and Number an integer literal.

consists of a series of words, which can be either Forth standard words or words
defined by the user. These words are processed sequentially by the interpreter.
Each word has an entry in the dictionary and the compiled code associated with
the word read by the interpreter is retrieved from the dictionary and executed.
The effect of each word is to modify the state of one of the Forth stacks.

The Forth language has three stacks. The data stack is used to manipulate
values; for this paper, we assume all these values are integers. The return stack
is used to restore the state after a Forth word has been called. The control-flow
stack is used to implement control flow management. Forth provides a set of
standard words that provide a more structured approach to control flow man-

1277Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

agement than the basic low-level branches and labels implemented by many
assembly languages.

In this paper we are interested in Forth’s approach in providing structured
control flow primitives, as we believe that this has a fundamental impact on ver-
ification and optimisation, as well as a possible influence on the design of future
intermediate representations. We will abstract the syntax of a Forth program to
the primitives shown in Figure 1.

We define a Forth program as consisting of a series of word definitions fol-
lowed by an invocation of one of those words. When a “:” is encountered, a
new word is being defined, and the Forth system switches from interpreter mode
into compiler mode until the subsequent “;” or “; immediate” is encountered.
Each new Forth word is defined in terms of existing Forth words, which are ei-
ther immediate words or non-immediate words. Immediate words are executed
immediately by the compiler whereas non-immediate words have a call to their
compiled code appended to the compiled code of the Forth word being defined.
It is only when the non-immediate word is subsequently executed by the inter-
preter that the behaviour defined by the non-immediate word is executed. An
immediate word may be preceded by postpone, causing it to be treated as a
non-immediate word.

As well as primitives for defining new words, we include the six standard im-
mediate control words if, then, begin, again, until and ahead. These control
the generation of branch and labelled instructions by maintaining all labels in
the program on the control flow stack. Each of these instructions corresponds
to either generating a new label or using an existing label from the control flow
stack. The primitives cs-roll and cs-pick are used to change the ordering on
the control flow stack without generating any new labels.

We note that the presence of immediate words, with behaviour that is ex-
ecuted at compile-time, considerably complicates the static analysis of Forth
programs. Indeed, without the ability to execute such words during the analysis,
static analyses such as stack safety checks cannot be fully implemented on Forth
code. While immediate words are specific to Forth, echoes of this difficulty can
be found in the analysis of C++ programs, where techniques such as template
meta-programming [Veldhuizen 1995] can build considerably functionality into
the compile-time processing of a program.

Figure 2 gives an overview of our specification of the Forth programming
system. It shows the processes that model each component of the Forth system
and the channels that carry information between the processes, and should thus
be used as a reference when reading the π-calculus specification in Sections 4
and 5. Section 6 provides examples of the interactions between these processes.

1278 Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

Control

word(w)

roll(v)

pick(v)

supplies(t)

resolve(t)

label(l)

create(n)

getDefinition(n)

definition([n,d,i])

defnChan(c)

nch

return(d,p)

newLabel(l)

pop(v)

push(v)

change(s)

call(d,p)

Flow
Stack

Dictionary

Return
Stack

genLabel

Forth
Source
Code

Data
Stack

Forth Processor

Interpreter/Compiler
and Run−Time Engine

Figure 2: Overview of the specification of the Forth system. The processes and events
depicted here are described by the specifications in Sections 4 and 5.

FORTH(prog, dict) def=
INTERP | SOURCE(prog) | DICTIONARY(dict)

| DATA(Nil) | CFS(Nil) | RETURN(Nil) | genLabel(1)

Figure 3: Specification of the main processes of the Forth system. This is the starting
point for the processing of some Forth program prog, based on an initial dictionary dict
of pre-defined words.

4 Processing a Forth Program

Figure 3 is our top level specification of the Forth programming system. The sys-
tem is the parallel composition of the interpreter process INTERP, supplied with
Forth source code from SOURCE, using the dictionary process DICTIONARY,
and manipulating the three stacks - the data stack, DATA, the control-flow stack,
CFS, and the return stack, RETURN.

In the remainder of this section we describe those processes within the Forth
system that interact with the Forth source code, specifically the interpreter,

1279Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

INTERP def=
word(w).
if w = “:” then word(n).create〈n〉.defnChan(nch).COMPILE(n, nch)

else EXECUTE(w).INTERP

SOURCE(prog) def=
word〈hd prog〉.SOURCE(tl prog)

Figure 4: Specification of the main Forth interpreter loop and the source code process
which feeds it.

dictionary and compiler. In Section 5 we describe the remaining processes that
deal with compile-time semantics and executing the code.

4.1 The main interpreter loop

Figure 4 elaborates the definition of the interpreter process, showing its two
main sub-processes, the Forth compiler process, COMPILE, and the run-time
engine process, EXECUTE.

When the interpreter reads a word definition, which starts “: n”, it creates
an entry in the dictionary for the word n and invokes the Forth compiler with the
supplied channel nch. The compiler translates the word, feeds its definition to
the dictionary, and eventually returns control to the interpreter. If the interpreter
encounters a word that does not begin a definition then it is executed directly
through the EXECUTE process.

Both the compilation and interpretation processes in Forth are driven by the
source code of the program being processed, in the form of a stream of Forth
words. This is modelled in Figure 4 as a simple list of words, represented by the
SOURCE process, and these are supplied one at a time to the interpreter along
the word channel.

4.2 The Forth Dictionary

The Forth dictionary is used to hold word definitions, and is defined in Figure
5 as the DICTIONARY process. The two primary operations of the dictionary
are to add a new word to the dictionary or report on an existing word.

When adding a new word to the dictionary a new channel nch is created
specifically for that word at the request of the interpreter. This channel can then
be used by the the compiler to supply words from the definition to the dictionary.
When the definition is completed then the word n is marked as either “ord” or

1280 Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

DICTIONARY(w) def=
create(n).

new nch (DICTADD(nch, [n, Nil, “ord”], w) | defnChan〈nch〉)
+ getDefinition(n).definition〈(find n w)〉.DICTIONARY(w)

DICTADD(nch, [n, d, i], w) def=
nch(s).

if s = done then DICTIONARY([n, d, i]∧w)
else if s = doneimm then DICTIONARY([n, d, “imm”]∧w)

else DICTADD(nch, [n, d∧s, i], w)

Figure 5: Specification of the Forth dictionary process which allows word definitions
to be created and accessed.

“imm”, depending on whether the definition is an ordinary word terminated with
“;” or an immediate word terminated with “; immediate”, and the channel is
released.

Reporting on a word n involves searching the dictionary and returning its def-
inition d and its immediacy status i. Here the function find returns a dictionary
entry for a given word n, or Nil if the word is not defined.

4.3 A Simple Assembly Language

In order to describe the operation of the Forth compiler we must consider its
output - the compiled code which is stored in the dictionary. To describe this
generated code we use a simple assembly language, which we will refer to as SAL

consisting mainly of labels and jumps, whose syntax is described in Figure 6.
For simplicity we use the Forth data stack and control-flow stack manipulation
instructions defined in Figure 1 directly in this assembly language.

We note the similarity here with the JVMI language that has been specified
to model the imperative core of Java [Börger and Schulte 1998]. Our language
SAL is quite similar to JVMI , except that it does not require "load" and
"store" instructions, since core Forth does not maintain a separate local variable
array.

4.4 The Forth Compiler

Figure 7 specifies the Compiler process. The compiler reads successive source
code words until it reads either “;” or “; immediate”, relays the appropriate
signal to the dictionary, and then returns to the top-level interpreter process.

1281Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

SimpleAssemblyLanguage =
{AssemblyInstruction} (* A sequence of (possibly labelled) instructions *)

;
AssemblyInstruction =

"call", Ident (* Call another word in the Dictionary *)
| "return" (* Return control to caller *)
| Ident, ":" (* A label *)
| "goto", Ident (* Unconditional branch to labelled instruction *)
| "ifzero", Ident (* Conditional branch to labelled instruction *)
| DataCommand (* As for Forth (see Figure 1) *)
| CFSCommand (* As for Forth (see Figure 1) *)
;

Figure 6: An EBNF definition of the syntax of SAL, a Simple Assembly Language.

COMPILE(n, nch) def=
word(w).

if isDataCommand(w) then nch〈w〉.COMPILE(n, nch)
else if isCFSCommand(w) then nch〈w〉.COMPILE(n, nch)

else case (w) of
“;” then nch〈done〉.INTERP

“; immediate” then nch〈doneimm〉.INTERP
“postpone” then word(m).nch〈m〉.COMPILE(n, nch)
“recurse” then nch〈"call "∧n〉.COMPILE(n, nch)

“exit” then nch〈"return"〉.COMPILE(n, nch)
else getDefinition〈w〉.definition(defn).

if defn = [w, d, “ord”] then nch〈"call "∧w〉.COMPILE(n, nch)
else if defn = [w, d, “imm”] then IMMEDIATE(n, nch, d)

else if defn = Nil then IMMEDIATE(n, nch, [w])

Figure 7: Specification of the main actions of the Forth interpreter and compiler. The
immediate words are dealt with by the IMMEDIATE process, described later.

If the compiler reads a data stack or control-flow stack operation it relays it
directly to the compiled code. Here we assume boolean-valued functions isDat-
aCommand and isCFSCommand to syntactically test if a word is a data stack
or control-flow stack operation respectively. If, during compilation, the compiler
reads the word postpone it then reads the next word m from the source code
and sends that word along channel nch to the dictionary.

If the compiler reads any other word it checks for a dictionary entry for that
word. If w is a non-immediate word a subroutine call (represented as "call") to
the compiled code for w is generated and added to the n’s entry in the dictionary.

1282 Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

CFS([l0, t0]∧[l1, t1]∧ · · · ∧[ln, tn]) def=
resolve(t0).label〈l0〉.CFS([l1, t1]∧ · · · ∧[ln, tn])

+ supplies(t′).newLabel(l′).label〈l′〉.CFS([l′, t′]∧[l0, t0]∧[l1, t1]∧ · · · ∧[ln, tn])
+ pick(k).CFS([lk, tk]∧[l0, t0]∧[l1, t1]∧ · · · ∧[ln, tn])
+ roll(k).CFS([lk, tk]∧[l0, t0]∧[l1, t1]∧ · · · [lk−1, tk−1]∧[lk+1, tk+1]∧ · · · ∧[ln, tn])

genLabel(n) def=
newLabel〈n〉.genLabel(n + 1)

Figure 8: Specification of the Forth control-flow stack (CFS). This stack is used for
label management, and maintained by the compiler as it processes immediate words.

If w is an immediate word, or if its definition is not found, the IMMEDIATE pro-
cess, described below in Section 5, takes over to execute the immediate semantics
of the word.

5 Compile-Time and Run-Time Execution

In this section we turn to the main focus of our paper, the formal specification of
Forth control words. In particular we specify the compile-time activities of the
Forth processor, mainly centred around label management via the control-flow
stack, as well as code generation and execution.

The execution of immediate words will be described after the control-flow
stack is specified since it relies on the control-flow stack to generate the struc-
tured control flow.

5.1 The Control-Flow Stack

The control-flow stack stores [label,type] pairs that are used by the control flow
words if, then, begin, again, until and ahead, as described in Figure 1. The
valid label types are orig and dest. Pairs are added to the control-flow stack
via the supplies channel, which also causes the creation of a new label along
newLabel. A pair is removed from the control-flow stack when the value on the
resolve channel matched the type of the pair on top of the control-flow stack. In
each case, the label value of the pair is transmitted by the control-flow stack to
the compiler via the label channel. The pick and roll channels are used to modify
the control-flow stack in response to cs-pick and cs-roll instructions.

1283Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

IMMEDIATE(n, nch, ws) def=
if ws = Nil then COMPILE(n, nch)

else IMM(nch, (hd ws)).IMMEDIATE(n, nch, (tl ws))

IMM(nch, w) def=
case (w) of
“if” then supplies〈orig〉.label(l).nch〈"ifzero "∧l〉

“then” then resolve〈orig〉.label(l).nch〈l∧" :"〉
“begin” then supplies〈dest〉.label(l).nch〈l∧" :"〉
“again” then resolve〈dest〉.label(l).nch〈"goto "∧l〉
“until” then resolve〈dest〉.label(l).nch〈"ifzero "∧l〉

“ahead” then supplies〈orig〉.label(l).nch〈"goto "∧l〉
else STACKEXEC(w)

Figure 9: Specification of the execution of Forth immediate words. This specification
should be considered in conjunction with that of the control-flow stack, since its action
mainly involve accessing the labels on that stack.

5.2 Executing Immediate Words at Compile Time

Figure 9 specifies the execution of immediate words at compile-time. Here,
IMMEDIATE uses the sub-process IMM to process each of the words one at
a time. When the IMM process receives the immediate Forth words if, then,
begin, again, until or ahead it performs the corresponding actions on the
control-flow stack, and generates either a label, conditional jump or uncondi-
tional jump as appropriate.

For example, in the case of the conditional forward branch (if) a request for a
label of type orig is sent to the control-flow stack and the label l is then received
along label. The conditional branch "ifzero l" is sent along the code channel.
A subsequent then word issues a resolve〈orig〉 to the control-flow stack and
receives a label l. The label "l:" will then be appended to the compiled code.

The process STACKEXEC carries out an stack-based operation on the data
stack or control flow stack as appropriate, and is defined in Figure 10 below.

5.3 The Data Stack

Figure 10 specifies the data stack process, where we model this stack as a list of
integer values (v0

∧v1
∧ · · · ∧vn). Values can be added to the front of the list via the

push channel or removed from the front of the list in response to a pop signal. The
change channel allows us to send those commands that change the stack without
any other input or output. As well as some standard Forth stack manipulation

1284 Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

DATA(v0
∧v1

∧ · · · ∧vn) def=
push(v).DATA(v∧v0

∧v1
∧ · · ·∧vn)

+ pop〈v0〉.DATA(v1
∧ · · · ∧vn)

+ change(w). case (w) of
“drop” then DATA(v1

∧ · · · ∧vn)
“dup” then DATA(v0

∧v0
∧v1

∧ · · ·∧vn)
“swap” then DATA(v1

∧v0
∧ · · · ∧vn)

“tuck” then DATA(v0
∧v1

∧v0
∧ · · ·∧vn)

op then DATA((fop v1 v0)∧ · · · ∧vn)
where op ∈ {“+”, “-”, “*”, “/”, “=”, “<”, “>”}
and fop is the corresponding integer operation

STACKEXEC(w) def=
if (w = “cs-pick”) then pop(v).pick〈v〉

else if (w = “cs-roll”) then pop(v).roll〈v〉
else if isNumber(w) then push〈w〉

else if isDataCommand(w) then change〈w〉

Figure 10: Specification of DATA,the Forth data stack, and STACKEXEC, a process
that dispatches instructions to the control-flow and data stack as appropriate.

commands we include integer arithmetic and comparison operations. Each of the
operations received along the change channel corresponds directly to a operation
that can be used in the Forth source code.

The STACKEXEC process, also defined in Figure 10, handles requests from
either the compiler or run-time engine to access either the control-flow stack
or the data stack. We note that both of the control-flow stack instructions
“cs-pick” and “cs-roll” first retrieve an integer from the data stack before
performing the appropriate operation on the control-flow stack.

5.4 The Run-Time Engine

The final step in our definition is to give a run-time semantics for the compiled
word definitions. Through the specifications given above, these Forth definitions
have been compiled into the simple assembly language SAL of Figure 6. The
semantics of SAL are given in Figure 11.

The process EXECUTE was called by the interpreter in Figure 7, and its
purpose is to execute a word whose definitions in SAL has been retrieved from
the dictionary. It does this by calling the sub-process EXEC which effectively
maintains a program counter as we step through the code.

1285Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

EXECUTE(w) def=
EXEC(["call "∧w, "eof"], 0)

EXEC(d, p) def=
case (at(d, p)) of

"eof" then τ

("call "∧w1) then call〈[d, p + 1]〉.
getDefinition〈w1〉.definition([w1, d1, “ord”]).
EXEC(d1, 0)

"return" then return([d1, p1]).EXEC(d1, p1)
(l∧" :") then τ.EXEC(d, p + 1)

("goto "∧l) then EXEC(d, locate(d, l))
("ifzero "∧l) then pop(v).

if (v = 0) then EXEC(d, locate(d, l))
else EXEC(d, p + 1)

else STACKEXEC(at(d, p)).EXEC(d, p + 1)

RETURN(w) def=
call([d, p]).RETURN([d, p]∧w)

+ return〈(hd w)〉.RETURN(tl w)

Figure 11: Specification of EXECUTE, the run-time execution engine, and RETURN,
the return stack.

The EXEC process is parameterised by a list of assembly SAL instructions,
being the definition of a Forth word, and a location within that list. As well as a
special case for "eof" denoting completion, the EXEC process has one case for
each of the five kinds of assembly instructions, along with two cases handling
instructions for the data stack and control-flow stack.

The "call" and "return" instructions push and pop the program counter to
the return stack, while the conditional and unconditional jumps simply modify
the current program counter. To aid us in this we assume the existence of a
function at(d, p) returning the instruction at position p in list d, and a function
locate(d, l) returning the location of label l in the list d.

The return stack is simply a stack of program counters. Its two channels,
call and return are just appropriate versions of push and pop operations. The
definition of the return stack is given as the process RETURN in Figure 11

1286 Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

: while
postpone if
1 cs-roll

; immediate

: repeat
postpone again
postpone then

; immediate

: fact w
begin

dup 0 >
while

tuck * swap 1 -
repeat

;

Figure 12: Standard definitions of the Forth control words while and repeat, along
with a definition of fact w, which uses them to calculate the factorial of a number.

6 Some Examples of Compiling Forth Control Words

In this section we provide an example of the use of the semantics given in previ-
ous sections. In particular, we show how Forth’s if/then, while and recurse

constructs are handled by our semantics, and we prove the equivalence of two
definitions of a factorial program, one using the while construct, the other us-
ing recursion. The approach here should be contrasted with high-level languages
with built-in nested control structures, as well as with assembly and virtual
machine languages that must rely on unstructured test and branch instructions.

We have simulated the operation of the Forth compiler over these and other
examples through a translation of the π-calculus specification into the Pict pro-
gramming language. Because of the close relationship between Pict and the π-
calculus there is a strong correspondence between the specifications presented in
previous sections and the Pict code, apart from some minor administrative de-
tails. The Pict simulation takes a list of Forth word definitions corresponding to
the syntax in Figure 1, and translates them into the simple assembly language,
SAL, of Figure 6, executing any compile-time semantics in the process. The Pict

simulation then uses the basic run-time semantics for SAL to run the program,
producing an appropriate result on the data stack.

6.1 An Example of Compile-Time Semantics

In this subsection we demonstrate the working of the COMPILE and IMMED-
IATE processes and their interaction with the control-flow stack. The example
we use is a simple implementation of the factorial function using a loop. To define
an equivalent of the while loop in Forth, we follow the ISO standard and define
two extra control words, while and repeat, and use these in our definition of
the factorial function, fact w. The definitions are given in Figure 12.

The compiler will first process the definitions of the two immediate words,
storing a definition of while as “if 1 cs-roll” and a definition of repeat as
“again then”. Since all immediate words in these definitions are preceded by
postpone, no compile-time evaluation is done here.

1287Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

Process Word Control Flow Stack Output
INTERP : fact w "fact w = "

IMMEDIATE begin [L 1,dest] "L 1 :"
COMPILE dup 0 > [L 1,dest] "dup 0 >"
COMPILE while [L 1,dest]

IMMEDIATE if [L 1,dest] [L 2,orig] "ifzero L 2"
IMMEDIATE 1 csroll [L 2,orig] [L 1,dest]

COMPILE tuck * swap 1 - [L 2,orig] [L 1,dest] "tuck * swap 1 -"
COMPILE repeat [L 2,orig] [L 1,dest]

IMMEDIATE again [L 2,orig] "goto L 1"
IMMEDIATE then "L 2 :"

Figure 13: Compiling the definition of program fact w. The table shows the process,
the current Forth word , the labels on the control-flow stack, and the generated SAL
code.

However, when processing the definition of fact w, three compile-time words
are used: the built-in word begin, and the two immediate words that we have
just defined. Figure 13 provides an outline trace of the actions of the processes
in the specification when processing fact w. As can be seen, the immediate
words manipulate the labels on the control-flow stack to provide the correct SAL

output
As mentioned earlier, Forth programmers are not restricted to a predefined

set of control structures, but are free to devise new combinations of the con-
trol words to construct more exotic control patterns. Appendix A.3 of the ISO
standard gives some examples of Forth versions of common and not-so-common
control patterns.

6.2 An equivalence proof

As well as providing a formal definition of the compilation process, our specifi-
cation also provides the basis for proving equivalence between programs. In this
subsection we demonstrate the use of the run-time semantics in proving equiva-
lence between the while-loop version of factorial given in the previous subsection,
and a recursive version.

We can define a recursive version of factorial using the immediate words if

and then which generate and resolve a single label. A recursive definition of a
factorial word, along with its corresponding output in SAL, is shown in Figure
14.

Let us refer to the Forth program consisting of the definitions of fact w

and fact r from Figures 13 and 14 as as fact fs. Each version of the factorial
function needs a counter on the stack to start with, and this can be disposed of

1288 Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

Process Word Control Flow Stack Output
INTERP : fact r "fact r = "

COMPILE dup 0 > [L 2,orig] "dup 0 >"
IMMEDIATE if [L 2,orig] "ifzero L 2"

COMPILE tuck * swap 1 - [L 2,orig] "tuck * swap 1 -"
COMPILE recurse [L 2,orig] "call fact r"

IMMEDIATE then "L 2 :"

Figure 14: Compiling the definition of program fact r. We have numbered the (sole)
label here as "L 2" to facilitate comparison with the fact w

after the calculation; thus for convenience we define the syntactic macro:

test(f, n) = [1, n, f,drop]

We would like to show that for any natural number n, the while-loop and
recursive versions of the factorial program are equivalent from the point of view
of the data stack.

FORTH(fact fs∧test(fact w, n), Nil)
≈ FORTH(fact fs∧test(fact r, n), Nil)

That is, ignoring the effect of "call" and "return" instructions on the return
stack, the two programs are functionally equivalent. We do not have space here
to follow the full set of transitions through, but we present an outline of the
proof below, highlighting the impact on the processes DATA and EXEC. 2

6.2.1 Proof Outline

The proof is by induction on the value on top of the data stack before the
execution of fact w or fact r, which we refer to as n.

Case n = 0 (inductive base)

Here, with 0 on the data stack, the rules of Figure 10 give rise to the set of
reductions for fact w

DATA(0∧ · · ·) | EXEC("L 1:", 0)
τ=⇒ DATA(0∧ · · ·) | EXEC("dup", 1)

change(dup)
=⇒ DATA(0∧0∧ · · ·) | EXEC("0", 2)
push(0)
=⇒ DATA(0∧0∧0∧ · · ·) | EXEC(">", 3)

change(>)
=⇒ DATA(0∧0∧ · · ·) | EXEC("ifzero L 2", 4)

2 The EXEC process is parameterised by the current word definition and a position in
that definition. To simplify the proof presentation, we show only the “current” word
in the definition as the first parameter of EXEC.

1289Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

The transitions for fact r are almost identical for these instructions, except
for the first label. After executing the comparison instructions the counter
is just before the conditional jump, and from Figure 11 we can deduce that
we execute the jump instruction, leading to:

DATA(0∧0∧ · · ·) | EXEC("ifzero L 2", 4)
∗=⇒DATA(0∧ · · ·) | EXEC("L 2 :", 11)

Clearly, this is equivalent for both fact w and fact r, since in each case
"L 2 :" is at the end of the word definition.

Case n > 0 (inductive step)

By the opposite argument to that given in the base case, we can show that
when n is on the top of the stack:

DATA(n∧n∧ · · ·) | EXEC("ifzero L 2", 4)
∗=⇒DATA(n∧ · · ·) | EXEC("tuck", 5)

From Figure 11 and then Figure 10 we can show that from this state, with
n on top of the data stack, and v as the answer just underneath it, we get
the following series of transitions:

DATA(n∧v∧ · · ·) | EXEC("tuck", 5)
change(tuck)

=⇒ DATA(n∧v∧n∧ · · ·) | EXEC("*", 6)
change(∗)

=⇒ DATA((v ∗ n)∧n∧ · · ·) | EXEC("swap", 7)
change(swap)

=⇒ DATA(n∧(v ∗ n)∧ · · ·) | EXEC("1".8)
push(1)
=⇒ DATA(1∧n∧(v ∗ n)∧ · · ·) | EXEC("-", 9)

change(−)
=⇒ DATA((n − 1)∧(v ∗ n)∧ · · ·) | EXEC("goto L 1", 10)

The important point here is that the execution of these instructions has
decremented the value on top of the stack by 1, which gives us the link to
the inductive hypothesis.

The jump instruction in fact w returns control to the start of the loop body,
so we have that:

DATA(n∧ · · ·) | EXEC(["L 1:", · · · , "goto L 1"], 0)
∗=⇒DATA((n − 1)∧ · · ·) | EXEC(["L 1:", · · · , "goto L 1"], 0)

For the recursive version, fact r, the recursive call also returns control to
the top of the program, adding an extra return address to the control stack3

DATA(n∧ · · ·) | EXEC(["dup", · · · , "call fact r"], 0)
∗=⇒DATA((n − 1)∧ · · ·) | EXEC(["dup", · · · , "call fact r"], 0)

3 Corresponding to: RETURN(· · ·) ∗
=⇒RETURN([fact r, 10]∧ · · ·)

1290 Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

By the inductive hypotheses fact w and fact r are equivalent with (n − 1)
on the data stack, and this completes the proof.

While the above proof is manually constructed, it provides the raw structure
for proving equivalence between Forth programs. In general to prove equivalence
between two programs we would need to demonstrate that a weak bisimulation
exists between their representation in the π-calculus. Typically, it would be nec-
essary to state a suitable abstraction over the three Forth stacks to provide the
equivalence. For example, two programs achieving the same task should proba-
bly be neutral from the point of view of the control-flow and return stacks, and
should have the same effect on a specified top section of the data stack.

7 Conclusions and Further Work

In this paper we have presented a formal specification of aspects of the Forth
programming language, in particular the processes involved in the compilation
of Forth control words. We see the contribution of this work falling into three
main categories:

– The formal specification of aspects of the Forth system. As a stack-based ma-
chine, Forth exhibits many features similar to other stack-based languages,
a technology crucial to embedded systems. We hope that a formal study of
Forth constructs can act as a foundation for the study and comparison of
such stack-based languages, and contribute to the verification of their safety
properties.

– A formal explication of Forth control structures. The compilation of Forth
control words, being a mixture of syntactically simple, but nonetheless struc-
tured constructs, is unique to Forth. The study of such structures can con-
tribute to the general field of research surrounding the user of low-level
control structures that facilitate the data-flow analysis process, central to,
for example, bytecode verification in the JVM.

– The use of the π-calculus in programming language specification. As men-
tioned in Section 2, this approach gives a different perspective to traditional
compositional semantics. Such a specification is particularly suited to lan-
guages with little syntactic structure that have to interact with a number of
different data structures or devices.

We have already noted the basic similarity between Forth programs and
stack-based virtual machines such as the JVM or CLR. Indeed, as we noted
when comparing our semantics to those of JVMI , Forth code represents a further
level of abstraction, where the mode of dealing with local variables has not yet

1291Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

been made concrete. As such, a semantics of the core of Forth may be seen as
a common foundation for stack-based virtual machines and even register-based
virtual machines such as Parrot [Sugalski 2003], and this is an area we intend to
investigate further. The contribution of research on Forth to the optimisation of
the JVM has been well-noted [Ertl et al. 2002], and it is our hope that a similar
contribution may be exacted in the semantic domain.

References

[Barr and Frank 1997] Barr, M. and Frank, B. Java: Too much for your system? Em-
bedded Systems Programming, pages 24–32 (May, 1997).

[Börger and Schulte 1998] Börger, E. and Schulte, W. Defining the Java virtual ma-
chine as a platform for provably correct Java compilation. In 2nd International Sym-
posium on Mathematical Foundations of Computer Science, Brno, Czech Republic
(August 24-28, 1998).

[ECMA-335 2001] ECMA-335. Common Language Infrastructure (CLI). European
Computer Manufacturers Association (December, 2001).

[Ertl et al. 2002] Ertl, M. A., Gregg, D., Krall, A., and Paysan, B. vmgen – a gen-
erator of efficient virtual machine interpreters. Software–Practice and Experience,
32(3):265–294 (2002).

[Franz 1998] Franz, M. Open standards beyond Java: On the future of mobile code
for the internet. Journal of Universal Computer Science, 4(5):521–532 (May, 1998).

[Gosling et al. 1996] Gosling, J., Joy, B., and Steele, G. The Java Language Specifica-
tion. Addison Wesley (1996).

[Hennessy 1990] Hennessy, M. The Semantics of Programming Languages. Wiley
(1990).

[ISO 1997] ISO. ISO/IEC 15145:1997 Information technology - Programming lan-
guages - Forth. International Standards Organisation (1997).

[Knaggs 1993] Knaggs, P. J. Practical and Theoretical Aspects of Forth Software De-
velopment. PhD thesis, University of Teesside (March, 1993).

[Koopman 1989] Koopman, P. J. Stack Computers: the new wave. Ellis Horwood
(1989).

[Lindholm and Yellin 1996] Lindholm, T. and Yellin, F. The Java Virtual Machine
Specification. Addison Wesley (1996).

[Milner 1999] Milner, R. Communicating and Mobile Systems: the Pi-Calculus. Cam-
bridge University Press (1999).

[Moore and Leach 1970] Moore, C. H. and Leach, G. FORTH A Language for Inter-
active Computing. Mohasco Industries Inc., Amsterdam, NY (1970).

[Pierce and Turner 1997] Pierce, B. C. and Turner, D. N. Pict: a programming lan-
guage based on the π-calculus. Technical report, Computer Science Department,
Indiana University (1997).

[Pöial 1993] Pöial, J. Some ideas on formal specification of Forth programs. In Euro-
FORTH conference on the FORTH programming language and FORTH processors,
Marianske Lazne, Czech Republic (October 15-18, 1993).

[Pöial 2003] Pöial, J. Program analysis for stack based languages. In EuroFORTH
conference on the FORTH programming language and FORTH processors, Hereford-
shire, UK (October 17-19, 2003).

[Power and Sinclair 2001] Power, J. and Sinclair, D. A formal model of Forth
control words in the Pi-calculus - and its animation in Pict. Technical Re-
port Technical Report NUIM-CS-TR-2001-03, Dept. of Computer Science, National
University of Ireland, Maynooth (February, 2001). Source code available from:
http://www.cs.may.ie/~jpower/Research/pi-forth.

1292 Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

[Röckl and Sangiorgo 1999] Röckl, C. and Sangiorgo, D. A π-calculus process seman-
tics of concurrent idealised ALGOL. In Second International Conference on the
Foundations of Software Science and Computation Structure, pages 306–321, Ams-
terdam, The Netherlands (March 22-28, 1999).

[Sangiorgi and Walker 2001] Sangiorgi, D. and Walker, D. The Pi-Calculus: A Theory
of Mobile Processes. Cambridge University Press (2001).

[Schmidt 1986] Schmidt, D. A. Denotational Semantics: a methodology for language
development. Allyn and Bacon (1986).

[Stoddart 1996] Stoddart, B. An event calculus model of the Forth programming sys-
tem. In EuroFORTH conference on the FORTH programming language and FORTH
processors, St. Petersburg, Russia (October 4-6, 1996).

[Sugalski 2003] Sugalski, D. The soul of a new virtual machine. Linux Magazine
(April, 2003).

[Veldhuizen 1995] Veldhuizen, T. Using C++ template metaprograms. C++ Report,
7(4):36–43 (May, 1995).

[Watt 1991] Watt, D. A. Programming Language Syntax and Semantics. Prentice-Hall
(1991).

1293Power J.F., Sinclair D.: A Formal Model of Forth Control Words ...

