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Abstract— In this paper we present an approach to the
optimisation of interpreted Java programs using superinstruc-
tions. Unlike existing techniques, we examine the feasibility of
identifying a generic set of superinstructions across a suite of
programs, and implementing them statically on a JVM. We
formally present the sequence analysis algorithm and we describe
the resulting sets of superinstructions for programs from the
embedded CaffeineMark benchmark suite. We have implemented
the approach on the Jam VM, a lightweight JVM, and we present
results showing the level of speedup possible from this approach.

Index Terms— Java Virtual Machine, interpreted code, su-
perinstructions

I. I NTRODUCTION

The Java programming language, and its associated Java
Virtual Machine (JVM) has led to a renaissance in the study
of stack-based machines. Much of the research dealing with
the JVM has concentrated on heavyweight high-end optimisa-
tions such as advanced garbage collection techniques, just-in-
time compilation, hotspot analysis and adaptive compilation
techniques. However, as highlighted in a number of recent
studies [1], [2], [3], Java programs running in low-end or
embedded systems often cannot afford the overhead associated
with these optimisations. Designers of JVMs for such systems
must concentrate their efforts on directly improving interpreted
Java code.

One optimisation technique is the use ofsuperinstructions,
where a commonly occurring sequence of instructions is
converted into a single instruction, thus saving fetch and/or
dispatch operations for the second and subsequent instructions.
This technique was originally applied to C [4], [5] and Forth
programs [6], but has lately been extended to cover Java
programs as well [7], [3]. Both of these published approaches
to implementing superinstructions in Java give some details of
the technique used and the speedup achieved. However, they
do not present any details of the actual superinstructions used,
nor do they investigate fully all of the choices involved in their
selection, at least for shorter bytecode sequences.

For example, a straightforward dynamic analysis of inter-
preted Java programs shows that load instructions can account
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for about 40% of bytecodes executed, with field accesses ac-
counting for between 10% and 20% [8]. Similarly, our studies
have shown that the instruction pairaload 0 getfield oc-
curs quite frequently in Java programs - averaging to 9% of the
instructions executed in one set of benchmark suites [9]. Most
approaches to implementing superinstructions specialise the
virtual machine for the program under consideration. However,
given the clustering in the distribution of bytecodes used, it
seems reasonable to ask if it is possible to engineer a generic
set of superinstructions usable across different programs. Such
an approach would have the advantage of eliminating the
run-time profiling overhead, as well as exposing the selected
superinstructions to compile-time optimisation. The trade-off,
however, is that a generic set of instructions will naturally not
produce the same level of speedup as superinstructions that
are tailored for a given application, or even for a particular
phase in the execution of a given application.

In this paper we examine the possible gains from attempting
to select a generic set of superinstructions to be used across
different programs. We study the selection strategy for choos-
ing these instructions and we present some possible selections
of superinstructions. We examine their implementation on a
lightweight JVM, the JAM Virtual Machine, and present re-
sults showing the level of speedup possible from this approach.

II. BACKGROUND AND RELATED WORK

The concept ofsuperoperatorswas introduced by Proebst-
ing for C programs [4], noting that superoperators consistently
increase the speed of interpreted code by a factor of 2 or
3. Proebsting suggests that a maximum of 20 superoperators
to get full benefit from the technique, and notes that the
choice of superoperators is likely to vary between applications.
Both these themes are investigated further for Java programs
below. Piumarta and Riccardi develop this work by presenting
a technique for selecting and implementing superoperators
for C and Caml programs dynamically, and approach they
term direct threaded code[5]. They note the drawbacks from
attempting to base this on a static analysis, and present results
indicating a speedup factor of between 2 and 3.

Ertl et al. present an interpreter-generator that supports
superinstructionswhich correspond to sequences of simpler
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instructions [10]. Examples are presented using both a Forth
and a Java interpreter. Ertl et al. selected superinstructions for
Java by profiling thejavac and db programs from the SPEC
suite, up to a maximum length of 4 instructions. The results
presented show a speedup factor of less than 2, and even a
slow-down on some architectures due to cache misses. They
report that the most frequent sequence of instructions in their
JVM was iload iload . However, the bytecode used in their
study was significantly rewritten from the original, and thus
our analysis below presents a different picture. In further work,
Ertl and Gregg have examined the effect of superinstructions
on branch (mis)prediction [11].

More recently, Gagnon and Hendren have examined the
speedup possible from using dynamically-calculated superin-
structions in Java [7]. As well as noting a speedup factor
of between 1.20 to 2.41 over a switch-based interpreter for
such a technique, the paper also examines some of the issues
resulting from lazy class loading, where an instruction such
as getstatic may have the side-effect of triggering class
initialisation. Their approach parallels that of Piumarta and
Riccardi since the instruction sequences are selected and
rewritten dynamically, based on eliminating dispatches within
basic blocks. As such, they do not need to consider selection
strategies, or comment on the type of instruction sequences
found in the programs.

Recent work by Casey et al. [3] also examines the use
of superinstructions in Java programs. They use between 8
and 1024 superinstructions, and compare selection strategies
based on static and dynamic analyses. They note the contrast
between the simpler approach of selecting sequences based
on static frequencies against the more effective dynamic ap-
proach, which they tailor on a per-program basis. Indeed, our
approach of selecting sequences based on a dynamic analysis,
but averaged across programs, might be seen as a compromise
between the strategies presented by Casey et al. One current
drawback to their approach is that it does not currently allow
“quickable” instructions (such asgetfield ), which would
eliminate many of the instruction sequences we have selected
below.

Repetition among sequences of bytecodes occurringstati-
cally in the program source has been studied for the purposes
of code or class file compression [1]. Antonioli and Pilz note
that the range of instructions used varies between 25 and 113
different instructions, with considerable variance in frequency
of usage [12].

An extensive study of the possibilities from Java bytecode
compression for embedded systems is presented by Clausen et
al. [2]. Here, a static analysis identifies basic blocks that are
repeated in the source code, and these are replaced bymacro
instructions. Apart from its basis on static analysis, and it
motivation for compression rather than speed, the approach of
Clausen et al. is similar to the approach presented here.

Surveys of dynamic instruction usage in Java programs have
been conducted for both the SPEC and Java Grande benchmark
suites [8], [13]. A comparison of these suites noted a wide
discrepancy in class library utilisation by these programs [14].
Preliminary work on the frequencies of instruction pairs has
also been carried out [9], and the present work is a natural

extension of that paper. A related issue isinstruction reuse
[15], [16], where a given instruction is executed dynamically
many times with the same set of operands. While this does
have implications for superoperators, it has not yet been
studied in the context of Java bytecodes, and is beyond the
scope of this paper.

III. SELECTING THE MOST FREQUENTLY OCCURRING

SEQUENCES

Our approach involves forming a set of generic superin-
structions based on studying instruction sequence usage in a
suite of Java programs. We run each program in the suite,
collect a trace of the bytecode instructions executed, and this
then forms the input data for our analysis. Thus, in this section
we examine some of the issues involved in selecting the most
frequently occurring bytecode sequences, since these will be
replaced by superinstructions in our implementation.

The strategy used in selecting these sequences naturally has
an important bearing on our results, and we present this section
formally in order to unambiguously describe the selection
strategy.

A. Notation

Let us denote a sequence of bytecode instructions asb̂ =
[b1, . . . , bn] where eachbi is a single bytecode instruction.
Let us denote the length of a bytecode sequence as|b̂|; clearly
|b1, . . . , bn| = n.

For any program runP , assume that we have collected a
dynamic trace of all the instructions executed whenP is run,
and let us denote the sequence of bytecode instructions in
this trace asTP . Then the maximum number of (non-unique)
sequence occurrences of lengthn in TP is always|TP |− (n−
1).

Let us denote the number of actual occurrences ofb̂ in the
trace of programP asΣP (b̂); then we define the occurrence
frequency for an sequence, expressed as a percentage, by:

fP (b̂) =
ΣP (b̂)

|TP | − (n− 1)
∗ 100

1

Relativising sequence occurrences by the length of the
program trace allows us to compare sequences from different
traces, since program size is no longer a factor. Since in
practice the size of the program trace is much longer than the
size of the sequences under consideration, we can approximate
|TP |−(n−1) as|TP |, thus allowing us to compare sequences
of different lengths.

We note two straightforward properties of such bytecode
sequences that will be useful in our calculations later:
• Sequence Inclusion Property

A sequencês is included in some sequencêt precisely
when there exist integersi, j and n such that1 ≤ i <
j ≤ n, and t̂ = [b1, . . . , bn] and ŝ = [bi, . . . , bj ].
We note that for any programP we have:

fP [b1, . . . , bn] ≤ fP [bi, . . . , bj ]

That is, the sequence[bi, . . . , bj ] may occur in contexts
other than[b1, . . . , bn]; we note that it may also occur
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multiple times in[b1, . . . , bn], and that these occurrences
may overlap.

• Sequence Overlap Property
A sequenceŝ overlaps some sequencêt on the left
precisely when there integersi, j and n such that1 ≤
i < j ≤ n, with ŝ = [b1, . . . , bj ] and t̂ = [bi, . . . , bn].
The definition of overlapping on the right is defined
analogously.
We note that the frequency with which this overlapping
occurs is given by the frequency of composite sequence
fP [b1, . . . , bn]. From the sequence inclusion property
above we note that this is less than eitherfP (ŝ) or fP (t̂),
and the frequency of occurrence of the sequenceŝ that
do not involve an overlap witĥt is fP (ŝ)−fP [b1, . . . , bn]

These properties have the side-effect of providing a consis-
tency check on the frequency results.

A superinstruction is a new instruction that will denote
some sequence of bytecode instructions. We will use lower
case Greek letters to denote superinstructions and we write
β ≡ [b1, . . . , bn] to mean that the superinstructionβ cor-
responds to the sequence of bytecodes[b1, . . . , bn]. Once a
superinstruction has been defined it effectively becomes a new
bytecode, and thus may occur in bytecode sequences and (non-
recursively) in other superinstruction definitions.

B. Choosing the superinstructions

Suppose we have calculated the functionfP , giving the
frequency of all bytecodes sequences for some programP .
Let us assume that this function is total, so thatfP (ŝ) = 0
whenever̂s does not occur inTP , the trace ofP .

For our approach we wish to calculate the topk superin-
structions, but we cannot simply choose thek sequences
with the highest frequency, since we must allow for overlaps
between sequences. Choosing some sequenceŝ as a superin-
struction has an impact on the frequencies of any remaining
sequences whose bytecodes overlap withŝ.

Thus we apply an iterative algorithm, where we choose
the most frequently occurring sequence, and then propagate
this choice through the remaining sequence, reducing the
frequency of any sequence that it overlaps with. Each iteration
produces a new set of frequencies, and we can then choose
the next topmost superinstruction from these, and propagate
this choice.

We note that this consideration of possible overlaps between
sequences imposes an extra overhead on the information
collected. If the maximum length of any instruction sequence
under consideration isl, then we must gather data for all
instruction sequences up to length2l − 1 in order to allow
for the case of two sequences of lengthl overlapping by just
a single instruction.

Propagation algorithm: Suppose we have chosen some
superinstructionβ.

Then, for each other bytecode sequenceŝ, eitherβ and ŝ
do not overlap (in which case do nothing), or there are two
cases, as illustrated in Figure 1
• Case 1: β is contained entirely within̂s

In this case the sequence is of the formŝ = [b1, . . . , bn],
andβ ≡ [bi, . . . , bj ] for 1 ≤ i < j ≤ n

Case 1: [b1, . . . ,

s.inst. β︷ ︸︸ ︷
bi, . . . , bj , . . . , bn]︸ ︷︷ ︸
sequence ŝ

Case 2: [

s.inst. β︷ ︸︸ ︷
b1, . . . , bi, . . . , bj , . . . , bn][b1, . . . , bi, . . . , bj , . . . , bn︸ ︷︷ ︸

sequence ŝ

]

Fig. 1. The two cases where a chosen superinstructionβ is either included
in, or overlaps with some existing bytecode sequenceŝ

Then replace this sequence with the sequence
[b1, . . . , bi−1, β, bj+1, . . . , bn], with the same frequency.

fP ([b1, . . . , bi−1, β, bj+1, . . . , bn]) = fP (ŝ);
fP (ŝ) = 0;

• Case 2: β overlaps partially witĥs
Say, for the sake of definiteness,β overlaps bytecodes on
the left of the sequencês.
In this case, letβ ≡ [b1, . . . , bj ], then the sequence has
the form [bi, . . . , bn], where1 ≤ i < j ≤ n. The overlap
is the sequence[bi, . . . , bj ].
The frequency of[β, bj+1, . . . , bn] must now be increased
by the frequency of[b1, . . . , bi, . . . , bj , . . . , bn], and the
frequency of the sequence[bi, . . . , bn] should be de-
creased by this amount.

fP ([β, bj+1, . . . , bn]) += fP ([b1, . . . , bn]);
fP ([bi, . . . , bn]) -= fP ([b1, . . . , bn]);

The above process creates new sequences of bytecodes
and superinstructions, and assigns them frequencies. Note that
the same sequence of bytecodes and superinstructions may
be created at different parts of the algorithm, and thus its
corresponding newly-created frequency should beaddedto its
existing total.

This process also deals with the case where a superinstruc-
tion may overlap some bytecode sequences multiple times.
However, in the case where an superinstruction may overlap a
sequence in two non-disjoint sections, a choice must be made
between the superinstruction occurrences. We always choose
to compress the leftmost occurrence to a superinstruction,
since the bytecodes are being executed from left-to-right in
the sequence.

C. Weighted Case

In this case we have a weighted frequencywf , where the
frequency as calculated above is adjusted by some weighting
factor w.

wfP (b̂) = fP (b̂) ∗ w(b̂)

The weighting factor is meant to represent the potential gain
from replacing this sequence of bytecodes with a superinstruc-
tion. In the simplest case the gain is equal to the number of
fetch-cycles saved; that is:

w(b̂) = |b̂| − 1
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Since the weighting factor is a function only of the bytecode
sequence, it is easily woven into the algorithm from the last
section. Each time a frequency is adjusted (corresponding to
case 1 or 2 above), the weighted frequency is recalculated,
counting each superinstruction as a single bytecode instruction.

IV. EXPERIMENTAL SETTING

The experiments in this section were conducted using
Robert Lougher’s Jam Virtual Machine [17]. The JamVM was
specifically designed to have a very small footprint, but yet to
support the full JVM specification [18]. The JamVM runs in
interpreted mode only, but can be built to implement either
switch-based or token threaded approaches (given support for
first-class labels). It should be noted that JamVM uses the
GNU classpathJava class library which is not 100% compliant
with SUN’s JDK, and may, of course, differ from other Java
class libraries.

The platform used was a Dell Dimension 2350 PC, contain-
ing a 2.4 GHz Intel Pentium IV processor with a 512K level-1
cache, 1 GB of 266MHz DDR RAM, running the RedHat 9.0
distribution of GNU/Linux. The JamVM interpreter, version
1.0, was compiled using the GNU C compiler fromgccversion
3.3. In what follows we use the programs from Pendragon
Software’s Embedded CaffeineMark version 3.0 [19] which
is designed to benchmark embedded applications and Java-
powered consumer electronics systems.1

A. Selecting the Superinstructions

In order to select the instruction sequences that will corre-
spond to the new superinstructions, the CaffeineMark applica-
tions were run using a version of the JamVM that had been
instrumented to record the instructions executed. Since our
superinstructions are selected from within a basic block, the
traces were reduced to frequency counts for basic blocks, and
a sequence of Perl scripts was then used to collect frequency
data on instruction sequences.

B. Superinstruction Length

Since at least 10 unused bytecode instructions are available
in the JVM for implementing new superinstructions, the poten-
tial effectiveness of using superinstructions can be estimated
by measuring the dynamic frequency of the top 10 sequences
of each length.

Tables I through V give the frequencies for the top 10
sequences, where the sequence length was bounded by 2, 4 8,
16 and 32 instructions respectively. The top 10 sequences of
size up to 32 instructions, shown in Table V, were exactly the
same as those of length up to 64. Hence, in what follows, we
have limited our study to sequences of up to 32 instructions.

In each of Tables I through V we list the top 10 instruction
sequences. For each table, the first column lists the bytecode
instructions in the sequence. The second column lists the
frequency of the sequence, expressed as a percentage of the

1The test was performed without independent verification by Pendragon
Software and that Pendragon Software makes no representations or warranties
as to the result of the test.

Max. size = 02
Frequency

Sequence Original Weighted
aload0 getfield 8.91 8.91
aaload iload1 2.55 2.55
istore iload 2.49 2.49
iconst1 isub 2.31 2.31
iinc iload 3 1.36 1.36
iconst0 goto 1.24 1.24
iload 1 ifne 1.16 1.16
aload0 iload 1 1.16 1.16
iconst3 if icmplt 1.02 1.02
iload 3 iaload 0.87 0.87
Total (top 10) 23.05 23.05

TABLE I

TOP 10 MOST FREQUENT SEQUENCES OF SIZE UPTO02, BASED ON

WEIGHTED FREQUENCY.

Max. size = 04
Frequency

Sequence Original Weighted
aload0 getfield 8.91 8.91
aload0 getfield iload aaload 2.29 4.58
istore iload ifeq 1.79 3.58
aload0 iload 1 iconst1 isub 1.14 3.41
aload0 getfield iload3 3.10 3.10
dadd dastore iinc iload3 0.76 2.29
iconst1 isub iaload 0.88 1.75
iadd putfield iload1 ifne 0.58 1.74
aload0 dup getfield iconst1 0.58 1.74
istore iload iload iadd 0.58 1.73
Total (top 10) 20.60 32.83

TABLE II

TOP 10 MOST FREQUENT SEQUENCES OF SIZE UPTO04, BASED ON

WEIGHTED FREQUENCY.

Max. size = 08
Frequency

Sequence Original Weighted
aload0 getfield iload aaload iload1 2.29 9.16
aload0 getfield iload3 3.10 6.21
daload dmul dadd dastore iinc iload3 iconst3
if icmplt

0.76 5.34

aload0 iload 1 iconst1 isub invokevirtual 1.14 4.54
istore2 aload0 dup getfield iconst1 iadd put-
field iload 1

0.58 4.05

getfield aload0 getfield iadd istore iload iload
iadd

0.58 4.04

istore iload ifeq 1.79 3.58
daload aload0 getfield iload3 aaload iload
daload

0.76 3.05

iconst1 isub iaload aload0 getfield iload3
iaload if icmpge

0.58 2.89

aload0 getfield iload iaload 0.81 2.44
Total (top 10) 12.39 45.31

TABLE III

TOP 10 MOST FREQUENT SEQUENCES OF SIZE UPTO08, BASED ON

WEIGHTED FREQUENCY.
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Max. size = 16
Frequency

Sequence Original Weighted
getfield iload aaload iload1 daload aload0
getfield iload3 aaload iload daload aload0
getfield iload aaload iload1

0.76 11.45

istore iload iload iadd istore iinc aload0 get-
field iload 3 iconst1 isub iaload aload0 get-
field iload 3 iaload

0.58 8.67

aload0 getfield 8.91 5.46
daload dmul dadd dastore iinc iload3 iconst3
if icmplt

0.76 5.34

iload 1 istore2 aload0 dup getfield iconst1
iadd putfield iload1 ifne

0.58 5.21

aload0 iload 1 iconst1 isub invokevirtual 1.14 4.54
istore iload ifeq 1.79 3.58
isub aload0 getfield iload3 iaload iastore
aload0 getfield iload3 iload iastore iinc
iload 3 aload0 getfield if icmplt

0.29 3.47

aload0 getfield iload3 iconst1 isub iaload
istore aload0 getfield iload3 iconst1

0.29 2.31

aload0 getfield iload iaload iload1 iconst2
idiv if icmpgt

0.31 1.85

Total (top 10) 15.40 51.88

TABLE IV

TOP 10 MOST FREQUENT SEQUENCES OF SIZE UPTO16, BASED ON

WEIGHTED FREQUENCY.

Max. size = 32
Frequency

Sequence Original Weighted
aload0 getfield iload aaload iload1 aload0
getfield iload aaload iload1 daload aload0
getfield iload3 aaload iload daload aload0
getfield iload aaload iload1 daload dmul dadd
dastore iinc iload3 iconst3 if icmplt

0.76 22.14

aload0 getfield aload0 getfield iadd istore
iload iload iadd istore iinc aload0 getfield
iload 3 iconst1 isub iaload aload0 getfield
iload 3 iaload if icmpge

0.58 12.13

aload0 getfield iload3 iconst1 isub iaload
istore aload0 getfield iload3 iconst1 isub
aload0 getfield iload3 iaload iastore aload0
getfield iload3 iload iastore iinc iload3
aload0 getfield if icmplt

0.29 7.51

iload 1 istore2 aload0 dup getfield iconst1
iadd putfield iload1 ifne

0.58 5.21

aload0 iload 1 iconst1 isub invokevirtual 1.14 4.54
istore iload ifeq 1.79 3.58
aload0 getfield iload iaload 0.81 2.44
iload 2 iconst1 iand ifeq 0.57 1.70
aload0 getfield iload2 iinc caload istore
aload3 getfield iload iinc caload istore iload
iload if icmpeq

0.12 1.69

iconst0 goto 1.24 1.24
Total (top 10) 7.87 62.19

TABLE V

TOP 10 MOST FREQUENT SEQUENCES OF SIZE UPTO32, BASED ON

WEIGHTED FREQUENCY.

total number of bytecodes executed. The final column lists
the adjusted, weighted frequency, which allows for overlaps
between the selected sequences, and uses a weighting factor
of one less than the number of instructions in the sequence.
It should be noted that there will be a higher overhead in
recognising such sequences dynamically in the instruction
stream, and that the actual (unweighted) frequency of longer
sequences tends to be less than the frequency of shorter
sequences. Both of these factors will tend to offset the possible
benefits to be gained from using longer sequences.

From Tables I through V, we note the prevalence of the
aload 0 getfield pair, which is the top sequence in Table
I and II, and occurs frequently as part of the top sequences
in Tables III throughV. It is also notable that the adjusted
frequencies decrease rapidly as we move down the table,
indicating diminishing possible returns for greater numbers of
superinstructions, as predicted by Proebsting [4].

C. Implementing the Superinstructions

Once the sequences corresponding to superinstructions have
been selected, it is then necessary to change the virtual ma-
chine to provide an implementation. This involves augmenting
the main interpreter loop with cases for the extra instructions,
and concatenating in the code corresponding to each origi-
nal instruction as appropriate for each new superinstruction.
Since little new code is involved, it is possible to make
such modifications at run-time (as described by Piumarta and
Riccardi [5]). However, since our goal was to measure the
possible savings from superinstruction implementation, we
generated the new code off-line, and recompiled versions
of the JamVM for each of the four possible selections of
superinstructions described in the previous subsection. One
side-effect of implementing the superinstructions statically
is that the new instruction sequences can be subjected to
optimisations bygcc, a feature not available to dynamically-
generated code.

It is also necessary to change the instruction stream for each
application to include these new superinstructions. While this
could be done statically, such an approach is cumbersome
as it would also involve changing the code in the Java
class libraries. Instead we implemented a “just-in-time” style
of translation, where the instruction stream was modified
dynamically the first time a sequence corresponding to a
superinstruction was encountered at run-time.

When an instruction that could correspond to the first
instruction of one of the superinstruction sequences was en-
countered at run-time, the instruction stream was checked
to see if the following instructions matched the sequence.
If so, the first instruction (only) was modified to become
the corresponding superinstruction. If not, the instruction was
modified to a “tagged” version of itself. This “tagged” version
is coded to execute with the same semantics as the original,
without the check for superinstruction sequence occurrence.
Thus, the overhead of checking for a matching sequence only
occurs the first time the initial bytecode of the sequence
is encountered; if the instruction stream does not match a
sequence, no overhead is incurred on subsequent iterations.
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There are a number of other issues that need to be addressed
when modifying the instruction stream in this way. First,
with multi-threaded programs the possibility exists that two
threads would attempt to modify the same instruction stream
simultaneously; this issue is not addressed in this paper, but
has been dealt with extensively by Gagnon and Hendren [7].
Second, most virtual machines implement “quick” versions
of instructions, where, for example, indirect references to
field names are replaced by direct references after the first
execution. The JamVM implements 17 such instructions, and
some of these are present in our instruction sequences (e.g.
getfield ). This does not present a problem for our approach;
on the first pass through a sequence the instructions are
changed to their “quick” versions, as usual. The second time
through, those sequences of instructions corresponding to
superinstructions are picked up by our modifications.

A final issue that must be considered is that of basic
blocks, since, in general, control may be transferred in to
or out of an instruction sequence. As noted earlier, we did
not include instructions that could terminate a basic block
internally in our sequences, so control cannot be transferred
out of them. Since we have modified only the first instruction
in the sequence, control transfersin to the sequence are not
a problem, since the original bytecodes, other than the first,
remain there unchanged. We note that one disadvantage of this
approach is that we do not achieve any code size compression
from implementing superinstructions.

V. RESULTS

In order to measure the effect of superinstruction imple-
mentation, three new versions of the JamVM were prepared,
implementing the instructions sequences in Tables I through
V. The JamVM as shipped actually implements theaload 0

getfield superinstruction, so a further version was prepared
without this, in order to fully judge the effect of superinstruc-
tion implementation.

Thus, size different versions of the JamVM were used:

• none This is the basic JamVM with no superinstructions
implemented

• orig This is a version of the JamVM as it is distributed,
where only theaload 0 getfield superinstruction has
been implemented

• upton A version of the JamVM with 10 superinstructions
implemented; these are the superinstruction sequences of
length upton, as listed in Tables I through V.

In addition, each of these six versions of JamVM was built
in both threaded and switch-based mode to give an estimation
of the possible savings under each system. The data in Table
VI records the results for running the six JamVMs over the
CaffeineMark suite in a switch-based mode, whereas the data
in Table VII shows the same information when the JamVMs
are built using threaded dispatch. In each of Table VI and
Table VII we report the result for each individual program in
the suite, as well as the overall result. The numbers in the
tables represent the CaffeineMark score, where a higher score
indicates a greater number of operations performed per unit
time.

none orig. upto02 upto04 upto08 upto16 upto32
Sieve 1379 1591 1472 1464 1777 1768 1805
Loop 1433 1652 1617 1865 2130 2448 2599
Logic 2034 2065 1757 2041 2026 2074 1998
String 527 559 540 544 539 518 621
Float 1270 1363 1558 1782 535 439 517

Method 1527 1554 1686 2029 2510 2654 2836
Overall 1262 1363 1345 1490 1330 1324 1429

TABLE VI

RESULTS OF RUNNING EACH VERSION OFJAM VM, EACH BASED ON A

switchedINTERPRETER, OVER THE PROGRAMS FROM THECAFFEINEMARK

SUITE.

none orig. upto02 upto04 upto08 upto16 upto32
Sieve 2146 2207 1822 2032 2335 2569 2353
Loop 1806 1940 1928 2300 2725 3504 3176
Logic 2465 2422 2348 2410 2368 2381 2373
String 633 644 591 596 597 592 704
Float 1913 1813 2122 2461 514 472 524

Method 1994 2016 2824 3063 3161 3258 3609
Overall 1687 1702 1752 1921 1563 1640 1693

TABLE VII

RESULTS OF RUNNING EACH VERSION OFJAM VM, EACH BASED ON A

threadedINTERPRETER, OVER THE PROGRAMS FROM THECAFFEINEMARK

SUITE.

Looking at the overall results, we can see that, as ex-
pected, the threaded interpreter outperforms the switch-based
interpreter.2 Conversely, the speedup resulting from using
superinstructions in the switch-based interpreter are greater
than those for the threaded interpreter. This is to be expected,
since the threaded interpreter has a reduced overhead for
instruction dispatch, and so there is less to be gained from
implementing superinstructions. The overall performance is
summarised in Figure 2 for ease of comparison.

The best performing machine in each case isupto04, which
shows an overall speedup of 18% in the switch-based inter-
preter, and 14% in the threaded interpreter. For the programs in
this benchmark suite, superinstructions of length 4 would seem
to represent the best compromise, maximising the frequency of
occurrence, while minimising the overhead of implementation.

We note that there is significant variance between the
performance of individual programs in the suite. The speedup
achieved for bothLoop andMethodis quite dramatic, almost
doubling their performance in the best case. The improvement
for String and Sieveis relatively modest, andString actually
exhibits a slight decrease in performance for all but the
last machine. Clearly, in a real-world situation, it would be
necessary to gauge the relative importance of the individual
programs before selecting a particular optimisation level.

It is interesting to note the marked fall-off in performance
of theFloat program once the superinstruction length exceeds
4. This is attributable to the low frequency of occurrence of
instructions relevant toFloat in these longer sequences. A

2Interestingly, this was not the case when JamVM was compiled using
gcc 3.2.2, where a compiler bug prevented the disabling of global common
subexpression elimination (gcse), and the instruction dispatch sequence was
hoisted.
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Fig. 2. Overall performance of the switch-based and threaded interpreters

clear implication of this is that our technique may not work
for suites of programs with a highly heterogeneous mix of
programs, and may actually inhibit performance in these cases.

VI. CONCLUSIONS

In this paper we have presented an approach to selecting and
implementing superinstructions for Java programs based on an
off-line analysis of a suite of programs. While not providing
the same performance improvement as a per-program analysis,
this approach has the advantage of eliminating the need
for run-time profiling, as well as exposing superinstruction
implementations to compiler optimisations.

As well as dealing explicitly with the possibilities of con-
structing a generic superinstruction set, this paper makes three
other contributions not found in existing work:

• We formally present the instruction sequence selection
procedure, based on a static analysis of dynamic program
traces

• We list five possible selections of superinstruction sets,
along with the corresponding distributions based on pro-
filing programs in the CaffeineMark benchmark suite

• We have implemented the approach, and present results
for small, generic superinstruction sets (as opposed to
large basic-block results presented in previous work)

A number of further enhancements of this work are possible.
At the moment we use a weighting factor based on the
number of dispatch instructions saved. However, a weighting
factor based on the possible optimisation of the resulting
sequences might give better results. Also, it is possible that
sets of superinstructions might be tailored for different types of
applications (e.g. batch applications, GUI-based applications,
scientific applications).

Our present analysis is based on individual instructions.
However, merging similar instructions might lead to higher
frequencies and thus better results. This might include equating
specialised instructions with their generic counterparts, such

as iload 1 and iload , or even merging functionally similar
bytecodes (e.g.iload , aload and fload all load a 32-bit
value onto the stack).
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