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Abstract—In this paper we present an approach to the for about 40% of bytecodes executed, with field accesses ac-
optimisation of interpreted Java programs using superinstruc- counting for between 10% and 20% [8]. Similarly, our studies
tions. Unlike existing techniques, we examine the feasibility of |56 shown that the instruction paibad 0 getfield oc-

identifying a ger_1eric set o_f superinstruc_tions across a suite of curs quite frequently in Java programs - averaging to 9% of the
programs, and implementing them statically on a JVM. We | . . )
formally present the sequence analysis algorithm and we describe instructions executed in one set of benchmark suites [9]. Most
the resulting sets of superinstructions for programs from the approaches to implementing superinstructions specialise the
embedded CaffeineMark benchmark suite. We have implemented virtual machine for the program under consideration. However,
the approach on the Jam VM, a lightweight JVM, and we present - g0y the clustering in the distribution of bytecodes used, it
results showing the level of speedup possible from this approach. seems reasonable to ask if it is possible to engineer a generic
set of superinstructions usable across different programs. Such
an approach would have the advantage of eliminating the
run-time profiling overhead, as well as exposing the selected
| INTRODUCTION superinstr_uctions to com_pile-time_ optimigation._ The trade-off,
' however, is that a generic set of instructions will naturally not

The Java programming language, and its associated Jg¥gduce the same level of speedup as superinstructions that
Virtual Machine (JVM) has led to a renaissance in the stugye tailored for a given application, or even for a particular
of stack-based machines. Much of the research dealing WHHase in the execution of a given application.
the JVM has concentrated on heavyweight high-end optimisa-, this paper we examine the possible gains from attempting
tions such as advanced garbage collection techniques, justiiselect a generic set of superinstructions to be used across
time compilation, hotspot analysis and adaptive compilatiQfiferent programs. We study the selection strategy for choos-
techniques. However, as highlighted in a number of recegy these instructions and we present some possible selections
studies [1], [2], [3], Java programs running in low-end Opf syperinstructions. We examine their implementation on a
embedded systems often cannot afford the overhead associ%qﬂweight JVM, the JAM Virtual Machine, and present re-

with these optimisations. Designers of JVMs for such systenggjts showing the level of speedup possible from this approach.
must concentrate their efforts on directly improving interpreted

Java code.
One optimisation technique is the usesniperinstructions Il. BACKGROUND AND RELATED WORK

where a commonly occurring sequence of instructions isThe concept ouperoperatorsvas introduced by Proebst-
converted into a single instruction, thus saving fetch and/gfg for C programs [4], noting that superoperators consistently
dispatch operations for the second and subsequent instructighgrease the speed of interpreted code by a factor of 2 or
This technique was originally applied to C [4], [5] and Fortfz proebsting suggests that a maximum of 20 superoperators
programs [6], but has lately been extended to cover Jag get full benefit from the technique, and notes that the
programs as well [7], [3]. Both of these published approachggoice of superoperators is likely to vary between applications.
to implementing superinstructions in Java give some details gbth these themes are investigated further for Java programs
the technique used and the speedup achieved. However, thelw. Piumarta and Riccardi develop this work by presenting
do not present any details of the actual superinstructions usgthechnique for selecting and implementing superoperators
nor do they investigate fU”y all of the choices involved in theifor C and Caml programs dynamica”y, and approach they
selection, at least for shorter bytecode sequences. ~ term direct threaded codg5]. They note the drawbacks from

For example, a straightforward dynamic analysis of integttempting to base this on a static analysis, and present results
preted Java programs shows that load instructions can accqyfBlcating a speedup factor of between 2 and 3.

Contact authorJames F. Powesjpower@cs.may.ie> Ertl_ et al._present an interpreter-generator that sgpports
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2 D. O'DONOGHUE AND J.F. POWER

instructions [10]. Examples are presented using both a Fogktension of that paper. A related issueinistruction reuse
and a Java interpreter. Ertl et al. selected superinstructions ffb6], [16], where a given instruction is executed dynamically
Java by profiling thgavac and db programs from the SPEC many times with the same set of operands. While this does
suite, up to a maximum length of 4 instructions. The resulteave implications for superoperators, it has not yet been
presented show a speedup factor of less than 2, and evestualied in the context of Java bytecodes, and is beyond the
slow-down on some architectures due to cache misses. Tiseppe of this paper.

report that the most frequent sequence of instructions in their

JVM wasiload iload . However, the bytecode used in their |Il. SELECTING THE MOST FREQUENTLY OCCURRING

study was significantly rewritten from the original, and thus SEQUENCES

our analysis below presents a different picture. In further work, o, approach involves forming a set of generic superin-

Ertl and Gregg have examined the effect of superinstructiogs,;ctions based on studying instruction sequence usage in a

on branch (mis)prediction [11]. _ suite of Java programs. We run each program in the suite,
More recently, Gagnon and Hendren have examined tijiect a trace of the bytecode instructions executed, and this
speedup possible from using dynamically-calculated superifia, forms the input data for our analysis. Thus, in this section
structions in Java [7]. As well as noting a speedup factfe examine some of the issues involved in selecting the most
of between 1.20 to 2.41 over a switch-based interpreter fofq,ently occurring bytecode sequences, since these will be
such a technique, the paper a'lso examines some of'the IS§BRaced by superinstructions in our implementation.
resulting from lazy class loading, where an instruction suchthg strategy used in selecting these sequences naturally has
as getstatic ~ may have the side-effect of triggering class, important bearing on our results, and we present this section

initialisation. Their approach parallels that of Piumarta a"!‘érmally in order to unambiguously describe the selection
Riccardi since the instruction sequences are selected %’ﬁ%tegy.

rewritten dynamically, based on eliminating dispatches within
basic blocks. As such, they do not need to consider selectipn

. . . .. Notation
strategies, or comment on the type of instruction sequences . L
found in the programs. Let us denote a sequence of bytecode instructions -as
Recent work by Casey et al. [3] also examines the ud&.---,b,] Where eachb; is a single bytecode instruction.

of superinstructions in Java programs. They use betweer}-€f us denote the length of a bytecode sequendé|aslearly
and 1024 superinstructions, and compare selection stratedﬁ’es- o bn| =
based on static and dynamic analyses. They note the contrastor any program rurP, assume that we have collected a
between the simpler approach of selecting sequences bad¥pmic trace of all the instructions executed whems run,
on static frequencies against the more effective dynamic #2d let us denote the sequence of bytecode instructions in
proach, which they tailor on a per-program basis. Indeed, dfifs trace as’p. Then the maximum number of (non-unique)
approach of selecting sequences based on a dynamic analp§iguence occurrences of lengtiin T is always|Tp| — (n—
but averaged across programs, might be seen as a comprorh)se .
between the strategies presented by Casey et al. One currek€t us denote the number of actual occurrences iof the
drawback to their approach is that it does not currently alloace of programP asXp(b); then we define the occurrence
“quickable” instructions (such agetfield ), which would frequency for an sequence, expressed as a percentage, by:
eliminate many of the instruction sequences we have selected . EP(B) 100
below. fr(b) = T D * 1
Repetition among sequences of bytecodes occustiag- Tl = (n=1)
cally in the program source has been studied for the purposefelativising sequence occurrences by the length of the
of code or class file compression [1]. Antonioli and Pilz notBrogram trace allows us to compare sequences from different
that the range of instructions used varies between 25 and ff@fes, since program size is no longer a factor. Since in
different instructions, with considerable variance in frequendifactice the size of the program trace is much longer than the
of usage [12]. size of the sequences under consideration, we can approximate
An extensive study of the possibilities from Java bytecodér|—(n—1) as|Tp|, thus allowing us to compare sequences
compression for embedded systems is presented by Clause® élifferent lengths.
al. [2]. Here, a static analysis identifies basic blocks that areWWe note two straightforward properties of such bytecode
repeated in the source code, and these are replacetabgp Sequences that will be useful in our calculations later:
instructions Apart from its basis on static analysis, and it « Sequence Inclusion Property A
motivation for compression rather than speed, the approach of A sequences is included in some sequenceprecisely
Clausen et al. is similar to the approach presented here. when there exist integersj andn such thatl < i <
Surveys of dynamic instruction usage in Java programs have j < n, andt = [by,...,b,] ands = [b;,...,b;].
been conducted for both the SPEC and Java Grande benchmark We note that for any program? we have:
sgites [8], [1_3]. A co_mparisor_1_ of _these suites noted a wide Folbn .. bal < folbis. .. b))
discrepancy in class library utilisation by these programs [14].
Preliminary work on the frequencies of instruction pairs has That is, the sequendd;,...,b;] may occur in contexts
also been carried out [9], and the present work is a natural other than[by,...,b,]; we note that it may also occur
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GENERIC SUPERINSTRUCTIONS FOR EMBEDDED JAVA PROGRAMS 3

multiple times in[b1, ..., b,], and that these occurrences s-inst.
may overlap. Case 1 b1,...,0iy. .., b5, ..., by

« Sequence Overlap Property
A sequenceé overlaps some sequendeon the left
precisely when there integeis;j andn such thatl < s.inst. B
1< g Sn,WIthéz [bl,....,bj] andt:. [b“,bn] Case 2 bla---abia---,bj,---abn]
The definition of overlapping on the right is defined —
analogously. sequence §
We note that the frequency with which this overlapping
occurs is given by the frequency of c.ompo.sne Sequengﬁ. 1. The two cases where a chosen superinstrugtieseither included
felb1,...,by]. From the sequence inclusion propertyh, or overlaps with some existing bytecode sequehice
above we note that this is less than eitlfipf3) or fp (%),
and the frequency of occurrence of the sequehdkat

sequence §

do not involve an overlap withis fp(3)— fp[b1, ..., by] Then replace this sequence with the sequence
These properties have the side-effect of providing a consis- (b1, - -, bi—1, 8,641, .., bn], with the same frequency.
tency check on the frequency results. fP([b1, - b1, By b, -, ba]) = fp(8);
A superinstruction is a new instruction that will denote #p(3) = 0;

some sequence of bytecode instructions. We will use lower

case Greek letters to denote superinstructions and we writ¢ Case 2 5 overlaps partially withs
3 = [b1,...,bs] to mean that the superinstructigh cor- Say, for the sake of definitenegspverlaps bytecodes on

responds to the sequence of bytecodss...,b,]. Once a the left of the sequence

superinstruction has been defined it effectively becomes a new ' this case, leff = [b1,...,b;], then the sequence has
bytecode, and thus may occur in bytecode sequences and (non- the form (b, ..., b,], wherel <i < j <n. The overlap
recursively) in other superinstruction definitions. is the sequencé;, ..., b;]. _
The frequency of3, b; 1, ..., b,] must now be increased
B. Choosing the superinstructions by the frequency ofbs,...,b;,...,b;,...,b,], and the
frequency of the sequenc;,...,b,] should be de-

Suppose we have calculated the functigm, giving the
frequency of all bytecodes sequences for some progPam
Let us assume that this function is total, so thats) = 0 Fp(Bybjs1s - b)) += fo([b1, - -, bal);
whenevers does not occur if'p, the trace ofP. fe([biy- - bn]) = fp([b1,.-.,bn));

For our approach we wish to calculate the topuperin-
structions, but we cannot simply choose thesequences

creased by this amount.

The above process creates new sequences of bytecodes

and superinstructions, and assigns them frequencies. Note that

with the highest frequency, _since we must allow for ove_rIaQﬁe same sequence of bytecodes and superinstructions may
between sequences. Choosing some sequersea superin- .be created at different parts of the algorithm, and thus its

struction has an impact on the frequeljp les of any remam'E'grresponding newly-created frequency shoulagbdedto its
sequences whose bytecodes overlap With existing total

Thus we apply an lterative algorithm, where we choose This process also deals with the case where a superinstruc-
the most frequently occurring sequence, and then propa (5% may overlap some bytecode sequences multiple times.

) ) o ) i
this choice through the remaining sequence, reduglng t %wever, in the case where an superinstruction may overlap a
frequency of any sequence that it overlaps with. Each iteratig -\ nce in two non-disjoint sections, a choice must be made

: e
produces a new set of _frequer_mles, and we can then cho %/veen the superinstruction occurrences. We always choose
the next topmost superinstruction from these, and propag?te . :

0 compress the leftmost occurrence to a superinstruction,

this choice. since the bytecodes are being executed from left-to-right in
We note that this consideration of possible overlaps betwe%n y 9 9
. . the sequence.
sequences imposes an extra overhead on the information
collected. If the maximum length of any instruction sequence )
under consideration ig, then we must gather data for allC- Weighted Case
instruction sequences up to leng?h— 1 in order to allow In this case we have a weighted frequeng, where the

for the case of two sequences of lengthverlapping by just frequency as calculated above is adjusted by some weighting

a single instruction. factor w.
Propagation algorithm: Suppose we have chosen some R . .
superinstructions. wfp(b) = fp(b) * w(b)

Then, for each other bytecode sequedceither 5 and §

0 not overap (n whieh case do naing),or tere are g " WS NG faclors meart o eprecent e ptenta gan
cases, as illustrated in Figure 1 P 9 q y P

o Case 1 (3 is contained entirely withir ;g;hlg E:Tssség]\z?fttl'?:ts ies.the gain is equal to the number of
In this case the sequence is of the foéra [by,. .., b,], y ' o
andg = [b;,...,b]for1<i<j<n w(b) =1b] -1
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Since the weighting factor is a function only of the bytecode

sequence, it is easily woven into the algorithm from the last Max. size = 02

X . . . . Frequency
section. Each time a frequency is adjusted (corresponding {tGsequence Original | Weighted
case 1 or 2 above), the weighted frequency is recalculatedaload0 getfield 8.91 8.91

i ; ; i ; iqpaaload iloadl 2.55 2.55
counting each superinstruction as a single bytecode instructi e e 515 575
iconst1 isub 2.31 2.31
IV. EXPERIMENTAL SETTING iinc iload 3 1.36 1.36
. . . . . | iconstO goto 1.24 1.24
The experiments in this section were conducted usinGioad.1 ifne 1.16 1.16
Robert Lougher's Jam Virtual Machine [17]. The JamVM wag_aloado iload 1 1.16 1.16
specifically designed to have a very small footprint, but yet tp 1€Onst3 if-icmplt 1.02 1.02
he full JVM specification [18]. The JamVM runs in load3 laload 087 987
support the Tu p - The. > INTotal (top 10) 2305|2305
interpreted mode only, but can be built to implement either
switch-based or token threaded approaches (given support for TABLE |
first-class labels). It should be noted that JamVM uses the Top10MOST FREQUENT SEQUENCES OF SIZE UPT@2, BASED ON
GNU classpathlava class library which is not 100% compliant WEIGHTED FREQUENCY
with SUN’s JDK, and may, of course, differ from other Java
class libraries.
The platform used was a Dell Dimension 2350 PC, contain-
ing a 2.4 GHz Intel Pentium IV processor with a 512K level-1 Max. size = 04
cache, 1 GB of 266MHz DDR RAM, running the RedHat 9. : Frequency
distribution of GNU/Linux. The JamVM interpreter, version| Sequence _ Original | Weighted
1.0, was compiled using the GNU C compiler frgucversion | aloadO getfield 8.91 8.91
3.3. In what follows we use the programs from Pendrago aloado getfield fload aaload 2.29 4.58
e g prog ) g 'istore iload ifeq 1.79 3.58
Software’s Embedded CaffeineMark version 3.0 [19] whicH ajoad0 iload1 iconst1 isub 1.14 3.41
is designed to benchmark embedded applications and Jayapload0 getfield iload3 3.10 3.10
; dadd dastore iinc iload 0.76 2.29
powered consumer electronics systéms. TR TRload 558 T
iadd putfield iloadl ifne 0.58 1.74
; ; ; aload0 dup getfield iconsf 0.58 1.74
A. Selecting the Superinstructions ~tore Toad TToad add 058 173
In order to select the instruction sequences that will corrg-Total (top 10) 20.60 32.83

spond to the new superinstructions, the CaffeineMark applica-

tions were run using a version of the JamVM that had been TABLE I

instrumented to record the instructions executed. Since our TOP10MOST FREQUENT SEQUENCES OF SIZE UPTO4, BASED ON
superinstructions are selected from within a basic block, the WEIGHTED FREQUENCY

traces were reduced to frequency counts for basic blocks, and

a sequence of Perl scripts was then used to collect frequency

data on instruction sequences.

Max. size = 08

i . Frequency
B. Superinstruction Length Sequence Original | Weighted
Since at least 10 unused bytecode instructions are availa Ié:oagg geg!e:g !:Oaggaa'oad load ;-ig Z-;g
. . . . . aloat getiield lloa . .
”_1 the ‘]VM for |mpleme_nt|ng new.superlr.\structlons, the POte daload dmul dadd dastore iinc ilosdiconst3 0.76 5.34
tial effectiveness of using superinstructions can be estimateds_icmpit
by measuring the dynamic frequency of the top 10 sequencesload0 iload1 iconst1 isub invokevirtual 1.14 4.54
of each length istore2 aload0 dup getfield iconsi iadd put- 0.58 4.05
) . . field iload.1
Tables | through V give the frequencies for the top 1Q~geifield aloadd getfield iadd istore fload fload  0.58 4.04
sequences, where the sequence length was bounded by 2, 4 i8dd ’
16 and 32 instructions respectively. The top 10 sequences |gtore iload ifeqg _ 179 3.58
. . . . daload aload getfield iload3 aaload iload 0.76 3.05
size up to 32 instructions, shown in Table V, were exactly the 4, 0aq
same as those of length up to 64. Hence, in what follows, Weiconstl isub iaload aloa® getfield lload3 0.58 2.89
have limited our study to sequences of up to 32 instructions.'é}loagolfflci?r)%e,l S — —
. . . aloal getiield lload laloa . .
In each of Tables | through V we list the top 10 instructio Total (top 10) 1539 7531
sequences. For each table, the first column lists the bytecode

instructions in the sequence. The second column lists the TABLE IlI
frequency of the sequence, expressed as a percentage of th@op 10 MoST FREQUENT SEQUENCES OF SIZE UPT®8, BASED ON

WEIGHTED FREQUENCY
1The test was performed without independent verification by Pendragon
Software and that Pendragon Software makes no representations or warranties
as to the result of the test.
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Max. size = 16

Frequency
Sequence Original | Weighted
geftfield iload aaload iload daload aload 0.76 11.45

getfield iload3 aaload iload daload aloadl
getfield iload aaload iload

istore iload iload iadd istore iinc aloa® get- 0.58 8.67
field iload 3 iconstl isub iaload aload get-
field iload.3 iaload

aloadO getfield 8.91 5.46
daload dmul dadd dastore iinc ilo&diconst3 0.76 5.34
if icmplt

iload_1 istore2 aloadO dup getfield iconsf 0.58 5.21
iadd putfield iloadl ifne

aloadO iload 1 iconstl isub invokevirtual 1.14 4.54
istore iload ifeq 1.79 3.58
isub aload0 getfield iload3 iaload iastore 0.29 3.47

aloadO getfield iload3 iload iastore iinc
iload_3 aloadO getfield ificmplt

aloadO getfield iload3 iconstl isub iaload 0.29 2.31

istore aload0 getfield iload3 iconst1

aloadO getfield iload iaload iload iconst2 0.31 1.85

idiv if .icmpgt

Total (top 10) 15.40 51.88
TABLE IV

ToP10MOST FREQUENT SEQUENCES OF SIZE UPTD6, BASED ON
WEIGHTED FREQUENCY

Max. size = 32

Frequency
Sequence Original | Weighted
aloadO getfield iload aaload iload aloadO 0.76 22.14

geftfield iload aaload iload daload aload

getfield iload3 aaload iload daload aloadl
getfield iload aaload iload daload dmul dadd
dastore iinc iload3 iconst3 if_icmplt

aload0 getfield aload) getfield iadd istore 0.58 12.13
iload iload iadd istore iinc aloa@ getfield
iload_3 iconstl isub iaload aloa®d getfield
iload_3 iaload ifticmpge

aloadO getffield iload3 iconstl isub iaload 0.29 7.51
istore aload0 getfield iload3 iconstl isub
aloadO getfield iload3 iaload iastore aloa@
geftfield iload3 iload iastore iinc iload
aloadO getfield ificmplt

iload_1 istore2 aloadO dup getfield iconsi 0.58 5.21
iadd putfield iloadl ifne

aloadO iload.1 iconst1 isub invokevirtual 1.14 4.54
istore iload ifeq 1.79 3.58
aloadO getfield iload iaload 0.81 2.44
iload_2 iconst1 iand ifeq 0.57 1.70
aload0 getfield iload2 iinc caload istore 0.12 1.69

aload3 getfield iload iinc caload istore iload
iload if_icmpeq

iconst0 goto 1.24 1.24

Total (top 10) 7.87 62.19

TABLE V
ToP10MOST FREQUENT SEQUENCES OF SIZE UPT®2, BASED ON
WEIGHTED FREQUENCY

total number of bytecodes executed. The final column lists
the adjusted, weighted frequency, which allows for overlaps
between the selected sequences, and uses a weighting factor
of one less than the number of instructions in the sequence.
It should be noted that there will be a higher overhead in
recognising such sequences dynamically in the instruction
stream, and that the actual (unweighted) frequency of longer
sequences tends to be less than the frequency of shorter
sequences. Both of these factors will tend to offset the possible
benefits to be gained from using longer sequences.

From Tables | through V, we note the prevalence of the
aload 0 getfield pair, which is the top sequence in Table
I and Il, and occurs frequently as part of the top sequences
in Tables Il throughV. It is also notable that the adjusted
frequencies decrease rapidly as we move down the table,
indicating diminishing possible returns for greater numbers of
superinstructions, as predicted by Proebsting [4].

C. Implementing the Superinstructions

Once the sequences corresponding to superinstructions have
been selected, it is then necessary to change the virtual ma-
chine to provide an implementation. This involves augmenting
the main interpreter loop with cases for the extra instructions,
and concatenating in the code corresponding to each origi-
nal instruction as appropriate for each new superinstruction.
Since little new code is involved, it is possible to make
such modifications at run-time (as described by Piumarta and
Riccardi [5]). However, since our goal was to measure the
possible savings from superinstruction implementation, we
generated the new code off-line, and recompiled versions
of the JamVM for each of the four possible selections of
superinstructions described in the previous subsection. One
side-effect of implementing the superinstructions statically
is that the new instruction sequences can be subjected to
optimisations bygcc a feature not available to dynamically-
generated code.

It is also necessary to change the instruction stream for each
application to include these new superinstructions. While this
could be done statically, such an approach is cumbersome
as it would also involve changing the code in the Java
class libraries. Instead we implemented a “just-in-time” style
of translation, where the instruction stream was modified
dynamically the first time a sequence corresponding to a
superinstruction was encountered at run-time.

When an instruction that could correspond to the first
instruction of one of the superinstruction sequences was en-
countered at run-time, the instruction stream was checked
to see if the following instructions matched the sequence.
If so, the first instruction (only) was modified to become
the corresponding superinstruction. If not, the instruction was
modified to a “tagged” version of itself. This “tagged” version
is coded to execute with the same semantics as the original,
without the check for superinstruction sequence occurrence.
Thus, the overhead of checking for a matching sequence only
occurs the first time the initial bytecode of the sequence
is encountered; if the instruction stream does not match a
sequence, no overhead is incurred on subsequent iterations.
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. L ead none | orig. | upto02 | uptoO4 | uptoO8 | uptol6 | upto32
There are a number of other issues that need to be addre.,seSieVe 1379 T 1501 1472 | 14641 17771 1768 1805

when modifying the instruction stream in this way. First, Loop | 1433 | 1652 | 1617 | 1865| 2130| 2448| 2599

with multi-threaded programs the possibility exists that twjo Logic | 2034 | 2065 | 1757 | 2041 | 2026 | 2074| 1998

threads would attempt to modify the same instruction stream Sgg”(,ﬁ 1‘2% 1222 1‘222 1??;; ggg f’ég gf%

simultaneously; this issue is not addressed in this paper, bwlethod | 1527 | 1554 | 1686 | 2029 | 2510| 2654| 2836

has been dealt with extensively by Gagnon and Hendren [7]Overall | 1262 | 1363 | 1345| 1490 | 1330 | 1324 1429

Second, most virtual machines implement “quick” versions

of instructions, where, for example, indirect references to TABLE VI

field names are replaced by direct references after the firdg-oULTS OF RUNNING EACH VERSION ORAMVM, EACH BASED ON A

execution. The JamVM implements 17 SUCh inStrUCtionS, aﬁ\gltchedNTERPRETER OVER THE PROGRAMS FROM THECAFFEINEMARK

some of these are present in our instruction sequences (e.g. SUITE.

getfield ). This does not present a problem for our approach;

on the first pass through a sequence the instructions are none | orig. | upto02 | Upto0Z | Upto08 | Uptol6 | upto32

changed to their “quick” versions, as usual. The second time Sieve | 2146 | 2207 | 1822 | 2032 | 2335| 2569 | 2353

through, those sequences of instructions corresponding toll-(?goig %48122 %?13(2) %gig 2228 ggg ggg‘l‘ ggg

superinstructions are picked up by our modifications. String | 633 | 644 591 596 597 592 704
A final issue that must be considered is that of basic Float | 1913 | 1813 | 2122 | 2461 514 472 524

blocks, since, in general, control may be transferred in @332}3?. 122‘7‘ i%g i?g‘z‘ iggi fégé féig ?ggg

or out of an instruction sequence. As noted earlier, we did

not include instructions that could terminate a basic block TABLE VI

internally in our sequences, so control cannot be transferre@esyits oF RUNNING EACH VERSION OFAMVM, EACH BASED ON A

out of them. Since we have modified only the first instructiofreadednTERPRETER OVER THE PROGRAMS FROM THECAFFEINEMARK

in the sequence, control transfdrsto the sequence are not SUITE.

a problem, since the original bytecodes, other than the first,

remain there unchanged. We note that one disadvantage of this

approach is that we do not achieve any code size compression
from implementing superinstructions. Looking at the overall results, we can see that, as ex-

pected, the threaded interpreter outperforms the switch-based
interprete? Conversely, the speedup resulting from using
) o superinstructions in the switch-based interpreter are greater
In order to measure the effect of superinstruction implgnan those for the threaded interpreter. This is to be expected,
mentation, three new versions of the JamVM were preparefh,ce the threaded interpreter has a reduced overhead for
implementing the |nst_ruct|0ns sequences in Tables | througyiruction dispatch, and so there is less to be gained from
V. The JamVM as shipped actually implements #iead 0 jyplementing superinstructions. The overall performance is
getfield  superinstruction, so a further version was prepared ,ymarised in Figure 2 for ease of comparison.
without this, in order to fully judge the effect of superinstruc- e pest performing machine in each casefi©04 which
tion |mple_ment_at|on. . shows an overall speedup of 18% in the switch-based inter-
Thus, size different versions of the JamVM were used: reter and 14% in the threaded interpreter. For the programs in
« noneThis is the basic JamVM with no superinstructionghis benchmark suite, superinstructions of length 4 would seem
implemented to represent the best compromise, maximising the frequency of
» orig This is a version of the JamVM as it is distributedoccurrence, while minimising the overhead of implementation.
where only theaload 0 getfield  superinstruction has  We note that there is significant variance between the
been implemented performance of individual programs in the suite. The speedup
« upton A version of the JamVM with 10 superinstructionsachieved for botH.oop and Methodis quite dramatic, almost
implemented; these are the superinstruction sequencegifibling their performance in the best case. The improvement
length upton, as listed in Tables | through V. for String and Sieveis relatively modest, an&tring actually
In addition, each of these six versions of JamVM was buixhibits a slight decrease in performance for all but the
in both threaded and switch-based mode to give an estimatleat machine. Clearly, in a real-world situation, it would be
of the possible savings under each system. The data in Tabéeessary to gauge the relative importance of the individual
VI records the results for running the six JamVMs over thprograms before selecting a particular optimisation level.
CaffeineMark suite in a switch-based mode, whereas the datdt is interesting to note the marked fall-off in performance
in Table VII shows the same information when the JamVMgsf the Float program once the superinstruction length exceeds
are built using threaded dispatch. In each of Table VI arH This is attributable to the low frequency of occurrence of
Table VII we report the result for each individual program imnstructions relevant td-loat in these longer sequences. A
the suite, as well as the overall result. The numbers in the

tables represent the CaffeineMark score, where a higher scordhterestingly, this was not the case when JamVM was compiled using
3.2.2, where a compiler bug prevented the disabling of global common

- . C
'nd'cates a greater number of operations performed per l"gllﬁexpression elimination (gcse), and the instruction dispatch sequence was
time. hoisted.
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V. RESULTS
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Switch-Based Threaded asiload _1 andiload , or even merging functionally similar
2048 Interpreter Interpreter . .
bytecodes (e.giload , aload andfload all load a 32-bit
1792 - value onto the stack).
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