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In this chapter we present a study of the SPEC JVM98 benchmark
suite at a platform-independent level. The results presented describe
the influence of class library code, the relative importance of various
methods in the suite, as well as the sizes of the local variable, parameter
and operand stacks. We also examine the dynamic bytecode instruction
usage frequencies, and discuss their relevance. The influence of the
choice of Java source to bytecode compiler is shown to be relatively
insignificant at present.

These results have implications for the coverage aspects of the SPEC
JVM98 benchmark suites, for the performance of the Java-to-bytecode
compilers, and for the design of the Java Virtual Machine.

Java Virtual Machine, SPEC JVM98, benchmark suite, instruction us-
age frequency, method execution frequency
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1. Introduction

The Java paradigm for executing programs is a two stage process.
Firstly the source is converted into a platform independent intermediate
representation, consisting of bytecode and other information stored in
class files [Lindholm and Yellin, 1996]. The second stage of the pro-
cess involves hardware specific conversions, perhaps by a JIT or hotspot
compiler for the particular hardware in question, followed by the execu-
tion of the code. This research sets out to perform dynamic analysis at
the platform independent bytecode level, and investigate whether or not
useful results can be gained. In order to test the technique, the SPEC
JVM98 benchmark suite [SPEC, 1998] was used.

The remainder of this chapter is organised as follows. Section 2
discusses the background to this work, including the rationale behind
bytecode-level dynamic analysis, and the test suite used. Section 3
presents a method-level view of the dynamic profile, while Section 4
profiles the method stack frame sizes. Section 5 presents a more de-
tailed bytecode-level view of the applications, and Section 6 discusses
the influence of compiler choice on these figures. Section 7 concludes the
chapter.

2. Background and Related Work

The increasing prominence of internet technology, and the widespread
use of the Java programming language has given the Java Virtual Ma-
chine (JVM) an important position in the study of compilers and related
technologies. To date, much of this research has concentrated in two
main areas:

= Static analysis of Java class files, for purposes such as optimisation
[Vallee-Rai et al., 1999], compression [Antonioli and Pilz, 1988;
Rayside et al., 1999], software metrics [Cohen and Gil, 2000], or
the extraction of object models [Jackson and Waingold, 2001]

m The performance of the bytecode interpreter, yielding techniques
such as Just-In-Time (JIT) compilation [Adl-Tabatabai et al., 1998;
Ishizaki et al., 1999] and hotspot-centered compilation [Sun Mi-
crosystems, 2001]. See [Kazi et al., 2000] for a survey.

This chapter presents a platform-independent dynamic analysis of
the SPEC JVMO98 suite, including data related to bytecode instruc-
tion usage, method frequencies and stack frame profiles. This platform-
independent bytecode analysis describes the bytecode as it is interpreted,
without the interference of JIT compilation or any machine-specific is-
sues. This type of analysis can help to clarify the potential impact of
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Benchmarking the Java Virtual Architecture 3

the data gained from static analysis, can provide information on the
scope and coverage of the test suite used, and can act as a basis for
machine-dependent studies.

The production of bytecode for the JVM is, of course, not limited
to a single Java-to-bytecode compiler. Not only is there a variety of
different Java compilers available, but there are also compilers for ex-
tensions and variations of the Java programming language, as well as
for other languages such as Eiffel [Colnet and Zendra, 1999] and ML
[Benton et al., 1998], all targeted on the JVM. In previous work we have
studied the impact of the choice of source language on the dynamic pro-
files of programs running on the JVM [Waldron, 1999], as well as the
choice of compiler on the profiles of the Java Grande benchmark suite
[Daly et al., 2001]. The compiler comparisons presented in this chapter
help to calibrate this and other such studies.

2.1 The SPEC JVM98 Benchmark Suite

All the programs in this study were taken from the SPEC JVM98
benchmark suite [SPEC, 1998]. The SPEC JVM98 suite was designed as
an industry-standard benchmark suite for measuring the performance of
client-side Java applications, and we have used the seven main programs

from this suite. These are:
cmprs | Modified Lempel-Ziv compression method (LZW)

db | Performs multiple database functions on memory resident database
jack | A Java parser generator that is based on PCCTS
javac | The Java compiler from SUN’s JDK 1.0.2.
jess | An Expert Shell based on the CLIPS expert shell system

mpeg | Decompresses ISO MPEG Layer-3 audio files

mtrt | A ray-tracer with two threads each rendering a scene
There have been a number of studies of the SPEC JVM98 benchmark
suite. [SPEC, 1998] provides speed comparisons of the suite using differ-
ent Java Platforms, and [Ishizaki et al., 1999] examines the speed impact
of various optimisations. [Driesen et al., 2000] uses the SPEC JVM98
suite in an examination the prediction rate achieved by invoke-target
and other predictors. Both [Li et al., 2000] and [Radhakrishnan et al.,
2001] discuss low-level timing and cache performance for the suite. [Shuf
et al., 2001] also looks at cache misses, but from the perspective of the
SPEC JVM98 programs’ memory behaviour. This theme is investigated
in depth in [Dieckmann and Hoélzle, 1999], which studies the allocation
behaviour of the SPEC JVM98 suite from the perspective of memory
management. Both [Shuf et al., 2001] and [Zhang and Seltzer, 2000]
note that the SPEC JVM98 suite may not be suitable for assessing all
types of Java applications. Finally, [Bowers and Kaeli, 1998] analyses
the SPEC JVM98 suite using dynamic bytecode level analysis similar to
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our own, but does not present data related to method usage or compiler
differences.

The SPEC JVMO98 suite is just one of many possible benchmarks
suites for Java. A similar suite, the Java Grande Forum Benchmark
Suite, [Bull et al., 1999; Bull et al., 2000] has been studied in [Daly
et al., 2001]. Micro-benchmarks for Java include CaffeineMark [Corpo-
ration, 1999] Richards and DeltaBlue [Wolczko, 2001a]. As these mea-
sure small, repetitive operations, it was felt that their results would not
be typical of Java applications. For the same reason larger suites, de-
signed to test Java’s threads or server-side applications, such as SPEC’s
Java Business Benchmarks, the Java Grande Forum’s Multi-threaded
Benchmarks, IBM’s Java Server benchmarks [Baylor et al., 2000] or
VolanoMark [Neffenger, 1999] have not been included here.

2.2 Methodology

The data presented in this chapter were gathered by running each of
the SPEC JVM98 independently on a modified JVM. The JVM used
was Kaffe [Wilkinson, 2000], an independent cleanroom implementation
of the JVM, distributed under the GNU Public License. While Kaffe can
be built to emit debugging information, we modified its source slightly
to collect information more directly suited to our purposes. Version 1.0.6
of Kaffe was used, and it was built with debugging enabled but with JIT
compilation disabled.

Other approaches to tracing the execution of Java programs include
bytecode-level instrumentation [Lee, 1997], and special-purpose JVMs
such as SUN’s Tracing JVM [Wolczko, 2001b] and IBM’s Jikes Re-
search Virtual Machine, a development of the Jalapefnio Virtual Machine
[Alpern et al., 2000].

It should be noted that all measurements in this chapter were made
with the Kaffe class library. This library is not 100% compliant with
SUN’s JDK, and may, of course, differ from other Java class libraries. In
subsequent sections we will distinguish between code from the (Kaffe)
class library and “SPEC-code” i.e. those bytecodes from the SPEC
JVM98 benchmark suite itself.

3. Dynamic Method Execution Frequencies

In this section we present a profile of the SPEC JVM98 based on
methods, since these provide both a logical source of modularity at
source-code level, as well as a possible unit of granularity for hotspot
analysis [Sun Microsystems, 2001; Armstrong, 1998]. It should be noted
that these figures are not the usual time-based analysis such as found in
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Table 1.1. Measurements of total number of method calls by SPEC JVM98 applica-
tions. Also shown is the percentage of the total which are in the class library, and
percentage of total which are in class library and are native methods. The figures

Program Total CL CL
methods | % | native %
cmprs 2.26e+08 | 0.0 0.0
jess 1.35e4+-08 | 32.5 1.9
db 1.24e+08 | 98.7 0.1
javac 1.53e+08 | 62.0 2.8
mpeg 1.10e+08 | 1.3 1.1
mtrt 2.88e+08 | 3.2 0.1
jack 1.16e+08 | 92.3 4.2
average 1.65e+08 | 41.4 1.5

include calls of native methods, but excludes calls within native methods.

Program Java method calls bytecodes executed
number | % in CL | number | % in CL
cmprs 2.26e+08 0.0 1.25e+10 0.0
jess 1.32e+08 31.2 1.91e+09 18.8
db 1.24e+4-08 98.7 3.77e+09 70.4
javac 1.48e+-08 60.9 2.43e+09 58.3
mpeg 1.08e+08 0.1 1.15e+10 0.0
mtrt 2.88e+08 3.1 2.20e+09 3.5
jack 1.11e+4-08 92.0 1.50e+09 82.3
ave 1.62e+08 40.9 5.12e+09 33.3

Table 1.2. Measurements of Java method calls made and bytecodes executed by SPEC
JVMI8 applications. The percentage of calls and bytecode instructions in the class

library is also shown. In all cases, native methods have been excluded.

cmprs | jess | db | javac | mpeg | mtrt | jack
io 8.5 0.4 0.1 33.5 14.0 24.6 3.1
lang 52.9 49.8 | 40.8 | 21.9 71.0 75.3 | 24.0
net 04 0.0 | 0.0 0.0 0.1 0.0 0.0
util 38.2 49.8 | 59.2 | 44.7 15.0 0.1 72.9

Table 1.3. Calls to non-native methods in the class library. This table shows the
percentage of class library methods called in each of the API packages used.
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cmprs | jess | db | javac | mpeg | mtrt | jack

io 3.9 0.5 0.0 31.0 8.9 56.6 | 2.7
lang 524 | 379 | 734 | 324 59.4 | 43.1 | 19.5
net 0.7 0.0 0.0 0.0 0.3 0.0 0.0

util 43.0 61.5 | 26.6 | 36.6 31.3 03 | 77.8

Table 1.4. Bytecode instructions ezecuted in the class library. This table shows the
percentage of class library bytecode instructions executed in each of the API packages
used.

e.g. [Radhakrishnan et al., 2001] for the SPEC JVM98 suite, or [Bull
et al., 1999; Bull et al., 2000] for the Java Grande suite. Also, since our
analysis is carried out at the bytecode level, we do not track method
calls or other activities within native methods.

Table 1.1 shows measurements of the total number of method calls
including native calls by SPEC JVM98 applications. For the programs
studied, on average 1.5% of methods are class library methods which
are implemented by native code. As the benchmark suite is written
in Java it is possible to conclude that any native methods are in the
class library. Table 1.1 must be interpreted carefully as it is a method
frequency table, without reference to bytecode usage, and so may not
correlate with eventual running times.

The figures on the left part of Table 1.2 show measurements of the
Java method calls excluding native calls. The right part of Table 1.2
shows the number of bytecodes executed for each application. Over
40% of method calls are directed to methods in the SPEC suite, and
33% of bytecodes executed are in the class library. This is a significant
difference from Java Grande applications [Bull et al., 2000] which spend
almost all of the time outside the class library. This suggests that mixed
mode compiled-interpreted systems, which pre-compile the class library
methods to some native format, could be effective for improving the
running time of the SPEC JVM98 programs.

Table 1.3 shows dynamic measurements of the Java API package
method call percentages and Table 1.4 shows API package bytecode per-
centages. Some care should be taken when considering these tables,
since, as shown in Table 1.2, the total number of calls and bytecodes
represented by these percentages varies considerably across applications.
The percentages in Table 1.4 and Table 1.4 are broadly similar, imply-
ing the class library methods each execute similar numbers of bytecodes.
As would be expected for the programs considered, the applet and awt
packages are not used at all as graphics have been removed from the
benchmarks.
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Benchmarking the Java Virtual Architecture 7

Table 1.5 presents two contrasting analyses of method usage. The
left part of Table 1.5 ranks methods based on the frequency with which
they are called at run-time. The right part of Table 1.5 on the other
hand ranks methods based on the proportion of total executed bytecodes
that they account for. The figures on the left are related to the method
reuse factor as described in [Radhakrishnan et al., 2001], proposed as
an indication of the benefits obtained from JIT compilation. However,
we suggest that the difference in rankings between frequency of invoca-
tion and proportion of bytecodes executed shows that the method-call
figures do not give an accurate picture of where the program is spend-
ing its time. The difference is most striking in cmprs, where the left
part seems to show a similar distribution of effort between the top three
methods, yet the right part clearly shows that two completely different
methods (compressor.compress, decrompressor.decompress), account for
the majority of the bytecodes executed.

This result highlights a danger of a naive approach to determining
“hot” methods in a Java program in terms of frequently-called methods.
The danger is that the most expensive method will be, for example, a
large matrix multiplication which is invoked only once, but dominates
the running time. These figures show that there may be little correlation
between the frequency of invocation and the running time spent in a
method.

Figure 1.1 summarises the information from the right-hand side of
Table 1.5. On average, the top two methods account for more than 40%
of bytecodes executed. Thus it is vital that these methods are optimised,
even if they are invoked only a handful of times.

4. Dynamic Stack Frame Usage Analysis

Each Java method that executes is allocated a stack frame which con-
tains (at least) an array holding the actual parameters and the variables
declared in that method. Instance methods also have a slot for the
this-pointer in the first position of the array. This array is referred to
as the local variable array, and those variables declared inside a method
are called temporary variables. In this section we examine the dynamic
size of this array, its division into parameters and temporary variables,
along with the maximum size of the operand stack during the method’s
execution. As well as having an impact on the overall memory usage
of a Java program, this size also has implications for the possible usage
of specialised 1oad and store instructions, which exist for the first four
slots of the array.
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cmprs method % by call

cmprs method % by instruction count

compress/Code_Table.of 32.9 || compress/Compressor.compress 34.2
compress/Output_Buffer.putbyte 29.0 | compress/Decompressor.decompress 23.8
compress/Input_Buffer.getbyte 20.8 || compress/Compressor.output 9.3
compress/Code_Table.set 7.9 compress/Input_Buffer.getbyte 8.3
compress/Decompressor.getcode 4.4 compress/Decompressor.getcode 7.3
jess method % by call Jjess method % by instruction count
jess/ValueVector.get 16.5 || jess/Node2.runTests 11.6
jess/Value.equals 10.7 || jess/ValueVector.equals 11.2
jess/ValueVector.equals 7.1 || jess/Value.equals 10.1
jess/ValueVector.size 5.4 || jess/Token.data_equals 8.0
java/util/HashMap.find 5.3 || jess/ValueVector.get 5.7
db method % by call db method % by instruction count
java/util/Vector.elementAt 36.4 || java/lang/String.compareTo 47.0
java/lang/String.compareTo 18.2 || db/Database.shell_sort 25.9
java/lang/Math.min 18.2 || java/util/Vector.elementAt 10.7
java/util/Vector$1l.nextElement 6.6 | java/util/Vector$l.nextElement 3.9
java/util/Vector$1l.hasMoreElements | 5.5 || java/lang/Math.min 3.2
javac method % by call javac method % by instruction count
java/io/BufferedInputStream.read 11.1 || java/io/BufferedInputStream.read 12.9
javac/ScannerInputStream.read 5.4 || javac/ScannerInputStream.read 8.3
java/util/HashMap.find 3.7 || java/lang/String.hashCode 5.0
java/lang/Object.equals 3.1 || java/lang/String.replace 4.1
java/lang/Object.<init> 2.7 || java/lang/String.equals 4.1
mpeg method % by call mpeg method % by instruction count
mpegaudio/q.j 16.6 || mpegaudio/q.l 434
mpegaudio/l.read 15.9 || mpegaudio/q.m 7.5
mpegaudio/l.V 10.2 || mpegaudio/lb.read 6.1
mpegaudio/cb.M-DM-# 6.3 || mpegaudio/cb.M-DM-# 4.9
mpegaudio/cb.M-CM-"Z 5.1 || mpegaudio/tb.M-DM-"U 39
mtrt method % by call mtrt method % by instruction count
raytrace/Point.GetX 19.5 || raytrace/OctNode.Intersect 17.5
raytrace/Point.GetY 17.3 || raytrace/OctNode.FindTreeNode 10.6
raytrace/Point.GetZ 16.3 || raytrace/Point.Combine 9.6
raytrace/Face.GetVert 11.1 || raytrace/Point.GetX 7.7
raytrace/Ray.GetDirection 6.0 || raytrace/Face.GetVert 7.3
jack method % by call jack method % by instruction count
java/lang/Object.<init> 8.8 || java/util/HashMap$Entrylterator.nextBucket | 21.0
java/util/Vector.size 5.2 || jack/RunTimeNfaState.Move 5.5
java/util/Vector.<init> 3.8 || java/util/Vector.insertElementAt 5.1
java/util/HashMap.access$1 3.7 || java/util/Vector.indexOf 4.2
java/util/HashMap.find 3.2 || jack/TokenEngine.getNextTokenFromStream | 3.8

Table 1.5. Dynamic method ezecution frequencies for the SPEC JVMY98 programs,
ezcluding native methods. The figures on the right show the percentage of total
method calls for each method. The figures on the left show the percentage of total
bytecodes executed that were in this method. The names of some methods in the
mpeg use non-alphanumeric characters.
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Benchmarking the Java Virtual Architecture 9

Figure 1.1. Average Dynamic bytecode percentages for the top 10 methods in terms
of bytecodes executed. Here, the averages have been taken across applications for the
methods with the most bytecodes for each application, the second most bytecodes,
and so on.

Table 1.6 shows dynamic percentages of local variable array sizes, and
further divides this into parameter sizes and temporary variable array
sizes. One finding that stands out is the absence of zero parameter
size methods across all applications. All the SPEC JVM98 applications
have some zero parameter methods, but these appear as zero in the
percentages as they are swamped by those methods with high bytecode
counts in the applications which have non-zero parameter sizes.

5. Dynamic Bytecode Execution Frequencies

In this section we present a more detailed view of the dynamic profiles
of the SPEC JVM98 programs studied by considering the frequencies of
the different bytecodes used. These figures help to provide a detailed
description of the nature of the operations being performed by each
program, and thus give a picture of the aspects of the JVM actually
being tested by the suite.

In order to study overall bytecode usage across the programs, it is
possible to calculate the average bytecode frequency

100 " Cik
fi= n Z 256
k=1 Z«j=1“jk
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Local variable array size
Size | cmprs | jess db | javac | mpeg | mtrt | jack | ave
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 8.3 6.1 6.2 14.8 0.8 29.5 | 39.2 | 15.0
2 125 | 15.7 | 15.0 | 13.2 6.9 13.6 | 16.0 | 13.3
3 1.0 18.9 | 0.0 10.9 0.5 0.7 9.6 5.9
4 3.6 270 | 2.3 25.5 8.2 16.3 | 17.0 | 14.3
5 16.6 0.3 0.7 1.4 4.4 11.7 | 124 | 6.8
6 0.0 7.8 | 47.0 | 16.8 7.0 1.6 0.2 | 11.5
7 23.8 3.2 1.5 8.6 8.5 4.1 0.4 7.2
8 0.0 4.0 0.9 4.8 7.1 0.0 1.2 2.6
>8 34.2 | 17.0 | 26.5 3.9 56.6 | 22.5 | 4.0 | 23.5
Parameter size
0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
1 74.5 7.9 7.8 | 384 3.6 30.8 | 52.0 | 30.7
2 21.0 | 629 | 914 | 23.8 146 | 24.2 | 24.2 | 374
3 4.6 17.6 | 0.8 18.6 59.9 6.9 | 169 | 179
4 0.0 11.7 | 0.0 16.4 13.5 | 25,5 | 6.0 | 104
5 0.0 0.0 0.0 1.0 3.6 10.3 | 0.6 2.2
6 0.0 0.0 0.0 1.1 4.1 1.8 0.0 1.0
7 0.0 0.0 0.0 0.6 0.0 0.5 0.1 0.2
8 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0
>8 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.1
Temporary variable size
0 21.0 | 233 | 21.2 | 29.6 11.6 | 58.2 | 62.5 | 32.5
1 44 244 | 0.2 18.8 5.1 1.3 | 16.1 | 10.0
2 0.0 19.5 | 1.2 16.4 5.6 13.3 | 4.8 8.7
3 9.3 8.5 1.5 16.4 9.9 0.0 | 106 | 8.0
4 7.3 0.1 | 47.0 7.4 9.8 4.2 0.5 | 10.9
5 0.0 3.1 1.5 1.8 0.0 19.7 | 0.1 3.7
6 23.8 4.1 0.9 8.1 6.5 1.7 1.0 6.6
7 0.0 2.0 | 25.9 0.4 0.0 0.0 0.5 4.1
8 0.0 3.4 0.6 0.7 0.1 0.0 0.0 0.7
>8 342 | 116 | 0.0 0.2 51.4 1.6 39 | 14.7

Table 1.6. Buytecode based dynamic percentages of local variable array sizes, as well as
temporary and parameter sizes for SPEC JVMY98 programs. The local variable array
and parameter sizes include the this-reference for non-static methods.

where c;;; is the number of times bytecode i is executed during the exe-
cution of program k and n is the number of programs averaged over. f;
is an approximation of that bytecode’s usage for a typical SPEC JVM98
program.

For the purposes of this study, the 202 bytecodes can be split into the
22 categories used by the Java Virtual Machine Specification [Lindholm
and Yellin, 1996]. By assigning those instructions that behave similarly
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local_load

object_fields

arithmetic

conditional_branch

array_load

push_const
local_store

method_return method_invoke

Figure 1.2. A summary of dynamic percentages of category usage by the applications
in the SPEC JVM98 suite.

cmprs | jess db | javac | mpeg | mtrt | jack | ave
local_load 324 | 37.8 | 41.2 | 35.3 32.8 | 33.6 | 32,5 | 35.1
object_fields 18.9 148 | 17.0 | 17.9 9.6 15.7 | 20.7 | 164
conditional_branch 6.2 10.8 | 7.8 8.0 3.3 3.7 8.4 6.9
push_const 7.1 6.0 1.3 7.2 13.4 5.8 5.7 6.6
method_return 1.8 6.9 3.3 6.1 1.0 131 | 74 5.7
method_invoke 1.9 7.0 3.2 6.3 1.0 13.0 | 7.7 5.7
local_store 9.1 5.1 6.9 3.5 6.3 1.8 2.7 5.1
array load 3.7 4.5 6.7 2.3 12.2 3.5 1.9 5.0
arithmetic 5.5 0.4 6.0 2.8 11.7 5.1 2.7 4.9
stack 5.8 0.5 0.6 2.6 1.1 1.1 4.0 2.2
misc 1.0 14 1.8 1.4 1.7 0.2 0.6 1.2
unconditional_branch 0.4 1.0 1.2 1.4 0.4 0.2 1.4 0.9
array_store 1.6 0.2 0.7 0.9 2.1 0.3 0.3 0.9
object_manage 0.0 1.8 1.7 0.8 0.0 0.3 1.0 0.8
logical_boolean 1.6 0.6 0.0 0.6 1.5 0.0 0.1 0.6
array_manage 0.0 0.5 0.0 1.2 0.0 0.0 2.2 0.6
logical _shift 2.6 0.0 0.0 0.0 0.7 0.0 0.0 0.5
comparison 0.0 0.2 0.0 0.0 0.4 2.2 0.1 0.4
conversion 04 0.0 0.0 04 1.0 0.0 0.0 0.3
table_jump 0.0 0.2 0.0 1.0 0.0 0.0 0.0 0.2
subroutine 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
monitor 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 1.7. Dynamic percentages of category usage by the applications in the Java
SPEC JVM98 suite.
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jdk13 | jikes | bcj | gcj
cmprs 4.2 4.5 4.8 | 9.2
jess 0.5 1.1 | 05| 15
db 1.1 1.1 2.5 | 6.6
mtrt 0.0 0.1 0.2 | 1.0
avg 15 | 1.7 | 2.0 | 46

Table 1.8. Total SPEC dynamic bytecode usage increases. For each compiler, these
figures show the percentage increase in the total number of bytecode instructions
executed, as compared to the distributed SPEC bytecodes.

into groups it is possible to describe clearly what is happening. Table
1.7 is summarised in Figure 1.2. As has been noted in [Waldron, 1999]
local_load, push_const and local_store instruction categories always ac-
count for very close to 40% of instructions executed, a property of the
Java Virtual Machine, irrespective of compiler or compiler optimisations
used. As can be seen in Table 1.7, local_load = 35.1%, push_const = 6.6%
and local_store = 5.1%, giving a total of 46.8% of instructions moving
data between the local variable array and constant pool and the operand
stack. It is also worth noting that, in practice, loads are dynamically
executed roughly ten times as often as stores.

6. Comparisons of dynamic bytecode usage
across different compilers

In this section we consider the impact of the choice of Java compiler
on the dynamic bytecode frequency figures. Java is relatively unusual
(compared to, say, C or C++) in that optimisations can be implemented
either when the source program is compiled into bytecode, or when this
bytecode is executed on a specific JVM. We consider here those opti-
misations that are implemented at the compiler level, and thus may be
considered to be platform independent, and which must be taken into
account in any study of the bytecode frequencies.

The programs in the SPEC JVM98 suite are supplied in bytecode
format and we refer to these programs in this section as spec. The
Java source code for javac, jack and mpeg was not supplied as part of
the SPEC JVMO98 suite, but the remaining four programs were compiled

using the following four compilers:
jdk13 SUN'’s javac compiler, Standard Edition (JDK build 1.3.0-C)
jikes IBM’s Jikes compiler, version 1.06
bcj Borland Compiler for Java 1.2.006
gen Generic Java, version 0.6m of 5-Aug-99
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compress
inst Y spec A bcj A gen A jdk13 A jikes | A %
aload_0 1.49e4-09 479543210 | 479543285 | 479543285 | 479543285 | 15.4
aload 4.80e+08 || -479541245 | -479541245 | -479541245 | -479541245 | 154
astore 3.38e+08 || -338382920 | -338382920 | -338382920 | -338382920 | 10.9
invokevirtual | 2.06e+08 338384974 | 338384974 | 338385026 | 338385025 | 10.9
ireturn 1.33e+08 273400040 | 273400040 | 273400040 | 273400040 | 8.8
iload-1 4.02e+08 244277320 244277320 244277320 244277320 7.8
iconst_0 6.19e+07 46 | 361718297 46 46 | 2.9
goto 4.74e+07 84616469 | 141529534 9863300 56901750 | 2.3
return 9.34e+07 64984960 64984960 64984960 64984960 | 2.1
istore 3.02e+08 -56018830 | -56018880 | -56018880 | -56018880 | 1.8
iload 6.95e+08 -56018830 | -56018880 | -56018880 | -56018880 | 1.8
ifeq 9.41e+07 -37191210 | -47054840 | -37191210 9861565 | 1.1
ifne 3.43e+07 47052775 | -34341021 47052775 0| 1.0
if_icmpeq 1.02e+02 47052800 56916430 0 0| 08
if_icmple 1.11e+07 9861590 77870930 0 0| 0.7
if_icmpgt 1.97e+07 -9861590 77665160 0 0| 0.7
if_icmpge 7.66e+07 -16845589 68354806 0 0| 07
if_icmpne 1.99e+-08 -47052800 34340996 0 0| 0.7
ifgt 8.75e+07 -50 | -87526800 0 0| 0.7
ifge 8.52e+07 0 | -85200395 0 0| 0.7
iload_2 7.29e+08 17932185 26633015 17932185 17932185 | 0.6
iconst_1 3.67e+08 9861565 28423015 9861565 9861565 | 0.5
if_icmplt 6.07e+07 16845589 46569929 0 0| 05
ifle 6.80e+07 50 | -68009290 0 0| 05
Table 1.9. SPEC bytecode usage for compress using the different compilers.
db
inst Y. spec A bcj A gen | A jdk13 A jikes | A %
ifle 2.25e+07 || -22506612 | -22526825 | -22507552 | -22507552 | 8.1
goto 1.39e+07 27516782 | 27525732 | 11735983 | 11889333 | 7.0
ifgt 1.99e+04 22506612 -19918 | 22507552 | 22507552 | 6.1
iconst_0 1.58e+4-06 19 | 45596126 19 19 | 41
ifge 2.30e+07 || -23048135 | -23048448 0 0] 41
if icmpge | 1.72e+06 12412825 12413138 0 0 2.2
if icmplt | 1.24e4+07 | -12412825 | 10635321 0 0] 21
iflt 1.10e+01 23048135 -11 0 0] 21
if icmpgt | 8.62e+02 0 | 22526530 0 0] 20
ifne 9.64e+06 -6733734 | -6734639 0 0| 1.2
ifeq 7.58e+04 6733734 6733734 0 0] 1.2
iload-3 1.24e+08 -1860473 | -1860473 | -1860473 | -1860473 | 0.7
iload 8.46e+07 1879355 1860476 1860476 1860476 | 0.7
Table 1.10. SPEC bytecode usage for db using the different compilers.
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jess
inst Y spec A bcj A gen | A jdk13 | A jikes | A %
if icmpge 3.69e+02 || 37676280 | 37676280 0 0| 4.8
if_icmplt 3.97e+07 || -37676280 | -37676280 0 0 4.8
goto 1.32e4+07 || 15985302 | 18575266 378754 | 9710283 | 2.9
iconst_0 3.86e+07 5668339 13878309 2601752 2601452 1.6
ifeq 2.28e+4-07 -4387217 | -12593144 | -4383693 -993983 1.4
if icmpeq 2.17e+07 838796 9044723 837199 | 4199008 | 1.0
ifnull 5.19e+4-06 -3066429 -5192017 | -3067583 | -3067583 0.9
aload_0 1.95e4-08 -3753013 -3755172 2603623 2601459 0.8
putfield 2.50e+07 -3755176 | -3755176 | 2601460 | 2601459 | 0.8
ifnonnull 2.39e+04 3066429 -22349 | 3067583 | 3067583 | 0.6
lookupswitch | 9.67e+04 3167506 3167506 3167506 -94 0.6
tableswitch 3.20e+06 -3167506 -3167506 | -3167506 94 0.6
if_icmpne 2.14e+4-07 2227791 2228124 -837199 | -4199008 0.6
iload 6.72e+07 1960135 1960255 1960037 1960036 0.5
ifne 2.73e+07 1320636 1320303 4383699 993983 0.5

Table 1.11. SPEC bytecode usage for jess using the different compilers.

mtrt
inst Y spec A bcj A gen | A jdk13 | A jikes | A %
goto 3.79e+06 || 4663508 6636867 40596 | 1425663 0.6
aconst_null | 4.89e+06 18 | 10657545 -4 -16 | 0.5
if_icmpge 8.62e+04 || 5328906 5328881 0 0| 05

Table 1.12. SPEC bytecode usage for mtrt using the different compilers.
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We used the -O (optimise) option wherever it was available. We also
compiled and ran the benchmarks using the Java compiler from JDK
1.2, but the results were identical those for the JDK 1.3 compiler. The
class library was not recompiled and those bytecodes have been excluded
from the dynamic comparisons in this section.

Table 1.8 shows the percentage differences in total SPEC dynamic
bytecode counts for each recompiled program using different compilers,
as compared to the compiled version distributed by SPEC. Perhaps the
most remarkable result is that SPEC’s version executes fewer bytecodes
than the code produced by any of the widely used Java compilers. In
particular, the code for cmprs is substantially better in all cases (4.2%
- 9.2%).

The bytecode programs distributed as part of the SPEC JVM98 suite
were originally compiled using the compiler from SUN’s JDK 1.1.4. Such
early Java compilers contained some very aggressive optimisations which
were later discovered to be unsafe, such as method inlining. In more
recent Java systems (since Java 1.2), the inlining abilities of javac have
been vastly reduced. Those originally compiling the SPEC benchmarks
also modified some of the source code to eliminate inefficiencies in the
outputted bytecode (at least in the case of cmprs). Given that the source
code was tuned for a particular compiler, it is not surprising that other
compilers produce slightly worse bytecode.

Ideally, the optimisations implemented by each compiler should be
described in the corresponding documentation; regrettably this is not the
case in reality. Also, since each of the applications produces significantly
large bytecode files, a static analysis of the differences between these files
is not practical. Further, a bytecode-level static analysis would not be
sufficient for determining those differences which resulted in a significant
variance in the dynamic profiles.

Instead, a detailed analysis of the dynamic bytecode execution fre-
quencies was carried out. The raw statistics are presented in Table 1.9,
Table 1.10, Table 1.11 and Table 1.12. Each row of these four tables
corresponds to a single bytecode instruction and shows:

m ) spec: the total number of times this instruction was executed
in the original spec suite

= A bcj, gen, jdk13, jikes: the increase/decrease in the count of
dynamic bytecodes executed between each compiler and the origi-
nal spec suite

m A %: The average of the absolute values of the four As for each
compiler, expressed as a percentage of the total number of byte-
codes executed for the application in the original spec suite
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The tables are sorted in descending order of A %, and only average
differences greater than 0.5% are shown.

It is notable that the different applications, in exercising different
areas of the instruction set, reflected compiler differences to varying
degrees. For example, there are significant differences in the bytecode for
cmprs, less so for db and jess, and almost no differences for mirt. Below
we summarise the main differences exhibited by the different compilers.

6.1 Method Inlining

Table 1.9 shows that the bytecode distributed by SPEC executes far
fewer invokevirtual instructions than the bytecodes produced by other
compilers. Correspondingly, each of the other compilers shows an in-
crease in ireturn and return instructions, as these methods return
control to the caller.

The reason for the reduction in calls is that SPEC used the JDK
1.1.4 compiler, which inlines virtual method calls very aggressively. This
was subsequently found to be unsafe — it can lead to bytecodes that
fail verification. More recent compilers have much reduced the inlining
ability. This raises the question of whether cmprs is representative of
real bytecodes, given that much of its efficiency depends on an unsafe
optimisation.

With less virtual methods being called, there is a corresponding drop
in aload_0 instructions, which corresponding to loading an object from
that method’s class. However, the spec programs do show one peculiar-
ity here, in that they redundantly store an object reference to a local
variable and immediately load it again. This results in a corresponding
increase in astore and aload instructions.

6.2 Use of goto

The figures show a difference in the use of comparison and goto in-
structions between the compilers. The jdk13 and jikes compilers use
significantly fewer goto instruction than the other compilers due to
a better loop structure, and the spec suite makes further improve-
ments on this. For example, a naive translation loop of the form:

while (ezpr) { stats}
would involve a test and jump after the exzpr, and an unconditional back-
wards jump after stats.

This is the approach taken by gen and bcj, whereas jdk13 and jikes
rearrange the code so there is just one jump on each loop iteration. The
approach taken by gen and bcj is simpler to implement, but results in
an unnecessary goto at the end of the loop. It is remarkable that these
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compilers do not implement what is really a very basic optmisation. In
addition to this, jdk13 optimises goto instructions whose target is also
a goto into one jump, which gives it a slight edge over jikes.

6.3 Comparisons

In addition to the differences in gotos resulting from loop structure,
there are also smaller differences resulting from the type of comparison
used. For the compilers other than gen, we can see a reversal in order
between “not equal” and “equal” comparisons, as well as “less-equal”
and “greater than” comparisons, witnessed by instructions ending in
-ne, -eq, -le and -gt respectively.

As well as generic comparison instructions for each type, Java byte-
code has a specialised ifeq instruction for comparison with zero. As
can be seen from Table 1.11, the frequencies for these instructions for
the gen compiler is lower than the other compilers, and a price is paid
in a correspondingly higher use of iconst 0, if_icmpeq and if_icmpne
instructions.

7. Conclusions

This chapter investigates platform independent dynamic Java Virtual
Machine analysis using the SPEC JVM98 benchmark suite as a test case.
It has been shown that useful information about a Java program can be
extracted at the intermediate representation level, which can be used to
understand its ultimate behaviour on a specific hardware platform.

For SPEC JVMO98 applications, a significant proportion of the meth-
ods called and bytecodes executed are in the class library. This is a
significant difference from the Java Grande applications and small micro-
benchmarks which spend little time in the class library. Pre-compiling
the class library to some native representation, or running the programs
with a different class library, may yield a significant speed up.

A constant theme of this chapter is that useful information can be
gained from a platform-independent study of bytecode level data. We
believe that this is borne out in particular in the analysis of methods
presented in Table 1.5, where the bytecode counts help to present a
different picture of where the JVM engine is spending its time.

This study raises questions about the balance of optimisation work be-
tween Java compilers and the JVM. SPEC compiled the SPEC JVM98
benchmarks with a compiler which includes some potentially unsafe op-
timisations. Since it is now more common to defer this work to run-time,
perhaps this should be taken into account in the SPEC JVM98 suite.
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Furthermore, some compilers do not implement even the simplest of
optimisations, such as producing code for while loops which do not end
in a goto. Most of the optimisations described in the previous section
are relatively trivial, and impact little on the overall bytecode usage
frequencies.

Clearly, run-time optimisation techniques will always be essential within
the JVM, because of the extra information about the run-time architec-
ture available to the JVM. However, it is not obvious that Java compilers
are putting much effort into generating efficient bytecode, and it is ar-
guable that the JVM may be bearing an unreasonable part of the burden
of performing these optimisations. Further work is required to determine
exactly which statically-applied optimisations, if any, can yield a signif-
icant performance improvement over a range of possible JVMs.
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