Submitted

An Interpretation of Purdom’s Algorithm for
Automatic Generation of Test Cases

Brian A. Malloy
Computer Science Department
Clemson University
Clemson, SC 29634
U.S.A.

malloy@cs.clemson.edu

Abstract— We present a structured reformulation of
the seminal algorithm for automatic generation of test
cases for a context-free grammar. Our reformulation
simplifies the algorithm in several ways. First, we
provide a structured reformulation so that it is obvi-
ous where to proceed at each step. Second, we par-
tition the intricate third phase into five functions, so
that the discussion and comprehension of this phase
can be modularized. Our implementation of the al-
gorithm provides information about the grammatic,
syntactic and semantic correctness of the generated
test cases for two important languages in use today:
C and C++.

The results of our study of C and C++ highlight
a lacuna latent in the research to date. In partic-
ular, if one or more of the automatically generated
test cases is syntactically or semantically incorrect,
then the confidence of structural “coverage” may be
compromised for the particular grammar-based tool
under test. Our ongoing work focuses on a solution
to this problem.

Keywords— Structural-based testing, implementa-
tion-based testing, black-box testing, white-box test-
ing, context-free grammar, parsing, re-engineering.

I. Introduction

With the burgeoning popularity of XML, and
other grammar-based tools such as C++, Java, OCL
and domain specific languages, the demand for ro-
bustness and correct functioning has intensified the
importance of testing. One form of testing applied to
tools and other software is specification-based test-
ing, where the testing criteria is coverage of the re-
quirements or specification of the software[5], [8],
[18], [24]. Specification-based testing attempts to
validate the functionality of the software without
consideration of the code itself. One drawback of
specification-based testing is that some parts of the
code are likely to remain unexercised, lowering confi-
dence in the robustness of the software. Thus, most

James F. Power
Department of Computer Science
National University of Ireland
Maynooth, Co. Kildare
Ireland

James.Power@may.ie

developers favor a testing strategy that exploits both
specification-based and implementation-based test-
ing of the code[7], [14], [27].

The seminal paper addressing the issue of auto-
matic generation of test cases to test grammars and
grammar-based tools is the work of Purdom for gen-
erating sentences from a context-free grammar[23].
The goal of Purdom’s algorithm is to use each pro-
duction in the grammar at least once and to rapidly
generate a minimal set of sentences that are short.
Several researchers have either based their test case
generation on Purdom’s work, or an extension of the
work including references [3], [6], [16] and [20]. Re-
cent research has addressed the problem of test case
generation for attribute grammars[12], [13].

However, the expression of the Purdom algorithm
makes comprehension difficult and explication of the
algorithm cannot be based on consideration of the
algorithm alone. For example, there are places in
the algorithm where it is difficult to determine what
is to be done after completion of a given step. To
illustrate, in step 11 of phase 3 of the algorithm it
is obvious that one should not continue to step 12
of the algorithm, yet no further direction is given for
an alternative next step. However, by consideration
of the sample grammar offered in explanation, it is
possible to disambiguate much of the algorithm.

Nevertheless, even using the statement of the al-
gorithm in tandem with the sample grammar, one
cannot unequivocally determine the meaning of the
algorithm. For example, in the sample grammar,
the algorithm reaches completion when the gram-
mar non-terminals move from a state described as
“unsure”, to a state described as “finished”. How-
ever, construction of a finite state machine describ-

1st ACIS Annual International Conference on Computer and Information Science (ICIS ’01)

Accepted for the International Conference on Computer and Information Science
Orlando, Florida, USA, October 3-5, 2001

9.

ing these states of the algorithm reveals that there
is no transition from the “unsure” state to the “fin-
ished” state. Thus, any use of the seminal Purdom
algorithm must include disambiguation and interpre-
tation of the algorithm.

In this paper, we present a structured reformula-
tion of the seminal algorithm for automatic gener-
ation of test cases for a context-free grammar[23].
We provide a detailed overview of the critical third
phase of the algorithm together with a trace of a
sample grammar that threads our paper. Our re-
formulation simplifies the algorithm in several ways.
First, we provide a structured reformulation so that
it is obvious where to proceed at each step. Sec-
ond, we partition the intricate third phase into five
functions, so that the discussion and comprehension
of this phase can be modularized. Our implementa-
tion of the algorithm provides information about the
grammatical, syntactic and semantic correctness of
the generated test cases for two important languages
in use today: C and C++.

The results of our case study with C and C++
highlight a lacuna latent in the research to date. In
particular, if one or more of the automatically gen-
erated test cases is syntactically or semantically in-
correct, then the confidence of structural “coverage”
may be compromised for the particular grammar-
based tool under test. Our ongoing work focuses on
a solution to this problem.

In the next section, we provide background about
grammars, parsers and testing, including a distinc-
tion between sentences and test cases. In Section
IIT we present our structured reformulation of Pur-
dom’s algorithm and in Section IV we present a case
study using our implementation of the algorithm. In
Section V we overview research about test case gen-
eration from grammars and in Section VI we describe
the problem of defining adequacy criteria for testing
a compiler front-end. In VII we draw conclusions.

I1. Background

In this section we define terminology associated
with context-free grammars and describe a mapping
from programs to grammars. We describe the sym-
metry of parsing and generating sentences and con-
clude the section with an overview of software test-
ing. A general description of languages, grammars
and parsing can be found in references [2] and [19].

Submitted

An overview of testing can be found in references [5]
and [18].

A. Terminology

Given a set of words (known as a lexicon), a lan-
guage is a set of valid sequences of these words. A
grammar defines a language; any language can be de-
fined by a number of different grammars. When de-
scribing formal languages such as programming lan-
guages, we typically use a grammar to describe the
syntax of that language; other aspects, such as the se-
mantics of the language typically cannot be described
by context-free grammars. Extended Backus-Naur
Form (EBNF) is a commonly-used notational en-
richment of context-free grammars which does not
enhance their descriptional power.

Formally a grammar is a four-tuple (N,T,S, P)
where N and T are disjoint sets of symbols known as
non-terminals and terminals respectively, S is a dis-
tinguished element of N known as the start symbol,
and P is a relation between elements of N and the
union and concatenation of symbols from (N UT),
known as the production rules. A grammar defines a
language by specifying valid sequences of derivation
steps which produce sequences of terminals to form
the sentences of the language.

The procedure of using a grammar to derive a sen-
tence in its language is as follows. We begin with the
start symbol S and apply the production rules, inter-
preted as left-right rewriting rules, in some sequence
until only non-terminals remain. This process de-
fines a tree whose root is the start symbol, whose
nodes are non-terminals and whose leaves are termi-
nals. The children of any node in the tree correspond
precisely to those symbols on the right-hand-side of
a production rule. This tree is known as a parse
tree; the process by which it is produced is known as
parsing.

Figure 1 illustrates “little”, a sample grammar that
we use as illustration of terminology and the phases
of Purdom’s algorithm. little consists of three pro-
duction rules, numbered (0), (1), and (2) on the left
side of the figure, non-terminal and start symbol S,
non-terminal £, and terminals 4+ and I D. The parse
tree, illustrated on the right side of Figure 1, contains
the start symbol as root and the leaves represent the
sentence ID + ID.

1st ACIS Annual International Conference on Computer and Information Science (ICIS ’01)

Accepted for the International Conference on Computer and Information Science
Orlando, Florida, USA, October 3-5, 2001

3.

(0 S>E
(HE->E+E
(2 E->ID

ofolo
OGO

Fig. 1. Sample grammar. This figure illustrates “little”, a
sample grammar that threads our paper. We use little to il-
lustrate the phases of Purdom’s algorithm.

B. Generating Test Cases

Generating test cases to provide coverage of a
grammar-based tool is a two-phase process. In the
first phase sentences are generated consisting of non-
terminals and in the second phase the non-terminals
are transformed to produce a string in the language.
The first phase is analogous to parsing and proceeds
as follows: begin with the start symbol S and ap-
ply the production rules until only non-terminals re-
main. Purdom’s algorithm addresses the problem of
sentence generation; the problem of transforming the
non-terminals in the sentence to produce a test case
has been addressed elsewhere[3], [6], [20].

A test case is a pair, (input, expected result), in
which input is a description of an input to the soft-
ware under test and expected result is a description
of the output that the software should exhibit for
the associated input[18]. In our paper, the input is
the grammar under test; the expected output is the
meaning of the test case. The correctness of a test
case is a measure of the accuracy of the model of the
software. The degree of accuracy is judged with re-
spect to a standard that is assumed to be infallible,
referred to as an “oracle”. The oracle is often a hu-
man expert whose domain knowledge is sufficient to
be used as a standard.

C. Testing

Software testing is the evaluation of the work
products created during a software development ef-
fort[18]. Some developers view the testing effort as
the most important effort of the development pro-
cess; there are those who are “test infected”, so that
they cannot begin to code until they have written
test cases[9]. The test cases determine when coding
is complete; when the developer cannot produce test

Submitted

cases that break the system, the system is completely
donel4]

Given the importance of the testing process, it
is surprising that there are so many approaches to
testing, with no testing technique recognized as cur-
rent best practice. There are advocates for each
approach, including those that favor specification-
based testing, those that favor implementation-based
testing and those that favor a hybrid approach. In
specification-based testing, the tester generates test
cases based on the software specification, without
considering the code itself[5], [8], [18], [24]. In
implementation-based testing, the tester generates
test cases based on the code; these approaches are
usually based on knowledge about the flow of con-
trol or the flow of data through the program[15],
[17], [26]. Some developers favor a hybrid approach
that combines the advantages of both specification-
based testing and implementation-based testing[7],
[14], [27]. However, no approach to testing has
gained overall acceptance in the software community.

III. Purdom’s Algorithm: reformulation &
interpretation

In this section we present our interpretation of
Purdom’s algorithm for generating short sentences
for a grammar, with each production in the gram-
mar used at least once. In our interpretation, we
have made every effort to remain faithful to the orig-
inal algorithm. In many cases, we use the same vari-
able names for the important data structures used in
the algorithm. Moreover, our reformulation, though
structured, parallels the steps as expressed in the
seminal paper[23].

Input to the algorithm is a context-free grammar
with a unique unused start symbol: the start symbol
does not appear on the right hand side of a produc-
tion rule. To generate sentences, the algorithm must
be able to choose the production that will produce
the shortest terminal string and it must use each pro-
duction at least once. To achieve these goals the al-
gorithm uses various data structures in three phases.
In the sections that follow, we discuss each of these
phases beginning with the data structures and then
proceeding with an intuition of how the particular
phase accomplishes its goal. We describe, in detail,
the algorithm for the particular phase under consid-
eration.

1st ACIS Annual International Conference on Computer and Information Science (ICIS ’01)

Accepted for the International Conference on Computer and Information Science
Orlando, Florida, USA, October 3-5, 2001

SLEN RLEN SHORT

+ 1 0 s|o

ID| 1 1 2
3 2| 2

Fig. 2. Phase one data structures. This figure illustrates the
final values in SLEN, RLEN and SHORT for little, the sample
grammar that threads our paper.

A. Phase One: Shortest Terminal String

The first phase of Purdom’s algorithm uses three
data structures, SLEN, RLEN and SHORT; SLEN
stores values for terminals and non-terminals, RLEN
stores values for each production and SHORT stores
values for each non-terminal. The deliverable of this
first phase, essential for the third phase is SHORT;
however, SLEN and RLEN, used in phase two, facil-
itate the computation of SHORT.

At the termination of the first phase, SLEN con-
tains the number of steps in the shortest derivation of
each symbol in the data structure; for each terminal
SLEN contains the “size” of the terminal and for each
non-terminal SLEN contains the number of steps in
the shortest derivation of a sentence starting with
that non-terminal. At termination, RLEN stores the
length of the shortest string that can be derived for
each production and SHORT stores, for each non-
terminal, the corresponding production number to
use to derive the shortest string starting with the
respective non-terminal.

Figure 2 illustrates the values in these data struc-
tures at the end of phase one for the sample grammar
little, presented in Section IT (see Figure 1). On the
left, Figure 2 illustrates the final values for SLEN,
where each terminal is size 1, and the non-terminals
S and E are size 3 and 2, representing the shortest
derivations of S and E. The shortest derivation of
S can be viewed as a parse tree with S as the root,
E as interior node and ID as a child of E; clearly
such a tree is size 3. The middle of Figure 2 illus-
trates RLEN, the number of steps in a derivation
starting with the symbol on the left side of the pro-
duction. For example, RLEN][1] is 6, which is the
number of steps required to derive a parse tree start-
ing with non-terminal E and using the right side of
production 1; this is seen more easily by counting

Submitted
algorithm Shortest terminal string
variable SLEN : terminals & non-terminals
output RLEN : productions
output SHORT: non-terminals

(1) wvoid init() {

(2) for (each terminal ¢) { SLEN[¢] = 1; }
(3) for (each non-terminal n) {

(4) SLEN|[n] = max_int;

(5) SHORT[n] = —1;

(6)

(7 for (each production p) {

(8) RLEN|[p] = max_int;

(9)

(10)

(11) void PhaseOne() {

(12) bool change = true;

(13) while (change) {

(14) change = false; {

(15) for (each production p) {

(16) int sum = 1; bool too_big = false;
(17) for (each element e of RHS[p]) {
(18) if (SLEN[e] == max_int) {
(19) too_big = true; break;
(20) }

(21) else sum += SLEN]e];

(22) }

(23) if (!too_big && sum < RLEN(p])
(24) RLEN|[p] = sum;

(25) if (sum < SLEN[LHS[p]])
(26) SHORT[LHS[p]] = p;

(27) SLEN[LHS[p]] = sumy;

(28) change = true;

(29)

(30) }

(31) } // for

(32) } // while

(33) } // PhaseTwo

Fig. 3. Phase one of Purdom’s algorithm.

the number of nodes in the parse tree of Figure 1
rooted at F, which represents the sentence derived
starting with the left side of production 1. The right
of Figure 2 illustrates SHORT, the data structure
containing the number of the production to use to
derive the shortest sentence starting with this non-
terminal. For example, the shortest string that can
be derived with non-terminal E must begin with the
left side of production 2.

As an intuition for computing the value of SHORT,
needed in the third phase of the algorithm, consider
that given SLEN and RLEN, SHORT can be deduced
in isolation; that is, the grammar is not needed to de-
duce SHORT. The algorithm for finding the elements
of SHORT proceeds as follows: find a non-terminal

1st ACIS Annual International Conference on Computer and Information Science (ICIS ’01)

Accepted for the International Conference on Computer and Information Science
Orlando, Florida, USA, October 3-5, 2001

5.

DLEN PREV
S| 3 S | Null
E| 3 E| O

Fig. 4. Phase two data structures. This figure illustrates the
final values in DLEN and PREV for little, the sample grammar
that threads our paper.

in SLEN, find the production in RLEN whose left
hand side matches the non-terminal in SLEN, and
then place an entry in SHORT for that non-terminal
and that production number.

Figure 3 contains a structured reformulation of
this first phase of Purdom’s algorithm. In the fig-
ure, the lines of code numbered 1 through 10 illus-
trate the initialization phase of the algorithm, and
the lines numbered 11 through 33 illustrate the com-
putation of the values for SLEN, RLEN and SHORT.
The initial values of SLEN are 1 for terminals, line
2, and max_int for non-terminals, line 4. Initial val-
ues for SHORT are —1, line 5, and initial values for
RLEN are max_int, line 8.

The algorithm to compute the values in Figure
2 is illustrated in Figure 3 as function PhaseOne(),
lines 11 to 33. The algorithm is iterative: the while
loop permits iteration over the productions using the
outer for loop, lines 15 to 31, until there are no more
changes to SLEN (line 25). The variable sum is ini-
tialized to 1 at the start of the inner for loop. sum
accumulates the value in SLEN for each element on
the right hand side of the current production; if any
value of SLEN is max_int, then this production is
skipped. If the production is not skipped, then the
value of sum is compared with the value of RLEN for
this production; if sum is less than the current value
of RLEN for this production, line 23, then the value
of RLEN is updated at line 24. If sum is also less
than the current value of SLEN for the non-terminal
on the left hand side of this production, line 25, then
the value of SHORT for the left hand side of this
production is updated at line 26; that is, the current
production will lead to a shorter derivation than the
one currently stored in SHORT. The value of SLEN
is updated similarly on line 27, and change is up-
dated, line 28, to reflect that the while loop should
iterate over the productions again (until there are no
more changes).

The important fact about phase one of the algo-

Submitted

rithm is that SHORT must contain, for each non-
terminal, the production number that will lead to
the shortest derivation for this production.

algorithm Shortest derivation
input SLEN : terminals & non-terminals
input RLEN : productions
variable DLEN : non-terminals
output PREV : non-terminals
(1) wvoid init() {
(2) for (each non-terminal n) {
(3) DLEN([n] = max_int;
(4) PREV[n] = —1;
(5) }
(6) 1
(7) void PhaseTwo() {
(8) bool change = true;
(9) while (change) {
(10) change = false; {
(11) for (each production p) {
(12) if (RLEN[p] == max_int) continue;
(13) if (DLEN[LHS[p]] == max_int) continue;
(14) if (SLEN[LHS[p]] == max_int) continue;
(15) sum = DLEN[LHS[p]] + RLEN|p]
(16) - SLEN[LHS[p]];
(17) for (each non-terminal n on RHS[p]) {
(18) if (sum < DLEN(n]) {
(19) change = true;
(20) DLEN(n] = sum;
(21) PREV([n] = p;
(22) }
(23) } /] for
(24) } /] for
(25) } // while
(26) } // PhaseTwo

Fig. 5. Phase two of Purdom’s algorithm.

B. Phase Two: Shortest Deriwation Algorithm

The second phase of Purdom’s algorithm uses
SLEN and RLEN, computed in phase one, together
with a local data structure, DLEN, to produce
PREV; PREYV is the deliverable of this second phase
and is essential to the third phase of the algorithm.
There are entries in DLEN and PREV for each non-
terminal. At termination of this second phase, for
each symbol s, DLEN will contain the length of the
shortest derivation that uses s. PREV will contain
the number of the production to use to introduce
s into the shortest derivation; thus, since the start
symbol is not introduced by any symbol, it’s value is
Null.

Figure 4 illustrates the values in DLEN and PREV
at termination of the second phase of the algorithm.

1st ACIS Annual International Conference on Computer and Information Science (ICIS ’01)

Accepted for the International Conference on Computer and Information Science
Orlando, Florida, USA, October 3-5, 2001

ONCE
1 3
S| R|OR|R|U
E 1 F|F
MARK

S| 0|10 O

E|jO|1]|2|1|0]|O0

Fig. 6. Phase three data structures. This figure illustrates
the values in ONCE, MARK and ONST for little, the sample
grammar that threads our paper. The first column of boxes
lists the non-terminal, production numbers and non-terminals
respectively for the structures; subsequent columns list values
at the beginning of phase three, and then at the end of the
do_sentence loop in Figure 8 for iterations 1 through 5 of the
loop.

The values for DLEN, on the left of the figure, are
3 for the non-terminals: the length of the shortest
derivation of S and F is 3. The values for PREV, on
the right of the figure, are Null for the start symbol,
and 0 for E. Thus, to introduce F into a shortest
derivation, production 0 should be used; note that
the left hand side of production 0 is the start symbol.

Figure 5 contains a structured reformulation of
this second phase of the algorithm. In the figure,
the lines of code numbered 1 through 6 illustrate the
initialization phase of the algorithm, and the lines
numbered 7 through 26 illustrate the computation
of the values for DLEN and PREV. The initial val-
ues for DLEN are max_int, and for PREV are —1, as
shown on lines 3 and 4.

The algorithm to compute DLEN and PREV is il-
lustrated in Figure 5 as function PhaseTwo(), lines 7
to 26. As with phase one, the algorithm is iterative:
the while loop permits iteration over the produc-
tions using the outer for loop, lines 11 to 24, until
there are no more changes to DLEN (line 18).

C. Phase Three: Sentence Generation Algorithm

The final phase of Purdom’s algorithm is the most
involved of the three phases. We have made an

Submitted

algorithm Sentence Generation Algorithm
input PREV : non-terminals
input SHORT: non-terminals
variable MARK : productions
variable ONST : non-terminals
variable ONCE : non-terminals
(1) wvoid init() {
(2) for (each non-terminal n) {
(3) ONCE[n] = Ready; ONST[n] =0
(5)
(6) for (each production p) MARK|p] = false;
(9)
(10) int short(int nt) {
(11) int prod_-no = SHORT[nt];
(12) MARK|[prod_no] = true;
(13) if (ONCE[nt] ! = Finished) ONCE[nt] = Ready;
(14) return prod_no;
(15)
(16) void load ONCEQ) {
(17) for (each production p) {
(18) if (MARK|[p] == false) {
(19) ONCEI[LHS[p]] = p; MARK]|p|] = true;
(21)
(22}
(23) 1}
(24) void process_STACK(int & nt, int prod.no,
(24) void bool & do_sentence) {
(25) ONST[nt]——;
(26) for (each element e of RHS[prod.no]) {
(27) STACK.push(e);
(28) if (e is non-terminal) ONST[e]++;
(29)
(29) bool done = false;
(30) while (!done) {
(31) if (STACK.empty()) {
(32) do_sentence = false; break;
(33) }
(34) else {
(35) nt = STACK.top(); STACK.pop();
(37) if (is_terminal(nt)) print(nt);
(38) else done = true;
(39) }
(10) 1}
(a1)
Fig. 7. Auziliary functions, init, short, load_.ONCE, and

process_.STACK for phase three of Purdom’s algorithm.

attempt to simplify the algorithm in several ways.
First, we provide a structured reformulation so that
it is obvious how to proceed at each step. Second,
we partition the algorithm into five functions, illus-
trated in Figures 7 and 8, so that the discussion and
comprehension can be modularized. We begin this
section by presenting the important data structures,
and then we provide detailed discussion of the algo-
rithm.

1st ACIS Annual International Conference on Computer and Information Science (ICIS ’01)

Accepted for the International Conference on Computer and Information Science
Orlando, Florida, USA, October 3-5, 2001

C.1 The Data Structures

The data structures for this third phase are illus-
trated in Figure 6: ONCE, containing an entry for
each non-terminal, at the top of the figure; MARK,
containing an entry for each production, in the mid-
dle of the figure; and, ONST, containing an entry for
each non-terminal at the bottom of the figure. The
values in ONCE can range over the integers and our
productions are numbered starting at 0. However,
Once may also contain values of Null, Ready, Unsure
and Finished; we assign integer values to these con-
stants: Null is —1, Ready is —2, and so forth. Thus,
the values in ONCE will range from —4 to n — 1 for
n productions in the grammar.

The values in the first column of each structure in
Figure 6 represent an index into the structure; subse-
quent columns are the values stored in the structure.
The numbers above the structure indicate the itera-
tion through the algorithm. For example, for ONCE,
the values for the 0" iteration are R for both S and
FE; this indicates that the initial values for S and FE
are R. The values for the 1%¢ iteration of ONCE are
0/R and 1 for S and E respectively; this indicates
that at the end of the first iteration of the algorithm,
ONCE[S] was 0 and then R, ONCE[E] was 1. Sim-
ilarly, at the end of the 2"? iteration, ONCE[S] and
ONCEIE] were both R.

C.2 The Auxiliary Functions

Figure 7 illustrates the four auxiliary functions
that facilitate computation in the third phase of the
algorithm. The functions are init, short, load_ONCE,
and process_STACK, Function init initializes the data
structures, the values in ONCE to Ready, the values
in ONST to 0 and the values in MARK to false; this
initialization is accomplished on lines 1 through 9 of
Figure 7. Note that these initial values correspond
to the values in the 0?" columns for each structure in
Figure 6.

Function short returns the production number that
will lead to the shortest derivation for the input pa-
rameter nt, a non-terminal, line 14 of Figure 7. Be-
fore returning, short also assigns the value true to
this production number, line 12. Finally, short ex-
amines the nt'” location of ONCE and, if it’s not
marked Finished, short marks it Ready, that is, even
though the algorithm was not able to assign a pro-
duction number in the usual way, this production

Submitted
(1) void PhaseThree() {
(2) bool done = false; int prod_no = Null;
(3) while (!done) {
(4) if (ONCE[Start] == Finished) break;
(5) ONST[Start] = 1; nt = Start; do_sentence = true;
(6) while (do_sentence) {
(7) once_nt = ONCE|nt];
(8) if (nt == Start && once_nt == Finished) {
(10) done = true; break;
(11)
(12) elsif (once_nt == Finished) prod_no = short(nt);
(13) elsif (oncent >= 0) {
(14) prod_no = once_nt; ONCE[nt] = Ready;
(15)
(16) else
(17) load_ ONCE();
(18) for (each non-terminal I) {
(19) if (I!= Start && ONCE[I] >=0) {
(20) J=1 K =PREV[J];
(21) while (K >=0) {
(22) J = LHSK];
(23) if (ONCE[J] >= 0) break;
(24) else {
(25) if (ONST[I] ==0) {
(26) ONCE[J] = K; MARKIK] = true;
(27) }
(28) else ONCE[J] = Unsure;
(29)
(30) K = PREV[J];
(31) } //while
(32) } /) it
(33) } 7/ for
(34) for (each non-terminal n) {
(35) if (ONCE[n] == Ready) ONCE[n]=Finished;
(36)
(37) if (nt==Start && ONCE|nt]< 0
(38) && ONST[Start] == 0) break;
(39) elsif (ONCE[nt] < 0) prod-no = short(nt);
(40) elsif (ONCE[nt] >=0) {
(41) prod_no = ONCE|[nt]; ONCE|nt] = Ready;
(42) }
(43) } // else
(44) process_STACK;
(45) } // while (do_sentence)
(46) } // while (!done)
(47) } // PhaseThree()

Fig. 8. Phase three of Purdom’s algorithm.

may still be useful in a derivation. This last step
is illustrated on line 13 of Figure 7. Line 13 was
not included in the original statement of Purdom’s
algorithm; it is part of our interpretation.

The last function in Figure 7 is process STACK,
which manages the parse stack used in phase 3. The
function begins by decrementing ONST for the cur-
rent non-terminal, line 25. We note that this decre-
mentation may be out-of-phase with the insertion of
the non-terminal onto the stack; that is, the non-

1st ACIS Annual International Conference on Computer and Information Science (ICIS ’01)

Accepted for the International Conference on Computer and Information Science
Orlando, Florida, USA, October 3-5, 2001

- 8-

terminal was likely pushed onto the stack on line 27
in a previous iteration of the phase 3 algorithm, and
then was possibly popped at line 31. The while loop,
lines 30 to 40, is our interpretation of correct man-
agement of the parse stack, including the processing
of all terminals and non-terminals and checking for
completion of the sentence, line 32, and possibly the
algorithm, line 38.

C.3 Sentence Generation

Sentence generation is choreographed by function
PhaseThree, illustrated in Figure 8. The outer while
loop, extending for most of the function from lines
3 to 46, repeatedly iterates through the data struc-
tures until all productions are used and all sentences
generated. The inner while loop from line 6 to line
45 generates a single sentence.

The inner while loop in function PhaseThree has
three important parts. In part one, lines 8 to 15,
the algorithm attempts to determine if it is finished
generating sentences. In part two, lines 17 to 43,
production numbers are installed into ONCE to cre-
ate a path from the start symbol. This path will
consist of a production number associated with each
non-terminal; either this is a production that has not
been used, i.e. MARK was false, or the production
that will lead to the shortest derivation for this non-
terminal. This assignment to ONCE is accomplished
either at line 17 through the function load_ONCE, or
line 26, or line 39 where ONCE is assigned the num-
ber leading to the shortest derivation.

IV. Case Study

In this section, we present a case study to demon-
state our interpretation of Purdom’s algorithm. We
developed a test suite of five grammars, including
little, grammars from references [12] and [23], the
ANSI C grammar, and the GNU C++ grammar. Af-
ter presenting the test suite, we present the results of
using these grammars as input to our interpretation
of the algorithm. Finally, we discuss “coverage”, as
it relates to the grammatic, syntactic and semantic
correctness of the generated sentences.

For our implementation, we used the GNU C++
compiler, gce version 2.95.2, running on a 500 MHz
Pentium IT Dell Optiplex, using RedHat Linux ver-
sion 6.1. For the data structures discussed in Sec-
tion III, we used standard library maps, with ter-

Submitted

minals and non-terminals represented as strings[1].
Sentence generation was efficient: for the GNU C++
grammar, 5.77 seconds were required to generate and
print the 81 sentences.

A. The Test Suite

The test suite that we used in our study is illus-
trated in Figure 9, where the first column lists the
name of the test case, the second column lists the
number of terminals in the grammar, the third col-
umn lists the number of non-terminals, the fourth
column lists the number of production rules and the
last column lists the average size of the right hand
side of the rules of the grammar. This average size
includes both terminals and non-terminals.

The first row of the table lists statistics for little
and the second row lists statistics for Purdom, the
grammar used by Purdom in his original presentation
of the algorithm[23]. The third row lists statistics for
Harm, the grammar used in reference[12], the fourth
row lists statistics for the ANSI C grammar and the
last row lists statistics for the GNU C++ grammar.

For the test suite, the smallest grammar is little,
with only 2 terminals, 2 non-terminals and 3 rules.
The largest grammar is clearly GNU C++, with 110
terminals, 232 non-terminals and 824 rules. The first
three test cases, little, Purdom and Harm are aca-
demic grammars; the last two test cases, ANSI C and
GNU C++, specify languages currently in use in both
industry and academia.

B. The Generated Sentences

The results of our study are summarized in Figure
10, where the test cases are listed in the first column
and the results are listed in the last four columns.
We include the second column, listing the number of
rules for each grammar, for comparison of grammar
size with the number of generated sentences. The in-
teresting columns in Figure 10 are the third column
listing the average size of each generated sentence,
the fourth column listing the number of sentences
generated, the fifth column listing the number of
syntactically correct sentences and the sixth column
listing the number of semantically correct sentences.

The average sentence size for ANSI C is larger than
for GNU C++, with 33.3 and 21.0 listed in the last
two rows of column three. This anomaly is due to
the fact that the C grammar is defined by the ANSI

1st ACIS Annual International Conference on Computer and Information Science (ICIS ’01)

Accepted for the International Conference on Computer and Information Science
Orlando, Florida, USA, October 3-5, 2001

_9.-
Test Structure of the test case
Case Terminals | Non-terminals | No. of rules | Avg size of RHS
Little 2 2 3 1.66
Purdom 5 4 7 1.85
Harm 9 6 11 2.18
ANSI C 83 64 213 2.27
GNU C++ 110 232 824 2.33

Submitted

Fig. 9. Test Suite. This table lists the grammars that we used as test cases for the implementation of our interpretation of
Purdom’s Algorithm. The column on the left of the table lists the grammar, and the four columns on the right list statistics

about the structure of each grammar.

Sentences generated by the algorithm

Test No. of No. of Avg size of | No. syntactically | No. semantically

Case rules sentences sentence correct correct
Little 2 1 3.0 N/A N/A
Purdom 7 2 7.0 N/A N/A

Harm 11 3 8.6 N/A N/A
ANSI C 213 11 33.6 2 2

GNU C++ 824 81 21.0 7 5

Fig. 10. Results of the case study. This figure illustrates the results of our study using five grammars, including C and
C++4. The column on the left lists the test cases and the three columns on the right list the results of the study. We include
the second column describing the number of rules in each test case grammar as a means of comparing the results of each test.

standard committee and likely written to be more
readable than implementable. The GNU grammar is
written to be acceptable to the Bison compiler gen-
erator and has more rules than the ISO C++ gram-
mar[21], which is likely to lead to smaller size sen-
tences.

All of our generated sentences were lexically and
grammatically correct. Lexical correctness means
that the generated symbols are terminals in the
grammar; grammatical correctness means that the
sentences can be derived by repeated application of
the rules of the grammar. However, distinguishing
between syntax and semantics is not always easy,
even in the area of formal methods: “the dividing
line between the two areas is not fixed”[25, page 2].
In compiler technology, this line is blurred further
because, for a given language, syntax and semantic
correctness is determined at different stages depend-
ing on the particular compiler implementation.

To evaluate our test cases, we used the GNU gcc
C and C++ compilers, version 2.95.2, as an oracle!
to judge the syntactic and semantic correctness for
the last two test cases in Figure 10: ANSI C and GNU
C++. We did not have an oracle for the little, Purdom

1Please see Section II-B for a discussion of oracles.

and Harm test cases. In particular, a sentence is
syntactically correct if gce considers it correct, using
only the grammar. A sentence is semantically correct
if gce considers it correct, using information gathered
from the grammar and additional structures, such as
a symbol table[22]. We provide examples below.

For the little, Purdom and Harm test cases, 1, 2
and 3 sentences were generated respectively. The
statistics for syntactic and semantic correctness for
these test cases are shown as N/A, not applicable, in
columns four and five of Figure 10. For ANSI C, 11
sentences were generated with 2 sentences were both
syntactically and semantically correct. For example,
gcc considered the sentence “char ;” to be correct,
although it did provide a semantic warning that the
sentence contained a “useless” keyword. We list this
test case as both syntactically and semantically cor-
rect.

For GNU C++, 81 sentences were generated with
7 sentences syntactically correct and 5 sentences se-
mantically correct, as illustrated in the last row of
Figure 10. The sentences were manually translated
into test cases and an effort to generate meaningful
test cases was extended for all of the sentences. For
example, one generated sentence:

1st ACIS Annual International Conference on Computer and Information Science (ICIS ’01)

Accepted for the International Conference on Computer and Information Science
Orlando, Florida, USA, October 3-5, 2001

- 10 -

“ASM_KEYWORD °(’ STRING)’ ’;’,
was translated into a test case as:

asm (“.align 47);
gce considered this test case to be syntactically and
semantically correct. A second interesting example
is the generated sentence:

“USING NAMESPACE IDENTIFIER SEMI”,
which we translated into a test case as

using namespace X;
This test case was considered syntactically correct
but semantically incorrect since “namespace X is un-
declared”.

V. Related Work

In this section, we overview research about au-
tomatically generating sentences to test grammar-
based tools. We begin by describing works that ex-
tended Purdom’s algorithm and conclude the section
with a recent application of sentence generation to
attribute grammars. Our overview of the research
proceeds in chronological order so that each work re-
viewed appeared in the literature before the next.

Much of the literature describes the generation of
both context-free and context-sensitive test cases. A
context-free test case is a transformed sentence that is
syntactically correct. A context-sensitive test case re-
quires inclusion of context-sensitive information into
the generative process, such as generating a declara-
tion to match a use of a variable, to facilitate pro-
duction of semantically correct test cases.

A. Minimal & Maximal Strategy

Reference [6] extends Purdom’s algorithm to in-
clude versions that modify SHORT to return either
the non-terminal that will lead to the shortest deriva-
tion or the non-terminal that will lead to the longest
derivation. Thus, they provide both a minimal and a
mazimal strategy for generating sentences. A second
extension permits the user to specify that an itera-
tive construct of the grammar may be multiply used,
forcing deeply nested structures that might saturate
the compiler stacks or tables and test for overflow.

The approach addresses the issue of sentence cor-
rectness, permitting the user to extend the grammar
by inserting or deleting terminals or non-terminals
or to augment sentence generation by including
“context-sensitive information” [6]. The user-defined
actions might supply a declaration to correspond to

Submitted

the usage of a variable, or to initialize a variable
used in computation. The actions can be incorpo-
rated into any of the multi-pass phases of genera-
tion, permitting a combinatorial product of the sen-
tences that might be generated in isolation. They
describe levels of correctness, including lexical, syn-
tactic, compile-time, rTun-time, and logical correct-
ness. Finally, the need for systematically generating
incorrect sentences is described.

Our ongoing work includes the modification of
MARK to store integers rather than boolean values
to control the generation of nested structures. We
are also developing criteria to describe the adequacy
of testing grammar-based tools. We note that Pur-
dom did not consider the issue of sentence correct-
ness, adequacy criteria or the generation of sentences
using combinations of grammar rules[23].

B. Parametric Grammars

Reference [3] extends Purdom’s algorithm in an ef-
fort to provide (1) a large or “inexhaustible” supply
of compilable programs, and (2) a controlled method
for generating incorrect programs. The technique
exploits a parametric grammar to describe both syn-
tactic and semantic aspects of the programming lan-
guage. The parametric grammar is the input to a
generator that, together with user-supplied informa-
tion, drives test case generation. Finally, test cases
are “decoded” and printed[3, p. 345].

Parametric grammars are augmented context-free
grammars that accept parameters to facilitate gen-
eration of context-sensitive languages rather than
recognition. The parameters describe language
constructs such as identifiers or type information
that can be used to incorporate context sensitive in-
formation into the process. The generative algorithm
is essentially Purdom where function process STACK,
Figure 7 on page 6, is augmented to permit process-
ing of the parameters to the grammar. The technique
was used to generate sentences to test four Pascal
compilers, including generation of both correct and
incorrect programs.

C. Pseudo-random Generation

Reference [20] generates both context-free and
context-sensitive sentences, as well as invalid sen-
tences for PT, a subset of Pascal. The generating
algorithm is constructed systematically from a set

1st ACIS Annual International Conference on Computer and Information Science (ICIS ’01)

Accepted for the International Conference on Computer and Information Science
Orlando, Florida, USA, October 3-5, 2001

- 11 -

of production rules that map the syntax into a se-
quence of statements. This statement sequence is
similar to a recursive descent parser except the goal
is not to recognize a sentence, but rather to generate
one. The “recursive descent” generation algorithm
use a pseudo-random number to choose the type of
statement, variable or declaration to construct.

The sentence generator has a context-sensitive
mode that facilitates generation of correct sentences.
When the declarative part of a program block is gen-
erated, the information is maintained in a symbol ta-
ble, creating a contextual environment within which
statements are generated. Declarations are removed
from “scope” upon exiting the scope. Thus, the ap-
proach is limited to PT programs.

D. Attribute Grammars

The work in references [12] and [13] address the
problem of test case generation for context-free and
attribute grammars, with particular tuning for at-
tribute grammars. They introduce the notion of ap-
proximation coverage applicable in two dimensions:
syntax and semantics. An equational system to de-
scribe the two aspects of coverage is developed. In
the case of an attribute grammar for example, the
syntactic dimension corresponds to coverage of the
underlying context-free grammar and coverage of the
semantic dimension corresponds to coverage of the
attributes, conditions and computations specified by
the attributes.

Approximation coverage includes a “layered” def-
inition of coverage for non-terminals. For example,
consider production n— > w, for n a non-terminal
and w one of the alternatives of n. This alternative
is said to be covered by a test suite if all grammar
symbols in w are covered; this notion of coverage is
in contrast to the notion in Purdom that simply en-
forces the rule n— > w to be used once by some sen-
tence in the test suite. The work includes recursive
unfoldings of the grammar in its sentence generation
to produce nested structures. Since in general, full
coverage is not feasible, opportunities to relax the
coverage are discussed. The notion of non-feasibility
of grammar coverage due to certain semantic con-
straints is comparable to the infeasibility path prob-
lem in software testing[28].

The authors present a sentence generation algo-
rithm using decorated derivation trees. Only cor-

Submitted

rect derivation trees are generated starting from an
elementary tree that is then completed. The gen-
erated test cases are small and redundancy is re-
duced. Termination of the algorithm cannot, in gen-
eral, be guaranteed. However, generating test cases
from derivation trees is an interesting alternative to
the recursive descent approach of reference [20] or
the vectored (or mapped) approach of Purdom[23].
The authors are extending their work to apply ap-
proximation coverage to a Pascal-like language[13].

VI. Adequacy Criteria

Specification of the criteria to determine what con-
stitutes an “adequate test” is one of the most impor-
tant aspects of software testing[10]. One criterion for
adequacy is statement coverage, which requires that
every statement in the program is executed at least
once. Stronger criteria have been developed such as
branch, path and data flow coverage[28]. However, a
definition of adequacy in terms of compiler testing
has not been developed.

Purdom’s algorithm generates sentences so that
each rule in the grammar is executed at least once;
this rule coverage is similar to statement coverage
for software testing. The approximation coverage of
reference [13] is stronger than rule coverage since ap-
proximation coverage requires that, for rule n— > w,
all grammar symbols in w are covered. Further re-
search to develop a hierarchy of coverages would fa-
cilitate proper choice by compiler developers.

However, a more important issue is the effect of
grammar-based test case generation on the testing
of the underlying code for the front-end. For ex-
ample, how do the test cases generated from the
grammar specification effect testing of the code to
insert identifiers into a symbol table. To provide ad-
equate coverage of a compiler front-end, test cases
generated from a grammar specification must be aug-
mented with test cases for the underlying code. The
grammar-based test cases may be essential for test-
ing the semantic actions inserted into the front-end
specification. If the grammar-based test cases are
incorrect, it is possible that some of the underlying
code may never be reached, since the triggering of
grammar rules is a gateway to the underlying code.
Our ongoing work attempts to address these issues.

1st ACIS Annual International Conference on Computer and Information Science (ICIS ’01)

Accepted for the International Conference on Computer and Information Science
Orlando, Florida, USA, October 3-5, 2001

- 12 -

VII. Conclusions and Future Work

We have presented a structured reformulation of
the seminal algorithm for generating test cases using
a context-free grammar. Our reformulation simpli-
fies the algorithm in several ways. First, our struc-
tured reformulation makes it obvious how to proceed
at each step. Second, our partitioning of the intricate
third phase modularizes the discussion and compre-
hension of the algorithm. We distinguish between
lexical, grammatic, syntactic and semantic correct-
ness of the sentences generated by the algorithm.
Our study includes information about the correct-
ness of the generated test cases for two important
languages in use today: C and C++.

Our ongoing work includes an investigation of
techniques to generate sentences using combinations
of grammar rules as well as the iterative use of recur-
sive rules. We are extending our generation to the
ISO C++ and Java grammars[1], [11]. However, the
most important focus of our work addresses the ad-
equacy of grammar-based testing, particularly as it
relates to testing the underlying code of the compiler
front-end.

VIII. Acknowledgement

The authors extend their appreciation to Steve
Stevenson and Murali Sitaraman, together with the
members of the Clemson formal methods seminar,
who offered input and suggestions about syntactic
and semantic correctness.

REFERENCES

[1] ISO/IEC JTC 1. International Standard: Program-
mang Languages - C++. Number 14882:1998(E) in ASC
X3. American National Standards Institute, first edition,
September 1998.

[2] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Prin-
ciples, Techniques and Tools. Addison-Wesley, 1986.

[3] F. Bazzichi and I. Spadafora. An automatic generator for
compiler testing. IEEE Transactions on Software Engi-
neering, SE-8(4):343-353, July 1982.

[4] K. Beck. Eztreme Programming Ezxplained. Addison-
Wesley, 2000.

[5] R. V. Binder. Testing Object-Oriented Systems: Models,
Patterns, and Tools. Addison-Wesley, 2000.

[6] A. Celentano, S. Reghizzi, P. Della Vigna, and C. Ghezzi.
Compiler testing using a sentence generator. Software —
Practice and Ezxperience, 10:897-913, 1980.

[7] H.Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen. In
black and white: An integrated approach to class-level
testing of object-oriented programs. ACM Transactions
on Software Engineering and Methodology, 7(3):250-295,
July 1998.

(8]

(9]

(10]
(11]

(12]

(13]

14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

[22]

(23]

[24]
[25]

[26]

27]

(28]

Submitted

R. Doong and P. G. Frankl. The ASTOOT approach
to testing object-oriented programs. ACM Transactions
on Software Engineering and Methodology, 3(2):101-130,
April 1994.

E. Gamma and K. Beck. Test infected: Programmers love
writing tests. Using JUnit to automatically generate test
cases, http://members.pingnet.ch/gamma/junit.htm
2001.

J. B. Goodenough and S. L. Gerhart. Toward a theory
of test data selection. IFEEE Transactions on Software
Engineering, 3, June 1975.

James Gosling, Bill Joy, and Guy Steele. The Java Lan-
guage Specification. Addison-Wesley, 1996.

J. Harm and R. Ladmmel. Testing attribute grammars.
Proceedings of the Third Workshop on Attribute Gram-
mars and their Applications (WAGA’2000), pages 79-98,
July 2000.

J. Harm and R. Lammel. Two-dimensional approxima-
tion coverage. page TBA, TBA 2001.

M. J. Harrold, J. D. McGregor, and K. J. Fitzpatrick. In-
cremental testing of object-oriented class structures. Pro-
ceedings of the 14th International Conference on Soft-
ware Engineering, 1992.

M. J. Harrold and G. Rothermel. Peforming data flow
testing on classes. SIGSOFT, 1994.

W. Homer and R. Schooler. Independent testing of com-
piler phases using a test case generator. Software — Prac-
tice and Ezperience, 19(1):53-62, January 1989.

D. Kung, Y. Lu, N. Venugopalan, P. Hsia, Y. Toyoshima,
C. Chen, and J. Gao. Object state testing and fault
analysis for reliable software systems. IEEE 7th Int’l
Symp. Software Reliability Eng., 1996.

J. D. McGregor and D. A. Sykes. A Practical Guide
To Testing Object-Oriented Software. Addison-Wesley,
2001.

S. S. Muchnick. Advanced Compiler Design & Implemen-
tation. Morgan-Kaufman, 1997.

V. Murali and R. K. Shyamasundar. A sentence gener-
ator for a compiler for PT, a pascal subset. Software —
Practice and Ezxperience, 13:857-869, 1983.

J. F. Power and B. A. Malloy. Metric-based analysis of
context-free grammars. In Proceedings of the 8th Interna-
tional Workshop on Program Comprehension, Limerick,
Ireland, June 2000.

J. F. Power and B. A. Malloy. Symbol table construction
and name lookup in ISO C++. In Technology of Object-
Oriented Languages and Systems, TOOLS 2000, pages
57-68, Sydney, Australia, November 2001.

P. Purdom. A sentence generator for testing parsers. BIT,
12:366-375, April 1972.

M. Roper. Software Testing. McGraw-Hill, 1994.

D. A. Schmidt. Denotational Semantics: A Methodology
for Language Development. Allyn and Bacon, Inc, 1986.
A. L. Souter and L. L. Pollock. OMEN: A strategy for
testing object-oriented software. Proceedings of the Inter-
national Symposium on Software Testing and Analysis,
August 2000.

P. Thevenod-Fosse and H. Waeselynck. Towards a statis-
tical approach to testing object-oriented programs. Pro-
ceedings of the 27th International Symposium on Fault-
Tolerant Computing, June 1997.

E. J. Weyuker. Axiomatizing software test data ad-
equacy. IEEE Transactions on Software Engineering,
12(12):1128-1138, December 1986.

1st ACIS Annual International Conference on Computer and Information Science (ICIS ’01)

Accepted for the International Conference on Computer and Information Science
Orlando, Florida, USA, October 3-5, 2001

