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Abstract

Cohesion is one of the fundamental measures of the
’goodness’ of a software design. The most accepted and
widely studied object-oriented cohesion metric is Chi-
damber and Kemerer’s Lack of Cohesion in Methods mea-
sure. However due to the nature of object-oriented pro-
grams, static design metrics fail to quantify all the under-
lying dimensions of cohesion, as program behaviour is a
function of it operational environment as well as the com-
plexity of the source code. For these reasons two run-time
object-oriented cohesion metrics are described in this pa-
per, and applied to Java programs from the SPECjvm98
benchmark suite. A statistical analysis is conducted to as-
sess the fundamental properties of the measures and inves-
tigate whether they are redundant with respect to the static
cohesion metric. Results to date indicate that run-time co-
hesion metrics can provide an interesting and informative
qualitative analysis of a program and complement existing
static cohesion metrics.

1. Introduction

The most accepted and widely studied object-oriented
cohesion metric is Chidamber and Kemerer’s Lack of Co-
hesion in Methods measure [8]. This is considered to be
the seminal cohesion metric for methods in a class, and is
designed to give a qualitative measure of theinternal com-
plexityof a software design. Attempts have been made to
improve upon this measure to better encapsulate the co-
hesiveness of a class, but despite the number of theoretical
and empirical studies conducted in this area, there is still no
generally accepted definition or measure of object-oriented
cohesion [4, 5, 6, 7].

Many of the shortcomings of Chidamber and Kemerer’s
measure can be inferred from its definition. Suppose a class
containsn methods,m1, . . . ,mn, and let{Ii} be the set of
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instance variables referenced by methodmi . We can define
two disjoint sets:

P = {(Ii , I j) | Ii ∩ I j = /0}
Q = {(Ii , I j) | Ii ∩ I j 6= /0} (1)

The lack of cohesion in methods is then defined from
the cardinality of these sets, by:

SLCOM =
{ |P|− |Q| if |P|> |Q|

0 otherwise
(2)

We refer to this from now on asstaticLCOM, SLCOM, to
emphasise that it is calculated based on a static analysis of
the source code, in contrast to therun-timemetrics defined
below.

A previous study has shown that using this definition
a large number of classes get assigned a zero value for
SLCOM[1]. If there is only a single method in a class ac-
cessing instance variables in the same class, only one set is
formed for that class and therefore a zero value is assigned.
Also if |P|< |Q|, the number of pairs of methods having no
common instance variables is less than the number of pairs
of methods having common instance variables, the metric
is again set to zero. Studies have shown that this metric sets
cohesion to zero for classes that were intuitively judged to
have very different cohesions [5, 6].

Another inadequacy with this metric is due to the fact
that it designed for use at thedesignstage of the soft-
ware life-cycle. Object-oriented software tends to evolve
and become more complex over time. The use of legacy
code in object-oriented systems may lead to code becoming
’dead’ or ’obsolete’ and this may adversely affect the abil-
ity of static metrics to provide an accurate measure of cohe-
sion. In addition, some data affecting cohesion metrics can
only be calculated from run-time information. Features of
object-oriented programming such as polymorphism, dy-
namic binding and inheritance render the static cohesion
metrics imprecise as they do not reflect perfectly the run-
time situation. The above reasons led us to investigate
whether having arun-timecohesion measure would result
in an improvement over theSLCOM.
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1.1. Related Work

A similarly-motivated study was conducted by Gupta
and Rao [12] which measuredmodulecohesion in legacy
software. Gupta and Rao compared statically calculated
metrics against a program execution based approach of
measuring the levels of module cohesion. The results from
this study showed that the static approach significantly
overestimated the levels of cohesion present in the software
tested. However, Gupta and Rao were considering C pro-
grams, where many features of object-oriented programs
are not directly applicable.

A number of studies of the dynamic behaviour of Java
programs have been carried out, mostly for optimisation
purposes. Issues such as bytecode usage [11] and mem-
ory utilisation [9] have been studied, along with a com-
prehensive set of “dynamic metrics” relating to polymor-
phism, object creation and hot-spots [10]. However, none
of this work directly addresses the calculation of standard
software metrics at run-time.

In previous work we have formulated run-time defini-
tions of cohesion metrics [14], and conducted an infor-
mal exploration of their properties. Section 2 briefly sum-
marises our definition of these metrics and Section 3 de-
scribes their implementation. The principal contribution of
this paper is the use of statistical analysis to determine the
usefulness or redundancy of these metrics. Sections 4, 5
and 6 follows [3] in analysing the metrics, and Section 7
discusses the results obtained.

2. Run-time cohesion metrics

The first run-time metric we define isRun-time Simple
LCOM (RLCOM). This is a direct extension of the static
case, except that now we only count instance variables that
are actually accessed at run-time. Thus, for a set of meth-
odsm1, . . . ,mn, as before, let{IR

i } represent the set of in-
stance variables referenced by methodmi at run-time. We
can definePR andQR by substitutingIR

i for Ii in equation 1
above

PR = {(IR
i , IR

j ) | IR
i ∩ IR

j = /0}
QR = {(IR

i , IR
j ) | IR

i ∩ IR
j 6= /0} (3)

We can then defineRLCOM as:

RLCOM =
{
|PR|− |QR| if |PR|> |QR|
0 otherwise

(4)

We note that for any methodmi , (Ii − IR
i ) ≥ 0, and rep-

resents the number of instance variables mentioned in a
method’s code, but not actually accessed at run-time. As
a consequence of this, it is always the case thatRLCOM ≤
SLCOM.

It is reasonable to suggest that a heavily accessed vari-
able should make a greater contribution to class cohe-
sion that one which is rarely accessed. However, the
(RLCOM) does not distinguish between the degree of access
to instance variables. Thus we define a second run-time
measureRun-time Call-Weighted LCOM (RWLCOM) by
weighting each instance variable by the number of times it
is accessed at run-time.

As before, consider a class withn methods,m1, . . . ,mn,
and let{Ii} be the set of instance variables referenced by
methodmi . DefineNi as the number of times methodmi

dynamically accesses instance variables from the set{Ii}.
Now define acall-weightedversion of equation 1 by

summing over the number of accesses:

PW = ∑
1≤i, j≤n

{(Ni +Nj) | Ii ∩ I j = φ}

QW = ∑
1≤i, j≤n

{(Ni +Nj) | Ii ∩ I j 6= φ}

where PW = 0, if{I1}, ...,{In}= φ

(5)

Following equation 2 and 4 we define:

RLCOM =
{
|PR|− |QR| if |PR|> |QR|
0 otherwise

(6)

3. Experimental Platform

The Java Virtual Machine (JVM) provides an ideal en-
vironment within which to study the operation of Java pro-
grams. In particular, Sun Microsystem’s Java 2 SDK ver-
sion 1.4.00 provides a multi-tiered debugging architec-
ture called the Java Platform Debug Architecture (JPDA)
[18]. The JPDA provides introspective access to a running
JVM’s state including the class, array, interface, and prim-
itive types, and instances of those types.

In order to match objects against method calls it is
necessary to model the execution stack of the JVM, as
this information is not provided directly by the JPDA. We
have implemented anEventTrace analyser class in Java,
which carries out a stack based simulation of the entire ex-
ecution in order to obtain information about the state of the
execution stack. This class also implements a filter which
allows the user to specify which events and which of their
corresponding fields are to be captured for processing. This
allows a high degree of flexibility in the collection of the
dynamic trace data.

The final component of our collection system is a
Metrics class, which is responsible for calculating the
desired metrics on the fly. It is also responsible for out-
putting the results in text format. The metrics to be calcu-
lated can be specified from the command line. The addition
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Table 1. Descriptive Statistic Test Results for all Programs

201 compress

Mean SD
RLCOM 2.18 6.48
RWLCOM 452.50 1624.11
SLCOM 33.59 118.25

202 jess

Mean SD
RLCOM 0.95 3.56
RWLCOM 4566543.45 6563246.65
SLCOM 10.06 64.84

205 raytrace

Mean SD
RLCOM 2.78 7.54
RWLCOM 543222.56 644337.77
SLCOM 25.21 96.45

209 db

Mean SD
RLCOM 5.43 9.99
RWLCOM 344888.79 789838.96
SLCOM 52.86 144.75

213 javac

Mean SD
RLCOM 0.655 6.43
RWLCOM 645563.53 852543.65
SLCOM 7.517 48.57

222 mpegaudio

Mean SD
RLCOM 1.75 4.553
RWLCOM 3009148.02 12924046.56
SLCOM 18.35 82.64

227 mtrt

Mean SD
RLCOM 2.82 7.63
RWLCOM 543355.56 644853.77
SLCOM 25.21 96.45

228 jack

Mean SD
RLCOM 2.15 7.07
RWLCOM 182828.675 622422.79
SLCOM 19.95 89.44

of the metrics class allows new metrics to be easily defined
as the user need only interface with this class. See [15, 16]
for additional information.

To investigate the robustness of our metrics we car-
ried out measurements on the Java programs from the
SPECjvm98 benchmark suite [17]. In the following sec-
tions the data collected using the above technique is anal-
ysed to determine if the run-time cohesion metrics are re-
dundant with respect to the static LCOM measure. The pro-
cedure is derived from the method outlined in [3], and con-
sists of descriptive statistics, a correlation study and princi-
pal component analysis.

4. Descriptive Statistics

For each program in the SPECjvm98 suite thedistri-
bution (mean) andvariance (standard deviation) of each
measure across the classes is calculated. These statistics
are used to select metrics that exhibit enough variance to
merit further analysis, as a low variance metric would not
differentiate classes very well and therefore would not be
a useful predictor of external quality. Descriptive statis-
tics will also aid in explaining the results of the subsequent
analysis.

The descriptive statistics for the SPECjvm98 benchmark
programs are illustrated by Table 1. The measures were
shown to exhibit large variances which makes them suitable
candidates for further analysis.

The subsequent statistical techniques all require anor-
mal (bivariate) data distribution . The Shapiro-Wilk test
was used to test whether the data was normally distributed.
Any data that did not exhibit a normal distribution was
transformed by calculating the logarithm of each data point.

5. Correlation Study

A correlation study was undertaken to investigate how
strongly the metrics are related. The Pearson or product
moment correlation test was used. The correlation coeffi-
cient r is a number that summarises the direction and de-
gree of linear relations between two variables and is also
known as the Pearson Product-Moment Correlation Coeffi-
cient. r can take values between -1 through 0 to +1. When
the correlation is positive (r > 0), as the value of one vari-
able increases, so does the other. The closerr is to zero the
weaker the relationship. If a correlation is negative, when
one variable increases, the other variable decreases.

The following general categories indicate a quick way
of interpreting a calculatedr value:
0.0 to 0.2 Very weak to negligible correlation
0.2 to 0.4 Weak, low correlation (not very significant)
0.4 to 0.6 Moderate correlation
0.7 to 0.9 Strong, high correlation
0.9 to 1.0 Very strong correlation

Any relationship between two variables should be as-
sessed for itssignificanceas well as its strength. A standard
two tailed t-test was used to determine whether the corre-
lation coefficient was statistically significant. Coefficients
were considered significant if the t-test p-value was below
0.05. This tells how unlikely a given correlation coeffi-
cient,r, will occur given no relationship in the population.
Therefore the smaller the p-level, the more significant the
relationship.

The results for the Pearson correlation coefficient test
for the programs under evaluation are illustrated by Table
2. AsRLCOM is essentiallySLCOM compounded at run-time
some degree of correlation between these two would be ex-
pected. However, while some cases exhibited a weak de-
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Table 2. Pearson Correlation Coefficient Test Results
for all Programs, with a p-level of 0.05

SLCOM SLCOM RLCOM
vs. vs. vs.

Program RLCOM RWLCOM RWLCOM

201 compress 0.455 0.553 0.984
202 jess 0.242 0.143 0.765
205 raytrace 0.434 0.343 0.675
209 db 0.424 0.516 0.892
213 javac 0.563 0.643 0.732
222 mpegaudio 0.173 0.054 0.721
227 mtrt 0.444 0.348 0.681
228 jack 0.386 0.465 0.515

gree of correlation, none of the programs yielded a signifi-
cant correlation.

In contrast, the rightmost column of Table 2 demon-
strates a significant correlation betweenRLCOM and
RWLCOM. Five of the programs exhibit a strong correlation,
with the remaining three exhibiting a moderate correlation.
Thus, there is a strong indication thatRLCOM andRWLCOM,
despite the difference in their definition, may not be inde-
pendent measures of run-time class cohesiveness.

6. Principal Component Analysis

Principal Component Analysis(PCA) is used to anal-
yse the covariate structure of the metrics and to determine
the underlying structural dimensions they capture. In other
words PCA can tell if all the metrics are likely to be mea-
suring the same class property. The number of principal
components will be decided based on the amount of vari-
ance explained by each component. A typical threshold
would be retaining principal components with eigenvalues
(variances) larger than 1.0. This is the Kaiser criterion [13].

Table 3 shows the results of the principal component
analysis when all of the metrics are taken into considera-
tion. Using the Kaiser criterion to select the number of fac-
tors to retain we find that the metrics mostly capture two
orthogonal dimensions in the sample space formed by all
measures. In other words for each of the programs anal-
ysed two principal components are retained.

The RLCOM metric belongs to the same principal com-
ponent as theRWLCOM in all cases. As the Pearson corre-
lation coefficient test showed that these two measures are
also strongly correlated, it may be sufficient to evaluate the
RLCOM metric alone. In other words not enough variance is
captured by theRWLCOM measure that is not accounted for
by RLCOM.

However, a significant amount of variance is captured
by the run-time metrics that is not accounted for bySLCOM

asSLCOM was found to be weakly correlated or not at all

with the run-time measures. Analysing the definitions of
the measures that exhibit high loadings in PC1 and PC2
yields the following interpretation of the cohesion dimen-
sions:

PC1 MeasuresRLCOM andRWLCOM

PC2 MeasuresSLCOM

In summary, the finding from this study indicate that no
significant information about the cohesiveness of a class
can be gained by evaluating theRWLCOM instead of the
simpler RLCOM. However, the PCA results seem to sug-
gest thatRLCOM is not redundant with respect toSLCOM and
that it captures additional information about cohesion. The
values show thatRLCOM is not just a surrogate static mea-
sure. Clearly the simple static calculation of LCOM masks
a considerable amount of detail available at run-time.

7. Discussion

Besides the lack of discriminating power of these co-
hesion (static and run-time) metrics there are a number of
other inadequacies that should be addressed.

7.1. Inclusion of Access Methods

The role of an access method is typically to provide read
or write access to an instance variable belonging to a class.
Usually these methods will deal with a single instance vari-
able. The result of this may be the presence of many pairs
of such methods that do not have any instance variables in
common. This is a disadvantage when calculating metrics
which involve counting pairs of methods that use common
instance variables. Their presence may artificially decrease
the value of the cohesion measure.

The cohesion value may also be artificially decreased
by the presence of access methods if other methods of the
class use the access method to access the instance variable
instead of directly referencing it. This will result in a reduc-
tion in the number of references to that instance variable.

7.2. Inclusion of Constructors

The role of a constructor is to assign initial values to the
instance variables of a class. Typically most of the instance
variables in a class will be accessed by these constructor
methods. The inclusion of such methods in the analysis
will result in an artificial increase in cohesion, as many
pairs of methods will exist that have instance variables in
common.

7.3. Impact of Inheritance

The metrics used in this study make no attempt to deal
with methods and instance variables that may be inherited
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Table 3. Principal Component Analysis Test Results for all Programs

201 compress

PC1 PC2
RLCOM 0.979 0.192
RWLCOM 0.948 0.313
SLCOM 0.488 0.615

202 jess

PC1 PC2
RLCOM 0.786 0.213
RWLCOM 0.845 0.132
SLCOM 0.464 0.766

205 raytrace

PC1 PC2
RLCOM 0.845 0.145
RWLCOM 0.823 0.089
SLCOM 0.145 0.535

209 db

PC1 PC2
RLCOM 0.846 0.108
RWLCOM 0.903 0.046
SLCOM 0.499 0.421

213 javac

PC1 PC2
RLCOM 0.566 0.323
RWLCOM 0.643 0.034
SLCOM 0.487 0.467

222 mpegaudio

PC1 PC2
RLCOM 0.813 0.006
RWLCOM 0.807 0.013
SLCOM 0.001 0.992

227 mtrt

PC1 PC2
RLCOM 0.843 0.143
RWLCOM 0.821 0.087
SLCOM 0.143 0.534

228 jack

PC1 PC2
RLCOM 0.714 0.280
RWLCOM 0.690 0.002
SLCOM 0.314 0.541

by a class. This approach is deemed cohesion at the class
level. It deals with the relationships between the elements
of a class, that is, all of its non-inherited methods and in-
stance variables.

A number of alternatives have been proposed to deal
with such inheritance issues. Bieman and Kang [2] pro-
posed to include inherited instance variables but exclude
inherited methods. Briand et al [4] suggested to include in-
herited methods but exclude inherited instance variables.
However, neither party provided a convincing argument
why either of these approaches would yield a more accu-
rate result.

7.4. Distinction Between Directly and Indirectly
Connected Pairs of Methods

The distinction between directly and indirectly con-
nected pairs of methods is not addressed. If two distinct
methodsm1 andm2 of a class both access an instance vari-
able of that class, they are said to besimilar methods. They
are also deemed to be directly connected to one another. If
another methodm3 in the class is similar to methodm2 it is
said to bedirectlyconnected tom2 but indirectlyconnected
to m1.

These metrics count direct connections only. The dis-
advantage of this is that it has been proposed that indirect
connections appear to give a better indication for when to
break up a class [4]. For a full review of these and other
possible inadequacies with the current run-time definitions
see [14].

8. Conclusion and Future Work

This paper reviewed two run-time cohesion metrics de-
signed to quantify the external quality of an object-oriented
application. A method for collecting such measures was
described which utilised the Java Platform Debug Archi-
tecture. An empirical investigation of the metrics was con-
ducted using programs from the SPECjvm98 benchmark
suite.

The differences in the underlying dimensions of cohe-
sion captured by static versus run-time cohesion metrics
was assessed using a correlation study and principal com-
ponent analysis. The investigation was conducted using
the static LCOM metric(SLCOM) as defined by Chidamber
and Kemerer. The results indicated that theRLCOM metric
captured additional information about cohesion thanSLCOM

alone. Results indicate that it is worthwhile to continue the
investigation into run-time cohesion metrics and their rela-
tionship with the external quality.

There are plans to extend this work in a number of
ways. We hope to develop a comprehensive set of run-time
object-oriented metrics that can intuitively quantify such
aspects of object-oriented applications such as inheritance,
dynamic binding, polymorphism and dynamic binding. It
is also a goal to improve on the additional performance
overhead that results from the use of the JPDA during the
collection of the dynamic trace information.
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